PERCONA

Operator for PostgreSQL 2.7.0

(July 18, 2025)

Documentation

Table of Contents

About

Percona Operator for PostgreSQL

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Overview

1 Quick install

With kubectl
With Helm
2 Connect to PostgreSQL

3 Insert data

4 Make a backup

5 Monitor the database with PMM

What's next

Installation

System requirements

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS),

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Configuration

Application and system users

Exposing the cluster

Changing_PostgreSQL options

Anti-affinity and tolerations

Labels and annotations

Transport encryption (TLS/SSL)

Page 2

Telemetry

Configure concurrency for a cluster reconciliation

Management

Upgrade PostgreSQL and the Operator

Upgrade from version 1 to version 2

Using data volumes

Using backup and restore

Using_standby

Back up and restore

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

Disable backups

High availability and scaling

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming replication

Failover

Change PostgreSQL primary instance

How to use private registry

Add custom PostgreSQL extensions

Page 3

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Delete the Operator

Monitor Kubernetes

Use PostGIS extension

Troubleshooting

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Manage a database manually

Reinitialize replicas

Reference

Custom Resource options

Backup resource options

Restore options

Secrets options

Percona certified images

Versions compatibility

Copyright and licensing_information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)
Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Page 4

About

Percona Operator for PostgreSQL

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Overview

1 Quick install

With kubectl
With Helm
2 Connect to PostgreSQL

3 Insert data

4 Make a backup

5 Monitor the database with PMM

What's next

Installation

System requirements

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE),

Install on Amazon Elastic Kubernetes Service (AWS EKS),

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Configuration

Application and system users

Exposing_the cluster

Changing_ PostgreSQL options

Anti-affinity and tolerations

Labels and annotations

Transport encryption (TLS/SSL),

Telemetry

Configure concurrency for a cluster reconciliation

Page 5

Management

Upgrade PostgreSQL and the Operator

Upgrade from version 1 to version 2

Using data volumes

Using backup and restore

Using_standby
Back up and restore

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

Disable backups

High availability and scaling

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming_replication

Failover

Change PostgreSQL primary instance

How to use private registry

Add custom PostgreSQL extensions

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Page 6

Delete the Operator

Monitor Kubernetes

Use PostGIS extension

Troubleshooting

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Manage a database manually

Reinitialize replicas

Reference

Custom Resource options

Backup resource options

Restore options

Secrets options

Percona certified images

Versions compatibility

Copyright and licensing information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)
Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Page 7

About

Page 8

Percona Operator for PostgreSQL

documentation

The Percona Operator for PostgreSQL [4 automates the creation, modification, or deletion of items in your
Percona Distribution for PostgreSQL environment. The Operator contains the necessary Kubernetes

settings to maintain a consistent PostgreSQL cluster.

Percona Kubernetes Operator is based on best practices for configuration and setup of a Percona
Distribution for PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering

a consistent and vetted environment is key.

This is the documentation for the latest release, 2.7.0 (Release Notes).

Starting with Percona Kubernetes Operator is easy. Follow our documentation guides, and you'll be set up

in a minute.

¥ Installation guides

Want to see it for yourself? Get started
quickly with our step-by-step installation
instructions.

C Quickstart guides >)

¢ Backup management

Learn what you can do to maintain regular
backups of your PostgrgeSQL cluster.

(Backup management >)

@ Security and encryption

Rest assured! Learn more about our security
features designed to protect your valuable
data.

C Security measures >)

H, Troubleshooting

Our comprehensive resources will help you
overcome challenges, from everyday issues
to specific doubts.

C Diagnostics -)

Page 9

https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator

Compare various solutions to deploy
PostgreSQL in Kubernetes

There are multiple ways to deploy and manage PostgreSQL in Kubernetes. Here we will focus on
comparing the following open source solutions:

 Crunchy Data PostgreSQL Operator (PGQ)_[4

e CloudNative PG [4 from Enterprise DB

o Stackgres [4 from OnGres

e Zalando Postgres Operator (4

 Percona Operator for PostgreSQL [4

Generic
Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL
Open-source Apache 2.0 AGPL 3 Apache 2.0, but Apache 2.0 MIT
license images are
under Developer
Program
PostgreSQL 12-16 14-16 13-16 12-16 11-15
versions
Kubernetes Various Various Various Various AWS EKS
conformance versions are versions are versions are versions are
tested tested tested tested
Web-based GUI Percona Admin Ul o o Postgres
Everest Operator Ul

Maintenance

Page 10

https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/ongres/stackgres
https://github.com/ongres/stackgres
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/percona/percona-postgresql-operator/
https://github.com/percona/percona-postgresql-operator/
https://github.com/percona/percona-postgresql-operator/
https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/index.html
https://stackgres.io/doc/latest/administration/adminui/
https://github.com/zalando/postgres-operator/blob/master/docs/operator-ui.md
https://github.com/zalando/postgres-operator/blob/master/docs/operator-ui.md

Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL

Operator

upgrade

Database Automated Automated Manual Manual Manual

upgrade and safe and safe

Compute Horizontal and Horizontal Horizontal Horizontal and Horizontal

scaling vertical and vertical and vertical vertical and vertical

Storage scaling Manual Manual Manual Manual Manual,

automated for
AWS EBS
PostgreSQLl topologies
Feature/Product Percona Operator Stackgres CrunchyData CloudNativePG Zalando
for PostgreSQL (EDB)

Warm standby

Hot standby

Connection

pooling

Delayed replica © o) o ©

Backups
Feature/Product Percona Operator Stackgres CrunchyData CloudNativePG Zalando
for PostgreSQL (EDB)
Scheduled
backups

Page 11

Feature/Product Percona Operator Stackgres CrunchyData CloudNativePG Zalando

for PostgreSQL (EDB)
WAL archiving
PITR
GCS
s3
Azure

Monitori ng

Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando

Operator for (EDB)

PostgreSQL
Solution Percona Exposing Prometheus Exposing Sidecars

Monitoring and metrics in stack and metrics in
Management Prometheus pgMonitor Prometheus
and sidecars format format
Miscellaneous
Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL

Customize
PostgreSQL
configuration
Sidecar containers o (N
for customization
Helm

Page 12

Feature/Product

Transport

encryption

Data-at-rest
encryption

Create users/roles

Percona
Operator for
PostgreSQL

Through
storage class

Stackgres

Through
storage
class

CrunchyData

Through
storage class

CloudNativePG

(EDB)

Through
storage class

Zalando

Through
storage
class

limited

Page 13

Desigh overview

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source
PostgreSQL clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator [4.

— £ - - G2

Kubernetes API Operator
—, O N
clusters primary
b
(perconapgcluster) PostgreSQL pgbouncer
backup, restore replica
> backrest
(perconapgbackups, PostgreSQL pgbackres
perconapgrestores)
Custom Resource . .
Definitions Container Suite
- AN J,
N

— -
oo !
Q0:E0 - @

PostgreSQL containers deployed with the Operator include the following components:

e The PostgreSQL [4 database management system, including:

 PostgreSQL Additional Supplied Modules [,

e pgAudit [4 PostgreSQL auditing extension,

o PostgreSQL set_user Extension Module [7,

« wal2json output plugin (4,

Page 14

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/
https://access.crunchydata.com/documentation/postgres-operator/v5/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json
https://github.com/eulerto/wal2json

The pgBackRest [4 Backup & Restore utility,

The pgBouncer [4 connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template [7,

the pg_stat_monitor [4 PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

Each PostgreSQL cluster includes one member availiable for read/write transactions (PostgreSQL primary
instance, or leader in terms of Patroni) and a number of replicas which can serve read requests only
(standby members of the cluster).

To provide high availability from the Kubernetes side the Operator involves node affinity [4 to run
PostgreSQL Cluster instances on separate worker nodes if possible. If some node fails, the Pod with it is
automatically re-created on another node.

Page 15

https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://github.com/percona/pg_stat_monitor/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

— £ <

Kubernetes API

(

@47

Operator

i
O

DB Pod 1 DB Pod 2 DB Pod N

Percona Distribution for PostgreSQL
Namespace

_ J

. T

Storage
Area
Network

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A

0-

PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a failure
occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions [4. These

CRDs provide extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform
actions such as creating a PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding
additional utilities to a PostgreSQL cluster, e.g. pgBouncer [for connection pooling and more.

Page 16

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/
https://www.pgbouncer.org/
https://www.pgbouncer.org/

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the
Operator automatically creates/changes/deletes all needed Kubernetes objects with the appropriate
settings to provide a proper Percona PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

e perconapgclusters stores information required to manage a PostgreSQL cluster. This includes
things like the cluster name, what storage and resource classes to use, which version of PostgreSQL to
run, information about how to maintain a high-availability cluster, etc.

e perconapgbackups and perconapgrestores are in charge for making backups and restore them.

Page 17

Get help from Percona

Our documentation guides are packed with information, but they can't cover everything you need to know
about Percona Operator for PostgreSQL. They also won't cover every scenario you might come across.
Don't be afraid to try things out and ask questions when you get stuck.

Percona’s Community Forum

Be a part of a space where you can tap into a wealth of knowledge from other database enthusiasts and
experts who work with Percona’s software every day. While our service is entirely free, keep in mind that
response times can vary depending on the complexity of the question. You are engaging with people who
genuinely love solving database challenges.

We recommend visiting our Community Forum. It's an excellent place for discussions, technical insights,

and support around Percona database software. If you're new and feeling a bit unsure, our FAQ and Guide

for New Users ease you in.

If you have thoughts, feedback, or ideas, the community team would like to hear from you at Any ideas on
how to make the forum better?. We're always excited to connect and improve everyone’s experience.

Percona experts

Percona experts bring years of experience in tackling tough database performance issues and design
challenges.

We understand your challenges when managing complex database environments. That's why we offer
various services to help you simplify your operations and achieve your goals.

Service Description

24/7 Expert Support Our dedicated team of database experts is available 24/7 to assist you with any
database issues. We provide flexible support plans tailored to your specific needs.

Hands-On Database Our managed services team can take over the day-to-day management of your database
Management infrastructure, freeing up your time to focus on other priorities.
Expert Consulting Our experienced consultants provide guidance on database topics like architecture

design, migration planning, performance optimization, and security best practices.

Page 18

https://forums.percona.com/t/welcome-to-perconas-community-forum/7
https://forums.percona.com/faq
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522

Service

Comprehensive Training

Description

Our training programs help your team develop skills to manage databases effectively,

offering virtual and in-person courses.

We're here to help you every step of the way. Whether you need a quick fix or a long-term partnership, we're

ready to provide your expertise and support.

Page 19

Quickstart guide

Page 20

Overview

Ready to get started with the Percona Operator for PostgreSQL? In this section, you will learn some basic

operations, such as:

e Install and deploy an Operator

e Connect to PostgreSQL

¢ Insert sample data to the database
¢ Set up and make a manual backup

e Monitor the database health with PMM

Next steps

(Install the Operator -)

Page 21

1 Quick install

Page 22

Install Percona Distribution for PostgreSQL
using kubectl

A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The
Operator extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona
Distribution for PostgreSQL cluster in a Kubernetes-based environment on-premises or in the cloud.

We recommend installing the Operator with the kubectl [4 command line utility. It is the universal way to
interact with Kubernetes. Alternatively, you can install it using the Helm [4 package manager.

C Instqllwith kubectl |) C HE;M Install with Helm >)

Prerequisites

To install Percona Distribution for PostgreSQL, you need the following:

1. The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes
distributions. Install not already installed, follow its official installation instructions [4.

2. A Kubernetes environment. You can deploy it on Minikube [4 for testing purposes or using any cloud
provider of your choice. Check the list of our officially supported platforms.

° See also

o Set up Minikube

* Create and configure the GKE cluster

e Set up Amazon Elastic Kubernetes Service

o Create and configure the AKS cluster

Procedure

Here's a sequence of steps to follow:

Page 23

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

a Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in

Kubernetes by installing the Operator in a custom namespace. For example, let's name it postgres-

operator:

S kubectl create namespace postgres-operator

H Expected output v
namespace/postgres-operator was created
We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.
0 Deploy the Operator using_[4 the following command:
S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.7.0/deploy/bundle.yaml -n postgres-operator
v

H Expected output

customresourcedefinition.apiextensions.k8s

customresourcedefinition.apiextensions.k8s
serverside-applied

serverside-applied
serverside-applied
serverside-applied

serverside-applied
customresourcedefinition.apiextensions.k8s

customresourcedefinition.apiextensions.k8s

serviceaccount/percona-postgresql-operator

serverside-applied

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.
customresourcedefinition.apiextensions.k8s.
customresourcedefinition.apiextensions.k8s.

customresourcedefinition.apiextensions.k8s.

operator.crunchydata.com serverside-applied
operator.crunchydata.com serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

deployment.apps/percona-postgresql-operator serverside-applied

.io/crunchybridgeclusters.postgres-
.1o/perconapgbackups.pgv2.percona.com
io/perconapgclusters.pgv2.percona.com
io/perconapgrestores.pgv2.percona.com
io/perconapgupgrades.pgv2.percona.com
io/pgadmins.postgres-operator.crunchydata.com
.1o/pgupgrades.postgres-
.io/postgresclusters.postgres-

serverside-applied

At this point, the Operator Pod is up and running.

Page 24

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

e Deploy Percona Distribution for PostgreSQL cluster:

S kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.7.0/deploy/cr.yaml -n postgres-operator

H Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

e Check the Operator and replica set Pods status.

S kubectl get pg -n postgres-operator

The creation process may take some time. When the process is over your cluster obtains the ready
status.

H Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE

cluster cluster1-pgbouncer.postgres-operator.svc ready 3 3

143m

You have successfully installed and deployed the Operator with default parameters. You can check them
in the Custom Resource options reference.

Next steps

C (&3 connect to PostgresQL >)

Page 25

Install Percona Distribution for PostgreSQL
using Helm

Helm [4 is the package manager for Kubernetes. A Helm chart [4 is a package that contains all the

necessary resources to deploy an application to a Kubernetes cluster.

You can find Percona Helm charts in percona/percona-helm-charts [repository in Github.

Prerequisites

To install and deploy the Operator, you need the following:

1.Helmv3 (4.
2. kubectl [4 command line utility.

3. A Kubernetes environment. You can deploy it locally on Minikube [for testing purposes or using any
cloud provider of your choice. Check the list of our officially supported platforms.

° See also

o Set up Minikube

* Create and configure the GKE cluster

e Set up Amazon Elastic Kubernetes Service

Installation

Here's a sequence of steps to follow:

0 Add the Percona’s Helm charts repository and make your Helm client up to date with it:

S helm repo add percona https://percona.github.io/percona-helm-charts/
S helm repo update

9 It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:

$ kubectl create namespace <my-namespace>

Page 26

https://github.com/helm/helm
https://github.com/helm/helm
https://github.com/helm/helm
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

e Install the Percona Operator for PostgreSQL:
$ helm install my-operator percona/pg-operator --namespace <my-namespace>
The my-namespace is the name of your namespace. The my-operator parameter is the name of a

new release object [4 which is created for the Operator when you install its Helm chart (use any
name you like).

o Install Percona Distribution for PostgreSQL.:

S helm install cluster1 percona/pg-db -n <my-namespace>

The cluster1 parameter is the name of a new release object [4 which is created for the Percona
Distribution for PostgreSQL when you install its Helm chart (use any name you like).

e Check the Operator and replica set Pods status.

$ kubectl get pg -n <my-namespace>

The creation process is over when both the Operator and replica set Pods report the ready status:

H Expected output v
NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE
cluster cluster1-pgbouncer.postgres-operator.svc ready 3 3
143m

You have successfully installed and deployed the Operator with default parameters. You can check them
in the Custom Resource options reference.

You can find in the documentation for the charts which Operator (4 and database [4 parameters can be
customized during installation.

Next steps

(Connect to PostgresQL -»>)

Page 27

https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

2 Connect to the PostgreSQL cluster

When the installation is done, we can connect to the cluster.

The pgBouncer _[4 component of Percona Distribution for PostgreSQL provides the point of entry to the

PostgreSQL cluster. We will use the pgBouncer URI to connect.

The pgBouncer URI is stored in the Secret [object, which the Operator generates during the installation.

To connect to PostgreSQL, do the following:
0 List the Secrets objects
S kubectl get secrets -n <namespace>

The Secrets object we target is named as <cluster_name>-pguser-<cluster_name>. The
<cluster_name> value is the name of your Percona Distribution for PostgreSQL Cluster. The default

variant is:

via kubectl

cluster1-pguser-cluster

iy .

we via Helm
cluster1-pg-db-pguser-cluster1-pg-db

g Retrieve the pgBouncer URI from your secret, decode and pass it as the PGBOUNCER_URI environment
variable. Replace the <secret>, <namespace> placeholders with your Secret object and namespace

accordingly:

S PGBOUNCER_URI=S(kubectl get secret <secret> --namespace <namespace> -0
jsonpath="{.data.pgbouncer-uri}' | base64 --decode)

The following example shows how to pass the pgBouncer URI from the default Secret object

cluster1-pguser-clusteri:

S PGBOUNCER_URI=S(kubectl get secret clusterl-pguser-clusterl --namespace
<namespace> -o jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

Page 28

http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

e Create a Pod where you start a container with Percona Distribution for PostgreSQL and connect to the
database. The following command does it, naming the Pod pg-client and connects you to the

cluster1 database:

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:16 --restart=Never -- psql SPGBOUNCER_URI

It may take some time to create the Pod and connect to the database. As the result, you should see

the following sample output:

H Expected output

psql (17.5.2)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

clusteri=>

Congratulations! You have connected to your PostgreSQL cluster.

Next steps

C S Insert testing data >)

Page 29

3 Insert sample data

The next step after connecting_ to the cluster is to insert some sample data to PostgreSQL.

When you start a PostgreSQL container and connect to the database, a user is created with the username
that matches the name of your cluster. Also, a database and a schema named after the name of this user
are created so that you can create a table right away.

Create a schema (for Operator version earlier than 2.6.0)

In Operator versions earlier than 2.6.0, you must create a new schema to insert the data. This is because
your user cannot access the default schema called public due to PostgreSQL restrictions (instroduced
starting with PostgreSQL 15).

A schema stores database objects like tables, views, indexes and allows organizing them into logical
groups.

Use the following statement to create a schema

CREATE SCHEMA demo;

Create a table

After you created a schema, all tables you create end up in this schema if not specified otherwise.

At this step, we will create a sample table Library as follows:

CREATE TABLE LIBRARY(
ID INTEGER NOT NULL,
NAME TEXT,
SHORT_DESCRIPTION TEXT,
AUTHOR TEXT,
DESCRIPTION TEXT,
CONTENT TEXT,
LAST_UPDATED DATE,
CREATED DATE

Page 30

é Tip

SET schema 'demo';

Replace the demo schema name with your value if you used another name.

If the schema has not been automatically set to the one you created, set it manually using the following SQL statement:

Insert the data

PostgreSQL does not have the built-in support to generate random data. However, it provides the
random() function which generates random numbers and generate_series() function which
generates the series of rows and populates them with the numbers incremented by 1 (by default).

Combine these functions with a couple of others to populate the table with the data:

INSERT INTO LIBRARY(id, name, short_description, author,
description, content, last_updated, created)
SELECT id, 'name', md5(random()::text), 'name2’
,md5(random() ::text),md5(random() : :text)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100 + 100)
FROM generate_series(1,100) id;

This command does the following:

¢ Fillsin the columns id, name, author with the values id, name and name2 respectively;

¢ generates the random md5 hash sum as the values for the columns short_description,

description and content;

¢ generates the random number of dates from the current date and time within the last 100 days, and

e inserts 100 rows of this data

Now your cluster has some data in it.

Next steps

(5 Make a backup >)

Page 31

4 Make a backup

Now your database contains some data, so it's a good time to learn how to manually make a full backup

of your data with the Operator.

o Note

If you are interested to learn more about backups, their types and retention policy, see the Backups section.

Considerations and prerequisites

e Inthis tutorial we use the AWS S3 [as the backup storage. You need the following S3-related
information:

The name of S3 bucket;

The endpoint - the URL to access the bucket

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage.

If you don't have access to AWS, you can use any S3-compatible storage like MinlO [4. Check the list of

supported storages. Find the storage configuration instructions for each

e The Operator uses the pgBackRest _[4 tool to make backups. pgBackRest stores the backups and
archives WAL segments in repositories. The Operator has up to four pgBackRest repositories named
repol, repo2, repo3 and repo4. In this tutorial we use repo2 for backups.

¢ Also, we will use some files from the Operator repository for setting up backups. So, clone the percona-
postgresql-operator repository:

$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
S cd percona-postgresql-operator

0 Note

It is important to specify the right branch with -b option while cloning the code on this step. Please be careful.

Configure backup storage

Page 32

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://min.io/docs/minio/linux/index.html
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/

a Encode the S3 credentials and the pgBackRest repository name (repo2 in our setup).

A Linux

S cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

.’ macO0S

S cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

9 Create the Secret configuration file and specify the base64-encoded string from the previous step.
The following is the example of the clusteri1-pgbackrest-secrets.yaml Secret file:

apiVersion: v
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets
type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

6 Create the Secrets object from this yaml file. Specify your namespace instead of the <namespace>
placeholder:

S kubectl apply -f clusteri-pgbackrest-secrets.yaml -n <namespace>

a Update your deploy/cr.yaml configuration. Specify the Secret file you created in the
backups.pgbackrest.configuration subsection, and put all other S3 related information in the
backups.pgbackrest.repos subsection under the repository name that you intend to use for
backups. This name must match the name you used when you encoded S3 credentials on step 1.

For example, the S3 storage for the repo2 repository looks as follows:

Page 33

backups:
pgbackrest:
configuration:
- secret:
name: clusteri-pgbackrest-secrets
repos:
- hame: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

e Create or update the cluster. Specify your namespace instead of the <namespace> placeholder:

$ kubectl apply -f deploy/cr.yaml

Make a backup

For manual backups, you need a backup configuration file.

0 Edit the example backup configuration file [deploy/backup.yaml (4]
(https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.7.0/deploy/backup.yaml). Specify your cluster name and the repo name.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backupi
spec:
pgCluster: cluster2
repoName: repol
options:
- --type=full

9 Apply the configuration. This instructs the Operator to start a backup.

S kubectl apply -f deploy/backup.yaml -n <namespace>

e To make a backup takes a while. Track the backup progress:

Page 34

S kubectl get pg-backup -n <namespace>

H Expected output v
NAME CLUSTER REPO DESTINATION STATUS TYPE COMPLETED AGE
backup1 cluster repo2 s3://pg-operator-testing Succeeded
full 3ml4s 4m46s

Congratulations! You have made the first backup manually. Want to learn more about backups? See the

Backup and restore section for details like types, retention and how to automatically make backups
according to the schedule.

Next steps

(Monitor the database >)

Page 35

5 Monitor the database

Finally, when we are done with backup, it's time for one more step. In this section you will learn how to
monitor the health of Percona Distribution for PostgreSQL with Percona Monitoring.and Management
(PMM)_[4.

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you provide.
For PMM 2, the Operator uses API keys for authentication. For PMM 3, it uses service account tokens.

We recommend to use the latest PMM 3.

PMM is a client/server application. It includes the PMM Server [4 and the number of PMM Clients [4
running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect
to the PMM Server to see database metrics on a number of dashboards. PMM Server and PMM Client are
installed separately.

Considerations

1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you are
using PMM server version 3, use a PMM client image compatible with PMM 3. Check Percona
certified images for the right one.

2. If you specified both authentication methods for PMM server configuration and they have non-empty
values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation [4. Also check the Automatic
migration of API keys [page.

Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual
appliance, or in Kubernetes. Please refer to the official PMM documentation (4 for the installation

instructions.

Install PMM Client

Page 36

https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html

PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based
environment. To install PMM Client, do the following:

Configure authentication

Page 37

PMM3

PMM3 uses Grafana service accounts to control access to PMM server components and resources. To
authenticate in PMM server, you need a service account token. Generate a service account and token [4.

Specify the Admin role for the service account.

A Warning

When you create a service account token, you can select its lifetime: it can be either a permanent token that never
expires or the one with the expiration date. PMM server cannot rotate service account tokens after they expire. So you

must take care of reconfiguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server [4. The APl key must have the role “Admin”. You need this key to
authorize PMM Client within PMM Server.

Is® From PMM UI

C Generate the PMM APl key [J)

From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and

hostname in the following command:

§ API_KEY=S$(curl --insecure -X POST -H "Content-Type: application/json" -d
"{"name" :"operator"”, "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

A Warning

The API key is not rotated.

Create a secret

Now you must pass the credentials to the Operator. To do so, create a Secret object.

Page 38

https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

1. Create a Secret configuration file. You can use the deploy/secrets.yaml [4 secrets file.

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN value in the secrets file:

apiVersion: v
kind: Secret
metadata:
name: clusterl-pmm-secret
type: Opaque
stringData:
PMM_SERVER_TOKEN: ""

PMM 2

Specify the APl key as the PMM_SERVER_KEY value in the secrets file:

apiVersion: v
kind: Secret
metadata:
name: cluster1-pmm-secret
type: Opaque
stringData:
PMM_SERVER_KEY: ""

2. Create the Secrets object using the deploy/secrets.yaml file.

S kubectl apply -f deploy/secrets.yaml -n postgres-operator

H Expected output

secret/cluster1-pmm-secret created

Deploy a PMM Client

1. Update the pmm section in the deploy/cr.yaml (7 file.

e Set pmm.enabled=true.

Page 39

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

o Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM
Server IP address should be resolvable and reachable from within your cluster.
¢ Specify the name of the Secret object that you created earlier
pmm :
enabled: true
image: percona/pmm-client:3.3.0
imagePullPolicy: IfNotPresent

secret: clusterl-pmm-secret
serverHost: monitoring-service

2. Update the cluster
S kubectl apply -f deploy/cr.yaml -n postgres-operator

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there
are errors on the previous steps:

S kubectl get pods -n postgres-operator
$ kubectl logs <pod_name> -c pmm-client

Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text
format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If you
want to update the password field, you need to encode the new password into the base64 format and pass
it to the Secrets Object.

To encode a password or any other parameter, run the following command:

[;\ Linux

$ echo -n "password" | base64 --wrap=0
" macOS
S echo -n "password" | base64

For example, to set the new service account token in the my-cluster-name-secrets object, do the
following:

Page 40

& Linux

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
"S(echo -n <new-token> | base64 --wrap=0)'}}"'

" macO0S

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'$(echo -n <new-token> | base64)'}}’

Check the metrics

Let’s see how the collected data is visualized in PMM.

a Log in to PMM server.
e Click @} PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.

9 Click @} PostgreSQL - Other dashboards to see the list of available dashboards that allow you to drill
down to the metrics you are interested in.

Next steps

C What's next >)

Page 41

What's next?

Congratulations! You have completed all the steps in the Get started guide.
You have the following options to move forward with the Operator:

e Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

¢ Control Pods assignment on specific Kubernetes Nodes by setting up affinity / anti-affinity

¢ Ready to adopt the Operator for production use and need to delete the testing deployment? Use this
guide to do it

¢ You can also try operating the Operator and database clusters via the web interface with Percona
Everest - an open-source web-based database provisioning tool based on Percona Operators. See Get
started with Percona Everest on how to start using it

Page 42

https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html

Installation

Page 43

System requirements

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud
native and storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

Supported versions
The Operator 2.7.0 is developed, tested and based on:

e PostgreSQL 13.21,14.18,15.13,16.9, 17.5.2 as the database. Other versions may also work but have
not been tested.

e pgBouncer 1.24.1 for connection pooling
o Patroni version 4.0.5 for high-availability

e PostGIS version 3.3.8

Supported platforms

The following platforms were tested and are officially supported by the Operator 2.7.0:

e Google Kubernetes Engine (GKE)_[4 1.30-1.32

e Amazon Elastic Container Service for Kubernetes (EKS)_[4 1.30-1.33

e OpenShift [4 4.15-4.19
e Azure Kubernetes Service (AKS)_[(4 1.30-1.33

e Minikube [4 1.36.0 with Kubernetes v1.33.1

Other Kubernetes platforms may also work but have not been tested.

Installation guidelines

Choose how you wish to install Percona Operator for PostgreSQL:

e with Helm
e with kubectl
e on Minikube

e on Google Kubernetes Engine (GKE),

e on Amazon Elastic Kubernetes Service (AWS EKS)

Page 44

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

e on Azure Kubernetes Service (AKS)

¢ in a general Kubernetes-based environment

Page 45

Install Percona Distribution for PostgreSQL on
Minikube

Installing the Percona Operator for PostgreSQL on Minikube [is the easiest way to try it locally without a

cloud provider.

Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor,
such as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test Kubernetes
application locally prior to deploying it on a cloud.

This document describes how to deploy the Operator and Percona Distribution for PostgreSQL on
Minikube.

Set up Minikube

0 Install Minikube (4, using a way recommended for your system. This includes the installation of the

following three components:

kubectl tool,
a hypervisor, if it is not already installed,

actual minikube package

6 After the installation, initialize and start the Kubernetes cluster. The parameters we pass for the
following command increase the virtual machine limits for the CPU cores, memory, and disk, to
ensure stable work of the Operator:

$ minikube start --memory=5120 --cpus=4 --disk-size=30g
This command downloads needed virtualized images, then initializes and runs the cluster.

6 After Minikube is successfully started, you can optionally run the Kubernetes dashboard, which
visually represents the state of your cluster. Executing minikube dashboard starts the dashboard
and opens it in your default web browser.

Deploy the Percona Operator for PostgreSQL

Page 46

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

0 Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in

Kubernetes by installing the Operator in a custom namespace. For example, let's name it postgres-

operator:

S kubectl create namespace postgres-operator

H Expected output v
namespace/postgres-operator was created
We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.
6 Deploy the Operator using_[4 the following command:
S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.7.0/deploy/bundle.yaml -n postgres-operator
v

H Expected output

customresourcedefinition.apiextensions.k8s

customresourcedefinition.apiextensions.k8s
serverside-applied

serverside-applied
serverside-applied
serverside-applied

serverside-applied
customresourcedefinition.apiextensions.k8s

customresourcedefinition.apiextensions.k8s

serviceaccount/percona-postgresql-operator

serverside-applied

operator.crunchydata.com serverside-applied

customresourcedefinition.apiextensions.k8s.
customresourcedefinition.apiextensions.k8s.
customresourcedefinition.apiextensions.k8s.

customresourcedefinition.apiextensions.k8s.

operator.crunchydata.com serverside-applied
operator.crunchydata.com serverside-applied

role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

deployment.apps/percona-postgresql-operator serverside-applied

.io/crunchybridgeclusters.postgres-
.io/perconapgbackups.pgv2.percona.com
io/perconapgclusters.pgv2.percona.com
io/perconapgrestores.pgv2.percona.com
io/perconapgupgrades.pgv2.percona.com
io/pgadmins.postgres-operator.crunchydata.com
.io/pgupgrades.postgres-
.io/postgresclusters.postgres-

serverside-applied

As the result you have the Operator Pod up and running.

Page 47

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

e Deploy Percona Distribution for PostgreSQL.:

S kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.7.0/deploy/cr.yaml -n postgres-operator

H Expected output v
perconapgcluster.pgv2.percona.com/cluster1 created
o Note
This deploys the default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml [Z and
Custom Resource Options for the configuration options. You can clone the repository with all manifests and
source code by executing the following command:
$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
After editing the needed options, apply your modified deploy/cr.yaml file as follows:
$ kubectl apply -f deploy/cr.yaml -n postgres-operator
a The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:
S kubectl get pg -n postgres-operator
v

E Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
clusteri cluster1-pgbouncer.default.svc ready 8 3 30m

Verify the Percona Distribution for PostgreSQL cluster
operation

When creation process is over, the output of the kubectl get pg command shows the cluster status as

ready . You can try to connect to the cluster.

Page 48

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml

During the installation, the Operator has generated several secrets [, including the one with password for
default PostgreSQL user. This default user has the same login name as the cluster name.

ﬂ Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>
with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster.

6 Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>
--template="'{{.data.password | base64decode}}{{"\n"}}"

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do
this, naming the new Pod pg-client:

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.5.2 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

e Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 usertoa cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusterl-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 clusteri

E Sample output v

psql (17.5.2)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Delete the cluster

Page 49

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

If you no longer need the Kubernetes cluster in Minikube, the following are the steps to remove it.

0 Stop the Minikube cluster:

$ minikube stop

e Delete the cluster
S minikube delete

This command deletes the virtual machines, and removes all associated files.

Page 50

Install Percona Distribution for PostgreSQL
cluster using Everest

Percona Everest [4 is an open source cloud-native database platform that helps developers deploy code
faster, scale deployments rapidly, and reduce database administration overhead while regaining control
over their data, database configuration, and DBaasS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes
clusters. Percona Everest provides APl and Web GUI to launch databases with just a few clicks and scale
them, do routine maintenance tasks, such as software updates, patch management, backups, and

monitoring.

You can try it in action by Installing Percona Everest [4 and managing_your first cluster [4.

Page 51

https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html
https://docs.percona.com/everest/use/cluster-management.html

Install Percona Distribution for PostgreSQL on
Google Kubernetes Engine (GKE)

Following steps help you install the Operator and use it to manage Percona Distribution for PostgreSQL
with the Google Kubernetes Engine. The document assumes some experience with Google Kubernetes
Engine (GKE). For more information on GKE, see the Kubernetes Engine Quickstart [4.

Prerequisites
All commands from this installation guide can be run either in the Google Cloud shell or in your local shell.
To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

1. gcloud [4. This tool is part of the Google Cloud SDK. To install it, select your operating system on the
official Google Cloud SDK documentation page [4 and then follow the instructions.

2. kubectl [4. This is the Kubernetes command-line tool you will use to manage and deploy applications.
To install the tool, run the following command:

S gcloud auth login
S gcloud components install kubectl

Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell [or in your
local shell (if you have installed Google Cloud SDK locally on the previous step). The following command

creates a cluster named cluster-1:

$ gcloud container clusters create cluster-1 --project <project ID> --zone us-
centrall-a --cluster-version 1.32 --machine-type nl1-standard-4 --num-nodes=3

Page 52

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart
https://cloud.google.com/shell/docs/quickstart

o Note

You must edit the above command and other command-line statements to replace the <project ID> placeholder with
your project ID (see available projects with gcloud projects list command). You may also be required to edit the
zone location, which is set to us-centralt in the above example. Other parameters specify that we are creating a

cluster with 3 nodes and with machine type of 4 vCPUs.

You may wait a few minutes for the cluster to be generated.

° When the process is over, you can see it listed in the Google Cloud console v

Select Kubernetes Engine -> Clusters in the left menu panel:

|:| (V] cluster1 europe-west3-b 3 12 45 GB —
/" Edit
< Connect

W Delete

Now you should configure the command-line access to your newly created cluster to make kubectl be

able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image.
You will see the connect statement which configures the command-line access. After you have edited the

statement, you may run the command in your local shell:

S gcloud container clusters get-credentials cluster-1 --zone us-centrall-a --
project <project name>

Finally, use your Cloud Identity and Access Management (Cloud IAM)_[4 to control access to the cluster.

The following command will give you the ability to create Roles and RoleBindings:

S kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-
admin --user $(gcloud config get-value core/account)

E Expected output v

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

Install the Operator and deploy your PostgreSQL cluster

Page 53

https://cloud.google.com/iam
https://cloud.google.com/iam
https://cloud.google.com/iam

a First of all, use the following git clone command to download the correct branch of the percona-

postgresql-operator repository:

$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

e Create the Kubernetes namespace for your cluster if needed (for example, let's name it postgres-

operator):

$ kubectl create namespace postgres-operator

H Expected output

namespace/postgres-operator was created

o Note

To use different namespace, specify other name instead of postgres-operator inthe above command, and
modify the -n postgres-operator parameter with it in the following steps. You can also omit this parameter

completely to deploy everything in the default namespace.

Q Deploy the Operator using_[4 the following command:

S kubectl apply --server-side -f deploy/bundle.yaml -n postgres-operator

Page 54

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

B Expected output v

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-operator.crunchydata.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

As the result you will have the Operator Pod up and running.

e Deploy Percona Distribution for PostgreSQL:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

B Expected output v

perconapgcluster.pgv2.percona.com/cluster1 created

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

S kubectl get pg -n postgres-operator

H Expected output v
NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

Page 55

0 You can also track the creation process in Google Cloud console via the Object Browser v

When the creation process is finished, it will look as follows:
Name Status Type Pods Namespace Cluster
cluster1-backup-7hsq @ oK Job 01 pg-opertor cluster1
cluster1-instance1-mntz @ oK Stateful Set 11 pg-opertor cluster1
cluster1-pgbouncer @ oK Deployment 11 pg-opertor cluster1
cluster1-repo-host @ oK Stateful Set 11 pg-opertor cluster1
cluster1-repo1-full @ oK Cron Job 0/0 pg-opertor cluster1
percona-postgresql-operator @ oK Deployment 11 pg-opertor cluster1

Verifying the cluster operation

When creation process is over, kubectl get pg -n <namespace> command will show you the cluster
status as ready, and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [, including the one with password for
default PostgreSQL user. This default user has the same login name as the cluster name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>
with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-clusteri.

0 Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>
--template="'{{.data.password | base64decode}}{{"\n"}}'

9 Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do
this, naming the new Pod pg-client:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.5.2 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

Page 56

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

0 Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 usertoa cluster1 database via the PostgreSQL

interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusterl-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 clusterl

E Sample output

psql (17.5.2)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,

compression: off)
Type "help" for help.
pgdb=>

Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

Also, there are several ways that you can delete your Kubernetes cluster in GKE.

You can clean up the cluster with the gcloud command as follows:

$ gcloud container clusters delete <cluster name> --zone us-centrall-a --project
<project ID>

The return statement requests your confirmation of the deletion. Type y to confirm.

o Also, you can delete your cluster via the Google Cloud console

Just click the Delete popup menu item in the clusters list:

0O e cluster1 europe-west3-b 3 12 45GB
/" Edit
< Connect

@ Delete

The cluster deletion may take time.

Page 57

A Warning

After deleting the cluster, all data stored in it will be lost!

Page 58

Install Percona Distribution for PostgreSQL on
Amazon Elastic Kubernetes Service (EKS)

This guide shows you how to deploy Percona Operator for PostgreSQL on Amazon Elastic Kubernetes
Service (EKS). The document assumes some experience with the platform. For more information on the
EKS, see the Amazon EKS official documentation (4.

Prerequisites

Software installation

The following tools are used in this guide and therefore should be preinstalled:

1. AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can
install it following the official installation instructions for your system [4.

2. eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on GitHub [4.

3. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation
instructions [4.

Also, you need to configure AWS CLI with your credentials according to the official guide (4.

Creating the EKS cluster

0 To create your cluster, you will need the following data:
name of your EKS cluster,
AWS region in which you wish to deploy your cluster,
the amount of nodes you would like tho have,

the desired ratio between on-demand [4 and spot [instances in the total number of nodes.

° Note

spot [instances are not recommended for production environment, but may be useful e.g. for testing purposes.

Page 59

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

After you have settled all the needed details, create your EKS cluster following_the official cluster

creation instructions [4.

g After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver [4 on your
cluster. See the official documentation [4 on adding it as an Amazon EKS add-on.

o Note

CSl driver is needed for the Operator to work propely, and is not included by default starting from the Amazon EKS
version 1.22. Therefore servers with existing EKS cluster based on the version 1.22 or earlier need to install CSI

driver before updating the EKS cluster to 1.23 or above.

Install the Operator and Percona Distribution for PostgreSQL

The following steps are needed to deploy the Operator and Percona Distribution for PostgreSQL in your

Kubernetes environment:

a Create the Kubernetes namespace for your cluster if needed (for example, let's name it postgres-

operator):

S kubectl create namespace postgres-operator

H Expected output

namespace/postgres-operator was created

o Note

To use different namespace, specify other name instead of postgres-operator inthe above command, and
modify the -n postgres-operator parameter with it in the following two steps. You can also omit this

parameter completely to deploy everything in the default namespace.

e Deploy the Operator using_[4 the following command:

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-

operator/v2.7.0/deploy/bundle.yaml -n postgres-operator

Page 60

https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

E Expected output

customresourcedefinition.
operator.crunchydata.com
customresourcedefinition.
serverside-applied
customresourcedefinition.
serverside-applied
customresourcedefinition.
serverside-applied
customresourcedefinition.
serverside-applied
customresourcedefinition.
serverside-applied
customresourcedefinition.
operator.crunchydata.com
customresourcedefinition.
operator.crunchydata.com

serverside-applied

apiextensions.k8s

serverside-applied

apiextensions.k8s

apiextensions.k8s.
apiextensions.k8s.
apiextensions.k8s.

apiextensions.k8s.

apiextensions.k8s

serverside-applied

apiextensions.k8s

serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator

deployment.apps/percona-postgresql-operator serverside-applied

.io/crunchybridgeclusters.postgres-
.1o/perconapgbackups.pgv2.percona.com
io/perconapgclusters.pgv2.percona.com
io/perconapgrestores.pgv2.percona.com
io/perconapgupgrades.pgv2.percona.com
io/pgadmins.postgres-operator.crunchydata.com
.10o/pgupgrades.postgres-

.io/postgresclusters.postgres-

As the result you will have the Operator Pod up and running.

e The operator has been started, and you can deploy your Percona Distribution for PostgreSQL cluster:

S kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.7.0/deploy/cr.yaml -n postgres-operator

H Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Page 61

o Note

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml [and Custom
Resource Options for the configuration options. You can clone the repository with all manifests and source code

by executing the following command:
$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
After editing the needed options, apply your modified deploy/cr.yaml file as follows:

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

$ kubectl get pg

H Expected output v
NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
clusteri cluster1-pgbouncer.default.svc ready 3 3 30m

Verifying the cluster operation

When creation process is over, kubectl get pg command will show you the cluster status as ready,
and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [4, including the one with password for
default PostgreSQL user. This default user has the same login name as the cluster name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>
with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster.

9 Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>
--template="'{{.data.password | base64decode}}{{"\n"}}"

Page 62

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do
this, naming the new Pod pg-client:

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.5.2 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

0 Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 usertoa cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusterl-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

H Sample output v

psql (17.5.2)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

To delete your Kubernetes cluster in EKS, you will need the following data:

e name of your EKS cluster,

e AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of <region>
and <cluster name> placeholders):

S eksctl delete cluster --region=<region> --name="<cluster name>"

The cluster deletion may take time.

Page 63

A Warning

After deleting the cluster, all data stored in it will be lost!

Page 64

Install Install Percona Distribution for
PostgreSQL on Azure Kubernetes Service (AKS)

This guide shows you how to deploy Percona Operator for PostgreSQL on Microsoft Azure Kubernetes
Service (AKS). The document assumes some experience with the platform. For more information on the
AKS, see the Microsoft AKS official documentation (4.

Prerequisites

The following tools are used in this guide and therefore should be preinstalled:

1. Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You can
install it following the official installation instructions for your system [4.

2. kubectl to manage and deploy applications on Kubernetes. Install it following the official installation

instructions [4.

Also, you need to sign in with Azure CLI using your credentials according to the official guide [4.

Create and configure the AKS cluster

To create your Kubernetes cluster, you will need the following data:

e name of your AKS cluster,

e an Azure resource group [4, in which resources of your cluster will be deployed and managed.

¢ the amount of nodes you would like tho have.

You can create your cluster via command line using az aks create command. The following command
will create a 3-node cluster named cluster1 within some already existing (4 resource group named my-

resource-group:

$ az aks create --resource-group my-resource-group --name cluster1l --enable-
managed-identity --node-count 3 --node-vm-size Standard_B4ms --node-osdisk-size 30
--network-plugin kubenet --generate-ssh-keys --outbound-type loadbalancer

Other parameters in the above example specify that we are creating a cluster with machine type of
Standard_B4ms [and OS disk size reduced to 30 GiB. You can see detailed information about cluster
creation options in the AKS official documentation (4.

Page 65

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group
https://azureprice.net/vm/Standard_B4ms
https://azureprice.net/vm/Standard_B4ms
https://azureprice.net/vm/Standard_B4ms
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest

You may wait a few minutes for the cluster to be generated.

Now you should configure the command-line access to your newly created cluster to make kubectl be
able to use it.

az aks get-credentials --resource-group my-resource-group --name clusterT

Install the Operator and deploy your PostgreSQL cluster

1. Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in

Kubernetes by installing the Operator in a custom namespace. For example, let's name it postgres-
operator:

S kubectl create namespace postgres-operator

H Expected output v

namespace/postgres-operator was created

We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.

2. Deploy the Operatorusing_[4 the following command:

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.7.06/deploy/bundle.yaml -n postgres-operator

Page 66

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

H Expected output v

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

At this point, the Operator Pod is up and running.

3. The operator has been started, and you can deploy Percona Distribution for PostgreSQL:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.7.0/deploy/cr.yaml -n postgres-operator

E Expected output v

perconapgcluster.pgv2.percona.com/cluster1 created

6 Note

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml [4 and Custom
Resource Options for the configuration options. You can clone the repository with all manifests and source code

by executing the following command:

$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

S kubectl get pg

Page 67

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml

H Expected output v

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1l cluster1-pgbouncer.default.svc ready 3 3 30m

Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get pg command finally shows you
the cluster status as ready, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [, including the one with password for
default PostgreSQL user. This default user has the same login name as the cluster name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>
with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-clusteri.

0 Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>
--template="'{{.data.password | base64decode}}{{"\n"}}'

6 Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do
this, naming the new Pod pg-client:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.5.2 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

a Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 usertoa cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusteri-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 clusteri

Page 68

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

E Sample output v

psql (17.5.2)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Removing the AKS cluster

To delete your cluster, you will need the following data:

e name of your AKS cluster,

e AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete command as follows (with real names instead of
<resource group> and <cluster name> placeholders):

§ az aks delete --name <cluster name> --resource-group <resource group> --yes --
no-wait

It may take ten minutes to get the cluster actually deleted after executing this command.

A Warning

After deleting the cluster, all data stored in it will be lost!

Page 69

Install Percona Distribution for PostgreSQL on
OpensShift

Percona Operator for PostgreSQL is a Red Hat Certified Operator [4. This means that Percona Operator is

portable across hybrid clouds and fully supports the Red Hat OpenShift lifecycle.
Installing Percona Distribution for PostgreSQL on OpenShift includes two steps:

e Installing the Percona Operator for PostgreSQL,

¢ Install Percona Distribution for PostgreSQL using the Operator.

Install the Operator

You can install Percona Operator for MySQL on OpenShift using the web interface (the Operator Lifecycle

Manager [%), or using the command line interface.

Install the Operator via the Operator Lifecycle Manager (OLM)

Operator Lifecycle Manager (OLM) is a part of the Operator Framework [4 that allows you to install,

update, and manage the Operators lifecycle on the OpenShift platform.

Following steps will allow you to deploy the Operator and PostgreSQL cluster on your OLM installation:

1. Login to the OLM and click the needed Operator on the OperatorHub page:

— RedHat

OpensShift

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow ot

02 Administrator

Project:dima-pxc ~
Home

OperatorHub
Operators Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace . You can in
developers. After installation, the Operator capabilities will appear in the Developer Catalog providing a self- service experience.

Workloads
| Alltems All ltems
Networking Al/Machine Learning
Q, percona operator for postgresql X
Application Runtime
Storage Big Data
Cloud Provider
Builds Certified Community Marketplace
patebase g2 B B
Developer Tools
Compute Percona Operator for Percona Operator for Percona Operator for
Development Tools
PostgreSQL PostgreSQL PostgreSQL

Drivers and plugins

User Management

Integration & Delivery
Logging & Tracin
Administration 99ng 9
Modernization & Migration

Monitoring

Then click “Contiune”, and “Install”.

provided by Percona

Percona Operator for
PostgreSQL manages the

lifecycle of Percona PostgreSQL..

provided by Percona

Percona Operator for
PostgreSQL manages the

lifecycle of Percona PostgreSQL..

provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL..

Page 70

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://github.com/operator-framework
https://github.com/operator-framework
https://github.com/operator-framework

2. A new page will allow you to choose the Operator version and the Namespace / OpenShift project you

would like to install the Operator into.

Create Project

An OpenShift project is an alternative representation of a Kubernetes namespace.
Learn more about working with projects

Name* @

postgres-operator

Display name

Description

° Note

If you are going to install the Operator in multi-namespace (cluster-wide) mode, please choose values with -cw
suffix for the update channel and version, and select the “All namespaces on the cluster” radio button for the
installation mode instead of chosing a specific Namespace:

Red Hat
OpenShift

OperatorHub > Operator Installation

Install Operator o

Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel * @

stable

Version *

2.6.0-cw

Installation mode *
@ All namespaces on the cluster (default)
Operator will be available in all Namespaces.

O A specific namespace on the cluster
Operator will be available in a single Namespace only.

Page 71

Click “Install” button to actually install the Operator.

3. When the installation finishes, you can deploy PostgreSQL cluster. In the “Operator Details” you will
see Provided APIs (Custom Resources, available for installation). Click “Create instance” for the
PerconaPGCluster Custom Resource.

Installed Operators > Operator details

Percona Operator for PostgreSQL
2.4.0 provided by Percona

Details YAML Subscription Events Allinstances Percona PGCluster Percona PGBackup Percona PGRestore

Provided APIs
(9 Percona PGCluster [@4¢5) Percona PGBackup (=D Percona PGRestore
PerconaPGCluster is the CRD that PerconaPGBackup is the CRD that PerconaPGRestore is the CRD that
defines a Percona PG Cluster defines a Percona PostgreSQL Backup defines a Percona PostgreSQL Restore
@® Create instance @® Create instance @® Create instance
(@® Postgres Cluster

PostgresCluster is the Schema for the
postgresclusters API

@® Create instance

You will be able to edit manifest to set needed Custom Resource options, and then click “Create”
button to deploy your database cluster.

Install the Operator via the command-line interface

1. First of all, clone the percona-postgresql-operator repository:

$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
S cd percona-postgresql-operator

° Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

Page 72

2. The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the
deploy/crd.yaml file. Custom Resource Definition extends the standard set of resources which
OpenShift “knows” about with the new items (in our case ones which are the core of the Operator).

Apply.it (4 as follows:
S oc apply --server-side -f deploy/crd.yaml

This step should be done only once; it does not need to be repeated with any other Operator

deployments.

3. Create the OpenShift namespace for your cluster if needed (for example, let's name it postgres-

operator):

S oc create namespace postgres-operator

0 Note

To use different namespace, specify other name instead of postgres-operator inthe above command, and
modify the -n postgres-operator parameter with it in the following two steps. You can also omit this

parameter completely to deploy everything in the default namespace.

4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the
deploy/rbac.yaml file. Role-based access is based on defined roles and the available actions which
correspond to each role. The role and actions are defined for Kubernetes resources in the yaml file.
Further details about users and roles can be found in specific OpenShift documentation [4)

S oc apply -f deploy/rbac.yaml -n postgres-operator

0 Note

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google OpenShift
Engine can grant user needed privileges with the following command:

S oc create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --
user=$(gcloud config get-value core/account)

5. If you are going to use the operator with anyuid [4 security context constraint please execute the

following command:

S sed -i '/disable_auto_failover: "false"/a \ \ \ \ disable_fsgroup: "false"'
deploy/operator.yaml

Page 73

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html

6. Start the Operator within OpenShift:
S oc apply -f deploy/operator.yaml -n postgres-operator
Optionally, you can add PostgreSQL Users secrets and TLS certificates to OpenShift. If you don't, the

Operator will create the needed users and certificates automatically, when you create the database
cluster. You can see documentation on Users and TLS certificates if still want to create them yourself.

o Note

You can simplify the Operator installation by applying a single deploy/bundle.yaml file instead of running
commands from the steps 2 and 4:

$ oc apply -f deploy/bundle.yaml

This will automatically create Custom Resource Definition, set up role-based access control and install the
Operator as one single action.

7. After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time
with the following command:

S oc apply -f deploy/cr.yaml -n postgres-operator

Creation process will take some time. The process is over when both Operator and replica set Pods
have reached their Running status:

S oc get pg -n postgres-operator

H Expected output v
NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
clusteri cluster1-pgbouncer.postgres-operator.svc ready 3 3
143m

Verifying the cluster operation

When creation process is over, oc get pg command will show you the cluster status as ready, and you
can try to connect to the cluster.

Page 74

During the installation, the Operator has generated several secrets [, including the one with password for
default PostgreSQL user. This default user has the same login name as the cluster name.

0 Use oc get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>
with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster.

e Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S oc get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> --
template='{{.data.password | base64decode}}{{"\n"}}'

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do
this, naming the new Pod pg-client:

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.5.2 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

e Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 usertoa cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusterl-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 clusteri

E Sample output v

psql (17.5.2)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Page 75

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Install Percona Distribution for PostgreSQL on
Kubernetes

Following steps will allow you to install the Operator and use it to manage Percona Distribution for
PostgreSQL in a Kubernetes-based environment.

a First of all, clone the percona-postgresql-operator repository:

$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
S cd percona-postgresql-operator

° Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

9 The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the
deploy/crd.yaml file. Custom Resource Definition extends the standard set of resources which
Kubernetes “knows” about with the new items (in our case ones which are the core of the Operator).

Apply it [as follows:
S kubectl apply --server-side -f deploy/crd.yaml

This step should be done only once; it does not need to be repeated with any other Operator

deployments.

e Create the Kubernetes namespace for your cluster if needed (for example, let's name it postgres-

operator):

S kubectl create namespace postgres-operator

° Note

To use a different namespace, specify another name instead of postgres-operator in the above command, and
modify the -n postgres-operator parameter with it in the following two steps. You can also omit this
parameter completely to deploy everything in the default namespace.

Page 76

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

0 The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the
deploy/rbac.yaml file. Role-based access is based on defined roles and the available actions which
correspond to each role. The role and actions are defined for Kubernetes resources in the yaml file.
Further details about users and roles can be found in Kubernetes documentation (4.

S kubectl apply -f deploy/rbac.yaml -n postgres-operator

o Note

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --
user=$(gcloud config get-value core/account)

e Start the Operator within Kubernetes:
$ kubectl apply -f deploy/operator.yaml -n postgres-operator

Optionally, you can add PostgreSQL Users secrets and TLS certificates to Kubernetes. If you don't, the
Operator will create the needed users and certificates automatically, when you create the database
cluster. You can see documentation on Users and TLS certificates if still want to create them yourself.

Q After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any time

with the following command:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the

ready status. You can check it with the following command:

S kubectl get pg -n postgres-operator

H Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 36m

Page 77

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

Verifying the cluster operation

When creation process is over, the output of the kubectl get pg command shows the cluster status as
ready . You can now try to connect to the cluster.

During the installation, the Operator has generated several secrets [, including the one with password for
default PostgreSQL user. This default user has the same login name as the cluster name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>
with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-cluster.

6 Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>
--template="'{{.data.password | base64decode}}{{"\n"}}"

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do
this, naming the new Pod pg-client:

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.5.2 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

e Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 usertoa cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusterl-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 clusteri

E Sample output v

psql (17.5.2)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Page 78

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Deleting the cluster

If you need to delete the cluster (for example, to clean up the testing deployment before adopting it for
production use), check this HowTo.

Page 79

Configuration

Page 80

Users

Operator provides a feature to manage users and databases in your PostgreSQL cluster. This document
describes this feature, defaults and ways to fine tune your users.

Defaults

When you create a PostgreSQL cluster with the Operator and do not specify any additional users or
databases, the Operator will do the following:

¢ Create a database that matches the name of your PostgreSQL cluster.

e Create a schema for that database that matches the name of your PostgreSQL cluster.

o Create an unprivileged PostgreSQL user with the name of the cluster. This user has access to the
database created in the previous step.

o Create a Secret with the login credentials and connection details for the PostgreSQL user which is in
relation to the database. This is stored in a Secret named <clusterName>-pguser-<clusterName>.
These credentials include:

e user: The name of the user account.
e password: The password for the user account.
o dbname: The name of the database that the user has access to by default.

e host: The name of the host of the database. This references the Service of the primary PostgreSQL
instance.

e port: The port that the database is listening on.

e uri: A PostgreSQL connection URI that provides all the information for logging into the PostgreSQL
database via pgBouncer

e jdbc-uri: A PostgreSQL JDBC connection URI that provides all the information for logging into the
PostgreSQL database via the JDBC driver.

As an example, using our cluster1 PostgreSQL cluster, we would see the following created:

e A database named cluster1.
e A schemanamed cluster1 for the database cluster1
e A PostgreSQL user named cluster1.

e A Secret named cluster1-pguser-cluster1 that contains the user credentials and connection
information.

Page 81

Custom Users and Databases

You can customize users and databases using the spec.users section in the Custom Resource. This
section can be changed at the cluster creation time and adjusted over time. Note the following:

o If spec.users is set during the cluster creation, the Operator will not create any default users or
databases except for PostgreSQL. If you want additional databases, you will need to specify them.

e For each user added in spec.users, the Operator will create a Secret of the <clusterName>-pguser-
<userName> format (you can alter such default Secret naming for the user with the
spec.users.secretName option). This Secret will contain the user credentials.

e If no databases are specified, dbname and uri will not be present in the Secret. Such a user cannot
access any database. You can assign the database for them later.

« |f at least one option under the spec.users.databases is specified, the first database in the list will
be populated into the connection credentials.

e The Operator does not automatically drop users in case of removed Custom Resource options to
prevent accidental data loss.

 Similarly, to prevent accidental data loss Operator does not automatically drop databases (see how to
actually drop a database here).

¢ Role attributes are not automatically dropped if you remove them. You need to set the inverse attribute
to actually drop them (e.g. NOSUPERUSER).

e The special postgres user can be added as one of the custom users. Such a user is granted access to
the postgres database. However, the privileges of this user cannot be adjusted.

o If the top-level autoCreateUserSchema option is setto true (default value), each user will have have
automatically created schemas in the cluster for all databases listed for this user under the

users.databases.

o By default, users with non-superuser privileges do not have access to the public schema. If you want
a non-superuser to be able to create and update tables in the public schema, you can enable this by
setting the grantPublicSchemaAccess optionto true. This grants the user permission to create
tables and update in the public schema of every database they own.

o |f multiple users are granted access to the public schema in the same database, each user can only
access the tables they have created themselves. If you want one user to access tables created by
another user in the public schema, the owner of those tables must connect to PostgreSQL and
explicitly grant the necessary privileges to the other user.

* Your custom superusers have access to the public schema for the databases assigned to them by
default.

Page 82

Creating a new user

Change PerconaPGCluster Custom Resource (e.g. by editing your YAML manifest in the
deploy/cr.yaml configuration file):

spec:
users:
- name: perconapg

After you apply the changes with the usual kubctl apply -f deploy/cr.yaml command, the Operator
will create the new user:

e The credentials of this user are populated in the <clusterName>-pguser-perconapg secret. There are
no connection credentials.

e The user is unprivileged.

The following example shows how to create a new pgtest database and let perconapg user access it.
The appropriate Custom Resource fragment will look as follows:

spec:

users:
- name: perconapg
databases:

- pgtest

If you inspect the <clusterName>-pguser-perconapg Secret after applying the changes, you will see
dbname and uri options populated there, and the database is created as well.

Adjusting privileges

You can set role privileges by using the standard role attributes [4 that PostgreSQL provides and adding

them to the spec.users.options subsection in the Custom Resource.

The following example will make the perconapg a superuser. You can add the following to the spec in
your deploy/cr.yaml:

Page 83

https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/role-attributes.html

spec:

users:
- name: perconapg
databases:

- pgtest
options: "SUPERUSER"

Apply changes with the usual "kubctl apply -f deploy/cr.yaml’ command.

To actually revoke the superuser privilege afterwards, you will need to do and apply the following change:

spec:

users:
- name: perconapg
databases:
- pgtest

options: "NOSUPERUSER"

If you want to add multiple privileges, you can use a space-separated list as follows:

spec:

users:
- name: perconapg
databases:
- pgtest

options: "CREATEDB CREATEROLE"

postgres User

By default, the Operator does not create the postgres user. You can create it by applying the following

change to your Custom Resource:

spec:
users:
- name: postgres

This will create a Secret named <clusterName>-pguser-postgres that contains the credentials of the
postgres user. The Operator creates a user postgres who can access the postgres database.

Deleting users and databases

Page 84

The Operator does not delete users and databases automatically. After you remove the user from the
Custom Resource, it will continue to exist in your cluster. To remove a user and all of its objects, as a
superuser you will need to run DROP OWNED in each database the user has objects in, and DROP ROLE in
your PostgreSQL cluster.

DROP OWNED BY perconapg;
DROP ROLE perconapg;

For databases, you should run the DROP DATABASE command as a superuser:

DROP DATABASE pgtest;

Managing user passwords

If you want to rotate user’s password, just remove the old password in the correspondent Secret: the
Operator will immediately generate a new password and save it to the appropriate Secret. You can remove
the old password with the kubectl patch secret command:

S kubectl patch secret <clusterName>-pguser-<userName> -p '{"data":
{Ilpasswordll : " Il}}l

Also, you can set a custom password for the user. Do it as follows:

S kubectl patch secret <clusterName>-pguser-<userName> -p '{"stringData":
{"password":"<custom_password>", "verifier":""}}'

Superuser and pgBouncer

For security reasons we do not allow superusers to connect to cluster through pgBouncer by default. You
can connect through primary service (read more in exposure documentation).

Otherwise you can use the proxy.pgBouncer.exposeSuperusers Custom Resource option to enable

superusers connection via pgBouncer.

Page 85

Exposing cluster

The Operator provides entry points for accessing the database by client applications. The database
cluster is exposed with regular Kubernetes Service objects [4 configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters

deployed with the Operator.

PgBouncer

We recommend exposing the cluster through PgBouncer, which is enabled by default.

Client Application

pgBouncer (DB proxy)

DB Pod 1 DB Pod 2 DB Pod 3

\Nrite Write

-
-

- J

You can disable pgBouncer by setting proxy.pgBouncer.replicas to 0.

The following example deploys two pgBouncer nodes exposed through a LoadBalancer Service object:

proxy:
pgBouncer:
replicas: 2
image: docker.io/percona/percona-pgbouncer:1.24.1
expose:
type: LoadBalancer

The Service will be called <clusterName>-pgbouncer :

Page 86

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

S kubectl get service

H Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

cluster1-pgbouncer LoadBalancer 10.88.8.48 34.133.38.186 5432:30601/TCP 20m

You can connect to the database using the External IP of the load balancer and port 5432 .

If your application runs inside the Kubernetes cluster as well, you might want to use the Cluster IP Service

type in proxy.pgBouncer.expose.type, which is the default. In this case to connect to the database use
the internal domain name - cluster1-pgbouncer.<namespace>.svc.cluster.local.

Exposing the cluster without pgBouncer

You can connect to the cluster without a proxy.

Client Application

kS HE IS
0 ° g3 ¢
I I b
DB Pod 2
%v\ /]
Replica Primary Replica
\ J

For that use <clusterName>-ha Service object:

$ kubectl get service

Page 87

H Expected output v

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cluster1-ha ClusterIP 10.88.8.121 <none> 5432/TCP 115s
clusteri-replicas ClusterIP 10.88.8.115 <none> 5432/TCP 2m16s

The cluster1-ha service points to the active primary. In case of failover to the replica node, will change
the endpoint automatically. Also, you can use cluster1-replicas service to make read requests to
PostgreSQL replica instances.

To change the Service type, use expose.type in the Custom Resource manifest. For example, the
following manifest will expose this service through a load balancer:

spec:

expose:
type: LoadBalancer

Page 88

Changing PostgreSQL options

Despite the Operator’s ability to configure PostgreSQL and the large number of Custom Resource options,
there may be situations where you need to pass specific options directly to your cluster’s PostgreSQL
instances. For this purpose, you can use the PostgreSQL dynamic configuration method [4 provided by
Patroni. You can pass PostgreSQL options to Patroni through the Operator Custom Resource, updating it
with deploy/cr.yaml configuration file).

Custom PostgreSQL configuration options should be included into the
patroni.dynamicConfiguration.postgresql.parameters subsection as follows:

patroni:
dynamicConfiguration:
postgresql:
parameters:

max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

Please note that configuration changes will be automatically applied to the running instances as soon as
you apply Custom Resource changes in a usual way, running the kubectl apply -f deploy/cr.yaml

command.
You can apply custom configuration in this way for both new and existing clusters.

Normally, options should be applied to PostgreSQL instances dynamically without restart, except the
options with the postmaster context [4. Changing options which have context=postmaster will cause
Patroni to initiate restart of all PostgreSQL instances, one by one. You can check the context of a specific
option using the SELECT name, context FROM pg_settings; query to to see if the change should

cause a restart or not.

qi Note

The Operator passes options to Patroni without validation, so there is a theoretical possibility of the cluster malfunction
caused by wrongly configured PostgreSQL instances. Also, this configuration method is used for PostgreSQL options
only and cannot be applied to change other Patroni dynamic configuration options [4. It means that options in the
parameters subsection under patroni.dynamicConfiguration.postgresql will be applied, and everything else in

patroni.dynamicConfiguration.postgresql will be ignored.

Page 89

https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html

Using host-based authentication (pg_hba)

PostgreSQL Host-Based Authentication (pg_hba) allows controlling access to the PostgreSQL database
based on the IP address or the host name of the connecting host. You can configure pg_hba through the
Custom Resource patroni.dynamicConfiguration.postgresql.pg_hba subsection as follows:

patroni:
dynamicConfiguration:
postgresql:
pg_hba:
- host all all 0.0.0.06/0 md5

As you may guess, this example allows all hosts to connect to any database with MD5 password-based
authentication.

Obviously, you can connect both dynamicConfiguration.postgresql.parameters and
dynamicConfiguration.postgresql.pg_hba subsections:

patroni:
dynamicConfiguration:
postgresql:

parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

pg_hba:

- local all all trust

- host all all 0.6.0.6/0 md5

- host all all ::1/128 md5

- host all mytest 123.123.123.123/32 reject

The changes will be applied after you update Custom Resource in a usual way:

§$ kubectl apply -f deploy/cr.yaml

Page 90

Binding Percona Distribution for PostgreSQL
components to specific Kubernetes/OpenShift
Nodes

The operator does good job automatically assigning new Pods to nodes with sufficient resources to
achieve balanced distribution across the cluster. Still there are situations when it is worth to ensure that
pods will land on specific nodes: for example, to get speed advantages of the SSD equipped machine, or
to reduce network costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml [4 file (such as proxy.pgBouncer) contain keys which can be
used to do this, depending on what is the best for a particular situation.

Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which
already has Pods with specific labels, or has specific labels itself (so called “Node affinity”). Particularly,
Pod anti-affinity is good to reduce costs making sure several Pods with intensive data exchange will
occupy the same availability zone or even the same node - or, on the contrary, to make them land on
different nodes or even different availability zones for the high availability and balancing purposes. Node
affinity is useful to assign PostgreSQL instances to specific Kubernetes Nodes (ones with specific
hardware, zone, etc.).

Pod anti-affinity is controlled by the affinity.podAntiAffinity subsection, which can be put into
proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration
file.

podAntiAffinity allows you to use standard Kubernetes affinity constraints of any complexity:

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
podAffinityTerm:
labelSelector:
matchLabels:
postgres-operator.crunchydata.com/cluster: keycloakdb
postgres-operator.crunchydata.com/role: pgbouncer
topologyKey: kubernetes.io/hostname

You can see the explanation of these affinity options in Kubernetes documentation (4.

Page 91

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on
regions, zones, nodes, and other topology specifics. This can be useful for both high availability and
resource efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which
can be put into proxy.pgBouncer and backups.pgbackrest.repoHost sections of the
deploy/cr.yaml configuration file as follows:

topologySpreadConstraints:
- maxSkew: 1
topologyKey: my-node-label
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchlLabels:
postgres-operator.crunchydata.com/instance-set: instanceT

You can see the explanation of these affinity options in Kubernetes documentation (4.

Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is
expressed as a key with and operator, which is either exists or equal (the latter variant also requires
a value the key is equal to). Moreover, toleration should have a specified effect, which may be a self-
explanatory NoSchedule, less strict PreferNoSchedule, or NoExecute . The last variant means that if a
taint with NoExecute is assigned to node, then any Pod not tolerating this taint will be removed from the
node, immediately or after the tolerationSeconds interval, like in the following example.

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations subsections in
the deploy/cr.yaml configuration file as follows:

tolerations:
- effect: NoSchedule
key: role
operator: Equal
value: connection-poolers

The Kubernetes Taints and Toleratins [4 contains more examples on this topic.

Page 92

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Labels and annotations

Labels [4 and annotations [J are used to attach additional metadata information to Kubernetes

resources.

Labels and annotations are rather similar but differ in purpose.

Labels are used by Kubernetes to identify and select objects. They enable filtering and grouping, allowing
users to apply selectors for operations like deployments or scaling.

Annotations are assigning additional non-identifying information that doesn’t affect how Kubernetes

processes resources. They store descriptive information like deployment history, monitoring

configurations or external integrations.

The following diagram illustrates this difference:

v

Custom Resource

A4

Operator

v

Kubernetes resources

Labels

-

A4

Selection

N

v

N

v

Annotations

-

v

<

A4

Grouping

External tools

Documentation

Both Labels and Annotations are assigned to the following objects managed by Percona Operator for

PostgreSQL:

e Custom Resource Definitions

e Custom Resources

Page 93

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

e Deployments
e Services

o StatefulSets
e PVCs

e Pods

¢ ConfigMaps and Secrets

When to use labels and annotations

Use Labels when:

Use Annotations when:

The information is used for object selection
The data is used for grouping or filtering
The information is used by Kubernetes controllers

The data is used for operational purposes

¢ The information is for external tools

¢ The information is used for debugging

e The data is used for monitoring configuration

Labels and annotations used by Percona Operator for

PostgreSQL

Labels

Name

pgv2.percona.com/

version

app.kubernetes.io

/instance

Objects

CustomResourceDefinition

Services, StatefulSets,
Deployments

Description

Specifies the version of the
Percona Operator for
PostgreSQL.

Identifies a specific instance
of the application

Example values

270

cluster1

Page 94

Name

app.kubernetes.io

/managed-by

app.kubernetes.io

/component

app.kubernetes.io

/part-of

app.kubernetes.io
/name

postgres-
operator.crunchyd

ata.com/cluster

postgres-
operator.crunchyd

ata.com/instance

postgres-
operator.crunchyd
ata.com/instance-

set

postgres-
operator.crunchyd

ata.com/name

postgres-
operator.crunchyd

ata.com/patroni

postgres-
operator.crunchyd
ata.com/role

Objects

Services, StatefulSets

Services, StatefulSets

Services, StatefulSets

Services, StatefulSets,
Deployments, etc.

StatefulSets, Deployments,
Services, PVCs

Services, StatefulSets,
Deployments

Pods, StatefulSets

pgBackRest resources (Jobs,

CronJobs, Deployments, PVCs,
etc.)

Pods, StatefulSets

Pods, PVCs, Services

Description

Indicates the controller
managing the object

Specifies the component
within the application

Indicates the higher-level
application the object
belongs to

Specifies the name of the
application

Specifies the name of the
application

Identifies a specific instance
of the application

Describes the set of
instances (such as a group
of pods) within the
PostgreSQL cluster.

Used to specify the name of
a pgBackRest repository.

Indicates Patroni-related
resources.

The role that Patroni sets on
the Pod that is currently the
leader

Example values

percona-
postgresql-
operator

postgres,
pgbouncer,
pgbackrest

percona-
postgresq|

percona-

postgresq|

cluster1

cluster1

Page 95

Name

postgres-
operator.crunchyd
ata.com/cluster-

certificate

postgres-
operator.crunchyd
ata.com/data

postgres-
operator.crunchyd

ata.com/move-job

postgres-
operator.crunchyd
ata.com/move-
pgbackrest-repo-
dir

postgres-
operator.crunchyd
ata.com/move-

pgdata-dir

postgres-
operator.crunchyd
ata.com/move-

pgwal-dir

postgres-
operator.crunchyd
ata.com/pgbackres
t

postgres-
operator.crunchyd
ata.com/pgbackres

t-backup

postgres-

operator.crunchyd

Objects

Secrets

Pods, PVCs

Jobs

Jobs

Jobs

Jobs

pgBackRest resources

Backup Jobs

ConfigMaps, Secrets

Description

Identifies a secret containing
a cluster certificate

Identifies Pods and Volumes
that store Postgres data

Identifies a directory move
Job.

Identifies a Job moving a
pgBackRest repo directory.

Identifies a Job moving a
pgData directory.

Identifies a Job moving a
pg_wal directory.

Indicates a resource that is
for pgBackRest.

Indicates a resource that is
for a pgBackRest backup.

Indicates a
ConfigMap/Secret for
pgBackRest.

Example values

postgres-tls

Page 96

Name

ata.com/pgbackres

t-config

postgres-
operator.crunchyd
ata.com/pgbackres
t-dedicated

postgres-
operator.crunchyd
ata.com/pgbackres

t-repo

postgres-
operator.crunchyd
ata.com/pgbackres

t-volume

postgres-
operator.crunchyd
ata.com/pgbackres
t-cronjob

postgres-
operator.crunchyd
ata.com/pgbackres

t-restore

postgres-
operator.crunchyd
ata.com/pgbackres
t-restore-config

postgres-
operator.crunchyd
ata.com/crunchy-

postgres-exporter

postgres-
operator.crunchyd
ata.com/pguser

Objects

ConfigMaps

Deployments, Pods

PVCs

CronJobs

Jobs, Pods

ConfigMaps, Secrets

Pods

Secrets, Users

Description

Indicates a ConfigMap that is
for a dedicated pgBackRest
repo host.

Indicates a Deployment or a
Pod for a pgBackRest repo.

Indicates a PVC for a
pgBackRest repo volume.

Indicates a resource is a
pgBackRest CronJob.

Indicates a Job/Pod for a
pgBackRest restore.

Indicates a configuration
resource (e.g. a ConfigMap
or Secret) for pgBackRest
restore.

Added to Pods running the
exporter container for
Prometheus discovery.

Identifies the PostgreSQL
user an object is for/about.

Example values

The name of the
repository you
define in CR

Username

Page 97

Name Objects
postgres- Pods, Jobs
operator.crunchyd
ata.com/startup-

instance

postgres- Secrets

operator.crunchyd
ata.com/cbc-

pgrole

postgres- pgAdmin resources
operator.crunchyd

ata.com/pgadmin

Description

Indicates the startup
instance associated with a
resource.

Identifies a CBC PostgreSQL
role secret.

Indicates a resource for a
standalone pgAdmin
instance.

Example values

Annotations
Name Objects Description Example
Values
postgres- Custom Resource Initiates a failover, switchover
operator.crun
chydata.com/t
rigger-
switchover
postgres- Restore, PVC Added to restore jobs, pvcs, and timestamp
operator.crun VolumeSnapshots that are involved in the
chydata.com/p volume snapshot creation process. The
gbackrest- annotation holds a RFC3339 formatted
backup-job- timestamp that corresponds to the completion
completion time of the associated backup job.
postgres- Custom Resource Specifies the hash value associated with a repo
operator.crun configuration as needed to detect configuration
chydata.com/p changes that invalidate running Jobs (and
gbackrest- therefore must be recreated)
hash
postgres- Custom Resource Indicates whether to use an IPv6 wildcard 0.0.0.0
operator.crun address for the pgBackRest “tls-server-address”.

Page 98

Name

chydata.com/p
gbackrest-ip-

version

postgres-
operator.crun
chydata.com/p
ostgres-
exporter-

collectors

postgres-
operator.crun
chydata.com/a
dopt-bridge-
cluster

postgres-

operator.crun
chydata.com/a
utoCreateUser

Schema

postgres-

operator.crun
chydata.com/a
uthorizeBacku

pRemoval

postgres-
operator.crun
chydata.com/o
verride-

config

pgv2.percona.

com/monitor-

Objects

Pods

CrunchyBridgeCluster

Custom Resource

Custom Resource

Custom Resource

ConfigMaps

Custom Resource

Description

Set the value “IPv6” to use an IPv6 addresses. If
the annotation is not present of has a value other
than IPvé6, it defaults to IPv4 (0.0.0.0).

Specifies which collectors to enable for the
exporter. The value “None” disables all
postgres_exporter defaults. Disabling the
defaults may cause errors in dashboards.

Allows users to “adopt” or take control over an
existing Bridge Cluster with a
CrunchyBridgeCluster Custom Resource.
Essentially, if a CrunchyBridgeCluster Custom
Resource does not have a status.ID, but the
name matches the name of an existing bridge
cluster, the user must add this annotation to the
Custom Resource to allow it to take control of
the Bridge Cluster. The Value assigned to the
annotation must be the ID of existing cluster.

Controls if the Operator should create schemas
for the users defined in spec.users forall of
the databases listed for that user

Allows removal of PVC-based backups when
changing from a cluster with backups to a
cluster without backups. Backups stored on the
cloud storage are intact

Used to override default configuration from a
ConfigMap.

Hash of the monitor user secret, used to detect
changes and trigger updates.

Example

Values

database, t

able

existing

cluster

true

true

custom-
config

b6ela2c3. .

ID

Page 99

Name Objects Description Example
Values

user-secret-
hash

pgv2.percona. Custom Resource Indicates a backup that is currently running for true
com/backup- the cluster.

in-progress

pgv2.percona. Custom Resource Marks that the cluster was bootstrapped from a 2024-07-
com/cluster- restore. 01T12:34:5
bootstrap- 6Z

restore

pgv2.percona. Pods, StatefulSets The Patroni version running in the Pod or 3.3.0
com/patroni- StatefulSet.

version

pgv2.percona. Pods, StatefulSets Custom Patroni version specified by the user. 3.3.0-
com/custom- percona
patroni-

version

kubectl.kuber Pods Defines a default container used when the
netes.io/defa
ult-

container

-c flagis not
passed when

executing to a
Pod.

Setting labels and annotations in the Custom Resource

You can define both Labels and Annotations as key-value pairs in the metadata section of a YAML
manifest for a specific resource.

Set labels and annotations for Pods

Page 100

For PostgreSQL, pgBouncer and pgBackRest Pods, use
instances.metadata.annotations/instances.metadata.labels,
proxy.pgbouncer.metadata.annotations/proxy.pgbouncer.metadata.labels, or

backups.pgbackrest.metadata.annotations/backups.pgbackrest.metadata.labels keys as
follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster

spec:

instances:

- name: instancel
replicas: 3
metadata:

annotations:

my-annotation: valuel
labels:

my-label: value2

Set labels and annotations for Services

For PostgreSQL and pgBouncer Services, use expose.annotations/expose.labels or

proxy.pgbouncer.expose.annotations/proxy.pgbouncer.expose.labels keys as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster

spec:
expose:

annotations:

my-annotation: valuel
labels:

my-label: value2

Set global labels and annotations

You can also use the top-level spec metadata.annotations and metadata.labels options to set
annotations and labels at a global level, for all resources created by the Operator:

Page 101

apiVersion: pgv2.percona.com/v2

kind: PerconaPGCluster
spec:
metadata:
annotations:

my-global-annotation: valuel

labels:

my-global-label: value2

Settings labels and annotations for the Operator Pod

You can assign labels and/or annotations to the Operator itself by editing the deploy/operator.yaml
configuration file [4 before applying_it during_the installation. This way you add labels and annotations to

the Pod where the Operator is running

apiVersion: apps/vi
kind: Deployment

spec:
template:
metadata:

labels:
app.kubernetes

app.kubernetes.
.1o/name: percona-postgresql-operator

app.kubernetes

app.kubernetes.

.io/component: operator

io/instance: percona-postgresql-operator

io/part-of: percona-postgresql-operator

pgv2.percona.com/control-plane: postgres-operator

Querying labels and annotations

To check which labels are attached to a specific object, use the additional --show-1abels option of the

kubectl get command.

For example, to see the Operator version associated with a Custom Resource Definition, use the following

command:

kubectl get crd perconapgclusters.pgv2.percona.com --show-labels

Page 102

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml
https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml

H Sample output v

“*{.text .no-copy} NAME CREATED AT LABELS

perconapgclusters.pgv2.percona.com 2025-07-01T13:13:36Z pgv2.percona.com/version=v2.7.0

To check annotations associated with an object, use the following command:
kubectl get <resource> <resource-name> -o jsonpath='{.metadata.annotations}'
For example, this command lists annotations assigned to a cluster1-pgbouncer Service:

kubectl get service clusterl1-instancel-xvbt-0 -o
jsonpath="{.metadata.annotations}"’

H Sample output v

{

"cloud.google.com/neg": "{\"ingress\":true}"

}

Special annotations

Metadata can be used as an additional way to influence the Operator behavior by setting special

annotations.

Customizing Patroni version

Starting from the Operator 2.6.0, Percona distribution for PostgreSQL comes with Patroni 4.x, which
introduces breaking changes compared to previously used 3.x versions. To maintain backward
compatibility, the Operator needs to detect the Patroni version used in the image. For this, it runs a
temporary Pod named cluster_name-patroni-version-check with the following default resources:

Resources:
Requests:
memory: 32Mi
cpu: 50m
Limits:
memory: 64Mi
cpu: 160m

Page 103

You can disable this auto-detection feature by manually setting the Patroni version via the following
annotation in the metadata part of the Custom Resource (it should contain “4” for Patroni 4.x or “3" for
Patroni 3.x):

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
name: clusteri
annotations:
pgv2.percona.com/custom-patroni-version: "4"

Page 104

Transport layer security (TLS)

The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for the
following types of communication:

e Internal - communication between PostgreSQL instances in the cluster

e External - communication between the client application and the cluster
The internal certificate is also used as an authorization method for PostgreSQL Replica instances.
TLS security can be configured in following ways:

o the Operator can generate long-term certificates automatically at cluster creation time,

e you can generate certificates manually.

° Note

Additionally, you can force your database cluster to use only encrypted channels for both internal and external
communications. This effect is achieved by setting the t1sOnly Custom Resource optionto true.

Allow the Operator to generate certificates automatically

The Operator is able to generate long-term certificates automatically and turn on encryption at cluster
creation time, if there are no certificate secrets available. Just deploy your cluster as usual, with the
kubectl apply -f deploy/cr.yaml command, and certificates will be generated.

0 Note

With the Operator versions before 2.5.0, autogenerated certificates for all database clusters were based on the same
generated root CA. Starting from 2.5.0, the Operator creates root CA on per-cluster basis.

Check connectivity to the cluster

You can check TLS communication with use of the psql, the standard interactive terminal-based frontend
to PostgreSQL. The following command will spawn a new pg-client container, which includes needed

command and can be used for the check (use your real cluster name instead of the <cluster-name>
placeholder):

Page 105

S cat <<EOF | kubectl apply -f -
apiVersion: apps/vi
kind: Deployment
metadata:
name: pg-client
spec:
replicas: 1
selector:
matchLabels:
name: pg-client
template:
metadata:
labels:
name: pg-client
spec:
containers:
- name: pg-client
image: perconalab/percona-distribution-postgresql:17.5.2
imagePullPolicy: Always
command :
- sleep
args:
- "1005600"
volumeMounts:
- name: ca
mountPath: "/tmp/tls"
volumes:
- name: ca
secret:
secretName: <cluster_name>-ssl-ca
items:
- key: ca.crt
path: ca.crt
mode: 0777
EOF

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to

check connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and
password):

$ kubectl exec -it deployment/pg-client -- bash -il

[postgres@pg-client /]S PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql
postgres://<postgresql-user>:<postgresql-password>@<cluster-name>-pgbouncer.
<namespace>.svc.cluster.local

Now you should see the prompt of PostgreSQL interactive terminal:

Page 106

$ psql (17.5.2)
Type "help" for help.
pgdb=>

Generate certificates manually

Provide pre-existing certificates to the Operator

To allow the Operator to use custom certificates, simply create the appropriate Secrets in your cluster
namespace before deploying the cluster with the kubectl apply -f deploy/cr.yaml command. The
Secret should contain the TLS key (tls.key), TLS certificate (tls.crt) and the CA certificate (ca.crt)
to use:

apiVersion: v
kind: Secret
metadata:
name: clusteri-cert
type: Opaque
data:
ca.crt: <value>
tls.crt: <value>
tls.key: <value>

For example, if you have files named ca.crt, my_tls.key,and my_tls.crt stored on your local
machine, you could run the following command to create a Secret named cluster1.tls inthe

postgres-operator namespace:

S kubectl create secret generic -n postgres-operator clusterl.tls \
--from-file=ca.crt=ca.crt \
--from-file=tls.key=my_tls.key \
--from-file=tls.crt=my_tls.crt

You should use two sets of certificates: one set is for external communications, and another set is for
internal ones. A secret created for the external use must be added to the
secrets.customTLSSecret.name field of your Custom Resource. A certificate generated for internal
communications must be added to the secrets.customReplicationTLSSecret.name field in your
Custom Resource. You can do it in the deplou/cr.yaml configuration file as follows:

Page 107

spec:
secrets:
customTLSSecret:
name: clusterl-cert

customReplicationTLSSecret:
name: replicationi-cert

Don't forget to apply changes as usual:

$ kubectl apply -f deploy/cr.yaml

Provide custom root CA certificate to the Operator

You can also provide a custom root CA certificate to the Operator. In this case the Operator will not
generate one itself, but will use the user-provided CA. Particularly, this can be useful if you would like to
have several database clusters with certificates generated by the Operator based on the same root CA.

To make the Operator using custom root certificate, create a separate secret with this certificate and
specify this secret in Custom Resource options.

For example, if you have files named my_tls.key and my_tls.crt stored on your local machine, you
could run the following command to create a Secret named clusteri1-ca-cert inthe postgres-
operator namespace:

$ kubectl create secret generic -n postgres-operator clusteri-ca-cert \
--from-file=tls.crt=my_tls.crt \
--from-file=tls.key=my_tls.key

You also need to specify details about this secret in your deploy/cr.yaml manifest:

secrets:
customRootCATLSSecret:
name: clusterl-ca-cert
items:
- key: "tls.crt"
path: "root.crt"
- key: "tls.key"
path: "root.key"

Now, when you create the cluster with the kubectl apply -f deploy/cr.yaml command, the Operator
should use the root CA certificate you had provided.

Page 108

A Warning

This approach allows using root CA certificate auto-generated by the Operator for some other clusters, but it needs
caution. If the cluster with auto-generated certificate has delete-ssl finalizer enabled, the certificate will be deleted at
the cluster deletion event even if it was manually provided to some other cluster.

Generate custom certificates for the Operator yourself

The good option to find out the certificates specifics needed for the Operator would be to look at
certificates, generated by the Operator automatically. Supposing that your cluster name is cluster1, you
can examine the auto-generated CA certificate (ca.crt) after deploying the cluster as follows:

$ kubectl get secret/clusteri-cluster-cert -o jsonpath='{.data.ca\.crt}' | base64
--decode | openssl x509 -text -noout

H Expected output v

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
ec:f3:d6:f5:35:5c:97:0c:66:cc:90:ed:e6:4b:0a:07
Signature Algorithm: ecdsa-with-SHA384
Issuer: CN = postgres-operator-ca
Validity
Not Before: Dec 24 13:58:21 2023 GMT
Not After : Dec 21 14:58:21 2033 GMT
Subject: CN = postgres-operator-ca
Subject Public Key Info:

You can check the auto-generated TLS certificate (tls.crt) in a similar way:

S kubectl get secret/clusteri-cluster-cert -o jsonpath='{.data.tls\.crt}' | base64
--decode | openssl x509 -text -noout

Page 109

H Expected output v

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
59:f3:44:09:f1:73:b3:8e:ba:d4:a0:52:cc:fb:9c:1f
Signature Algorithm: ecdsa-with-SHA384
Issuer: CN = postgres-operator-ca
Validity
Not Before: Dec 24 13:58:21 2023 GMT
Not After : Dec 23 14:58:21 2024 GMT
Subject: CN = cluster1-primary.default.svc.cluster.local.
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:b1:2f:37:1b:ca:ab:5f:19:38:24:69:11:54:82:
10:49:fd:00:3c:26:ef:83:32:82:b1:73:96:e8:9d:
eb:2f:60:89:ea:3a:ch:95:a7:0a:2e:46:63:ce:29:
87:17:1a:d4:3e:c5:5a:90:8c:71:3b:23:75:21:42:
09:60:81:da:c1
ASN1 OID: prime256v1
NIST CURVE: P-256
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Authority Key Identifier:
3C:25:65:88:F2:CD:29:37:05:06:7C:E8:F3:C4:2B:CD:9B:DC:5E:74
X509v3 Subject Alternative Name:
DNS:clusteri-primary.default.svc.cluster.local., DNS:clusterl-
primary.default.svc, DNS:clusteri-primary.default, DNS:clusterl-primary, DNS:clusterl-
replicas.default.svc.cluster.local., DNS:clusteri-replicas.default.svc, DNS:clusteri-
replicas.default, DNS:clusteri-replicas
Signature Algorithm: ecdsa-with-SHA384

While sharing the same ca.crt, certificates for external communications (referenced in the
secrets.customTLSSecret.name Custom Resource option) and certificates for internal ones
(referenced in the secrets.customReplicationTLSSecret.name Custom Resource option) can't share
the same tls.crt.The tls.crt for external communications should have a Common Name (CN)
setting that matches the primary Service name (CN = cluster1-
primary.default.svc.cluster.local. inthe above example). Similarly, the tls.crt forinternal
communications should have a Common Name (CN) setting that matches the preset replication user:
CN=_crunchyrepl.

Page 110

One of the options to create certificates yourself is to use CloudFlare PKI and TLS toolkit [4. Supposing
that your cluster name is cluster1 and the desired namespace is postgres-operator, certificates
generation may look as follows:

*** {.bash data-prompt="$" }

export CLUSTER_NAME=cluster1

export NAMESPACE=postgres-operator

cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca

~ U U

"CN": "*",

"key": {
"algo": "ecdsa",
"size": 384

}

}
EOF

§ cat <<EOF > ca-config.json

{
"signing": {
"default": {
"expiry": "87606h",
"usages": ["digital signature", "key encipherment", "content commitment"]
}
}
}
EOF

S cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-

config.json - | cfssljson -bare server
{
"hosts": |
"localhost"”,

"S{CLUSTER_NAME}-primary",
"S{CLUSTER_NAME}-primary.S{NAMESPACE}",
"S{CLUSTER_NAME}-primary.S${NAMESPACE}.svc.cluster.local",
"S{CLUSTER_NAME }-primary.S{NAMESPACE}.svc"

1,

"CN": "S{CLUSTER_NAME}-primary.S{NAMESPACE}.svc.cluster.local",

"key": {
"algo": "ecdsa",
"size": 384
}
}

EOF

You can find more on genrating certificates this way in official Kubernetes documentation [4.

Page 111

https://cfssl.org/
https://cfssl.org/
https://cfssl.org/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/

Don't forget that you should generate certificates twice: one set is for external communications, and

another set is for internal ones!

Check your certificates for expiration

$ kubectl get secrets

1. First, check the necessary secrets names (cluster1-cluster-cert and cluster1-replication-

cert by default):

You will have the following response:

NAME TYPE DATA AGE
cluster1-cluster-cert Opaque 3 11m
cluster1-replication-cert Opaque 3 11m

2. Now use the following command to find out the certificates validity dates, substituting Secrets names

if necessary:

$ {

kubectl get secret/clusterl-replication-cert -o jsonpath='{.data.tls\.crt}
| base64 --decode | openssl x509 -noout -dates

kubectl get secret/clusterl-cluster-cert -o jsonpath='{.data.ca\.crt}' |
base64 --decode | openssl x569 -noout -dates

}

The resulting output will be self-explanatory:

notBefore=Jun 28 10:20:19 2023 GMT
notAfter=Jun 27 11:20:19 2024 GMT
notBefore=Jun 28 10:20:18 2023 GMT
notAfter=Jun 25 11:20:18 2033 GMT

Keep certificates after deleting the cluster

In case of cluster deletion, objects, created for SSL (Secret, certificate, and issuer) are not deleted by
default.

Page 112

If the user wants the cleanup of objects created for SSL, there is a finalizers.percona.com/delete-ssl
Custom Resource option, which can be set in deploy/cr.yaml: if this finalizer is set, the Operator will
delete Secret, certificate and issuer after the cluster deletion event.

Page 113

Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona,
which helps us to determine where to focus the development and what is the uptake for each release of
Operator.

The following information is gathered:

e D of the Custom Resource (the metadata.uid field)
e Kubernetes version

o Platform (is it Kubernetes or Openshift)

¢ |s PMM enabled, and the PMM Version

e QOperator version

e PostgreSQL version

e PgBackRest version

e Was the Operator deployed with Helm

 Are sidecar containers used

e Are backups used

We do not gather anything that identify a system, but the following thing should be mentioned: Custom
Resource ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it
at scheduled times to obtain fresh information about version numbers and valid image paths needed for
the upgrade.

The landing page for this service, check.percona.com [4, explains what this service is.

You can disable telemetry with a special option when installing the Operator:

e if you install the Operator with helm, use the following installation command:

S helm install my-db percona/pg-db --version 2.7.0 --namespace my-namespace --set
disable_telemetry="true"

e if you don't use helm for installation, you have to edit the operator.yaml before applying it with the

kubectl apply -f deploy/operator.yaml command. Openthe operator.yaml file with your text
editor, find the DISABLE_TELEMETRY environment variable and setitto "true"

Page 114

https://check.percona.com/
https://check.percona.com/
https://check.percona.com/

- name: DISABLE_TELEMETRY
value: "true"

Page 115

Configure concurrency for a cluster
reconciliation

Reconciliation is the process by which the Operator continuously compares the desired state with the
actual state of the cluster. The desired state is defined in a Kubernetes custom resource, like
PostgresCluster.

If the actual state does not match the desired state, the Operator takes actions to bring the system into
alignment—such as creating, updating, or deleting Kubernetes resources (Pods, Services, ConfigMaps,
etc.) or performing database-specific operations like scaling, backups, or failover.

Reconciliation is triggered by a variety of events, including:

e Changes to the cluster configuration
¢ Changes to the cluster state

¢ Changes to the cluster resources

By default, the Operator has one reconciliation worker. This means that if you deploy or update 2 clusters
at the same time, the Operator will reconcile them sequentially.

The PGO_WORKERS environment variable in the percona-postgresql-operator deployment controls the
number of concurrent workers that can reconcile resources in PostgresSQL clusters in parallel.

Thus, to extend the previous example, if you set the number of reconciliation workers to 2, the Operator
will reconcile both clusters in parallel. This also helps you with benchmarking the Operator performance.

The general recommendation is to set the number of concurrent workers equal to the number of
PostgreSQL clusters. When the number of workers is greater, the excessive workers will remain idle.

Set the number of reconciliation workers
1. Check the index of the PGO_WORKERS environment variable using the following command:

S kubectl get deployment percona-postgresql-operator -o
jsonpath="{.spec.template.spec.containers[0].env[?
(@.name=="PGO_WORKERS")].value}'

Page 116

H Sample output

"name" : "WATCH_NAMESPACE",
"valueFrom": {

"fieldRef": {
“apiVersion": "v1",
"fieldPath": "metadata.namespace"

}

}

"name" : "PGO_NAMESPACE",
"valueFrom": {
"fieldRef": {
"apiVersion": "v1",
"fieldPath": "metadata.namespace"
}
}

"name" : "LOG_STRUCTURED",
"value": "false"

"name" : "LOG_LEVEL",

“value": "INFO"

"name" : "DISABLE_TELEMETRY",
"value": "false"

"name" : "PGO_WORKERS",
"value": "2"

The index is zero-based, thus PGO_WORKERS has index 5.

2. List deployments to find the right one:

$ kubectl get deployment

H Sample output

NAME READY
cluster1-pgbouncer 3/3 3
percona-postgresqgl-operator a/1 1

UP-TO-DATE

AVAILABLE
3
0

AGE
3h49m
3h56m

Page 117

. To set a new value, run the following command to patch the deployment:

S kubectl patch deployment percona-postgresql-operator \
--type="json' \

-p="[{"op": "replace", "path": "/spec/template/spec/containers/@/env/5",
"value": {"name": "PGO_WORKERS", "value": "2"}}]'

The command does the following:

o Patches the deployment to update the PGO_WORKERS environment variable
e Sets the value to 2

The value can be set to any number greater than 0.

Verify the change

To verify that the change has been applied, run the following command:

$ kubectl get deployment percona-postgresql-operator -o
jsonpath="{.spec.template.spec.containers[0].env[?(@.name=="PGO_WORKERS")].value}'

The output should be 2.

Page 118

Management

Page 119

Upgrade Database and Operator

Starting from the version 2.2.0, you can upgrade Percona Operator for PostgreSQL to newer 2.x versions.

6 Note

Upgrades from the Operator version 1.x to 2.x are completely different from the upgrades within 2.x versions due to
substantial changes in the architecture. Check available methods for 1.x to 2.x upgrade

The upgrade process consists of these steps:

e Upgrade the Operator

e Upgrade the database (Percona Distribution for PostgreSQL).

Update scenarios

You can either upgrade both the Operator and the database, or you can upgrade only the database. To
decide which scenario to choose, read on.

Full upgrade (CRD, Operator, and the database)
When to use this scenario:

e The new Operator version has changes that are required for new features of the database to work
e The Operator has new features or fixes that enhance automation and management.

o Compatibility improvements between the Operator and the database require synchronized updates.

When going on with this scenario, make sure to test it in a staging or testing environment first. Upgrading
the Operator may cause performance degradation.

Upgrade only the database
When to use this scenario:

e The new version of the database has new features or fixes that are not related to the Operator or other
components of your infrastructure

¢ You have updated the Operator earlier and now want to proceed with the database update.

When choosing this scenario, consider the following:

Page 120

e Check that the current Operator version supports the new database version.

e Some features may require an Operator upgrade later for full functionality.
Upgrading to a newer version typically involves two steps:

1. Upgrading the Operator and Custom Resource Definition (CRD)_[7,

2. Upgrading the Database Management System (Percona Distribution for PostgreSQL).

Alternatively, it is also possible to carry on minor version upgrades of Percona Distribution for PostgreSQL
without the Operator upgrade.

Upgrading the Operator and CRD

Considerations

1. The Operator version has three digits separated by a dot (.) in the format major.minor.patch.
Here's how you can understand the version 2.6.0:

e 2 -major version
e 6 -minor version
e 0 -patch version

You can only upgrade the Operator to the nearest major.minor version. For example, from 2.6.0 to
2.7.0. To upgrade to a newer version, which differs from the current minor.major version by more
than one, you need to make several incremental upgrades sequentially.

For example, to upgrade the CRD and Operator from the version 2.4.0 to 2.6.0, first upgrade it from
2.4.0t0 2.5.1, and then from 2.5.1 t0 2.6.0.

Patch versions don't influence the upgrade, so you can safely move from 2.5.0 to 2.5.1.

2. CRD supports the last 3 minor versions of the Operator. This means it is compatible with the newest
Operator version and the two previous minor versions. If the Operator is older than the CRD by no
more than two versions, you should be able to continue using the old Operator version. But updating
the CRD and Operator is the recommended path.

3. Using newer CRD with older Operator is useful to upgrade multiple single-namespace Operator

deployments in one Kubernetes cluster, where each Operator controls a database cluster in its own
namespace. In this case upgrading Operator deployments will look as follows:

e upgrade the CRD (not 3 minor versions far from the oldest Operator installation in the Kubernetes
cluster) first

 upgrade the Operators in each namespace incrementally to the nearest minor version (e.qg. first
2.4.0t02.5.1,then 2.5.1 t0 2.6.0)

Page 121

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Manual upgrade

You can upgrade the Operator and CRD as follows, considering the Operator uses postgres-operator
namespace, and you are upgrading it to the version 2.7.0.

1. Update the CRD for the Operator and the Role-based access control. You must use the server-side [4
flag when you update the CRD. Otherwise you can encounter a number of errors caused by applying
the CRD client-side: the command may fail, the built-in PostgreSQL extensions can be lost during such

upgrade, etc.

Take the latest versions of the CRD and Role-based access control manifest from the official
repository on GitHub with the following commands:

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.7.0/deploy/crd.yaml

S kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.7.0/deploy/rbac.yaml -n postgres-operator

0 Note

In case of cluster-wide installation, use deploy/cw-rbac.yaml instead of deploy/rbac.yaml.

2. Next, update the Percona Distribution for PostgreSQL. Find the image name for the current Operator

the image name and version. Use the following command to update the Operator Deployment to the

2.7 .0 version:

S kubectl -n postgres-operator patch deployment percona-postgresql-operator \
-p'{"spec":{"template" :{"spec":{"containers":

[{"name" :"operator", "image" : "docker.io/percona/percona-postgresql-

operator:2.7.0"}]}}}}'

3. The deployment rollout will be automatically triggered by the applied patch. You can track the rollout
process in real time with the kubectl rollout status command with the name of your cluster:

S kubectl rollout status deployments percona-postgresql-operator -n postgres-
operator

Page 122

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

H Expected output v

deployment "percona-postgresql-operator"” successfully rolled out

Upgrade via Helm

If you have installed the Operator using Helm, you can upgrade the Operator deployment with the helm

upgrade command.

The helm upgrade command updates only the Operator deployment. The update flow for the database

management system (Percona Distribution for PostgreSQL) is the same for all installation methods,

whether it was installed via Helm or kubectl.
1. You must have the compatible version of the Custom Resource Definition (CRD) in all namespaces
that the Operator manages. Starting with version 2.7.0, you can check it using the following
command:

S kubectl get crd perconapgclusters.pgv2.percona.com --show-labels

2. Update the Custom Resource Definition [4 for the Operator, taking it from the official repository on
GitHub.

Refer to the compatibility between CRD and the Operator and how you can update the CRD if it is too

old. Use the following command and replace the version to the required one until you are safe to
update to the latest CRD version.

S kubectl apply --server-side --force-conflicts -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.7.0/deploy/crd.yaml

If you already have the latest CRD version in one of namespaces, don't re-run intermediate upgrades
for it.

3. Upgrade the Operator deployment

Page 123

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

With default parameters
To upgrade the Operator installed with default parameters, use the following command:
$ helm upgrade my-operator percona/pg-operator --version 2.7.9

The my-operator parameter in the above example is the name of a release object [which you
have chosen for the Operator when installing its Helm chart.
With customized parameters

If you installed the Operator with some customized parameters [, list these options in the upgrade
command.

a. Get the list of used options in YAML format :
$ helm get values my-operator -a > my-values.yaml
b. Pass these options to the upgrade command as follows:

S helm upgrade my-operator percona/pg-operator --version 2.7.0 -f my-
values.yaml

During the upgrade, you may see a warning to manually apply the CRD if it has the outdated version. In
this case, refer to step 2 to upgrade the CRD and then step 3 to upgrade the deployment.

Upgrade via Operator Lifecycle Manager (OLM)

If you have installed the Operator on the OpenShift platform using OLM, you can upgrade the Operator
within it.

1. List installed Operators for your Namespace to see if there are upgradable items.

Page 124

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart

Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name «~ Search by name... /

Name Status
Percona Operator for @ Succeeded
% PostgreSQL @ Upgrade available

240 provided by Percona

2. Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button, and
finally “Approve” to upgrade the Operator.

Upgrade Percona Distribution for PostgreSQL

Considerations

1. Starting from the Operator 2.4.0 you can do a minor upgrade (for example, from 15.5 to 15.7, or from
16.1 to 16.3) and a major upgrade (for example, upgrade from PostgreSQL 15.5 to PostgreSQL 16.3)
of Percona Distribution for PostgreSQL. Before the Operator version 2.4.0, you could only do a minor
upgrade of Percona Distribution for PostgreSQL.

2. Starting with the Operator 2.6.0, PostgreSQL images are based on Red Hat Universal Base Image
(UBI) 9 instead of UBI 8. UBI 9 has a different version of collation library glibc and this introduces a
collation mismatch in PostgreSQL. Collation defines how text is sorted and compared based on
language-specific rules such as case sensitivity, character order and the like. PostgreSQL stores the
collation version used at database creation. When the collation version changes, this may result in
corruption of database objects that use it like text-based indexes. Therefore, you need to identify and
reindex objects affected by the collation mismatch.

3. Upgrading a PostgreSQL cluster may result in downtime, as well as failover caused by updating the
primary instance.

Minor version upgrade

To make a minor upgrade of Percona Distribution for PostgreSQL (for example, from 16.1 to 16.3) , do the
following:

Page 125

a Check the version of the Operator you have in your Kubernetes environment. If you need to update it,

refer to the Operator upgrade guide

g Check the current version of the Custom Resource and what versions of the database and cluster
components are compatible with it. Use the following command:

S curl <https://check.percona.com/versions/v1/pg-operator/2.6.0> |jq -r
'.versions[].matrix'

You can also find this information in the Versions compatibility matrix.

e Update the database, the backup and PMM Client image names with a newer version tag. Find the
image names in the list of certified images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven't done it
yet, exclude PMM Client from the list of images to update.

kubectl patch pg command.

This example command updates the cluster with the name cluster1 in the namespace postgres-
operator tothe 2.7.0 version:

Page 126

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

With PMM Client

S kubectl -n postgres-operator patch pg clusterl --type=merge --patch '{

"spec”: {
“crVersion":"2.7.0",
"image": "docker.io/percona/percona-postgresql-operator:2.7.0-ppgl17.5.2-
postgres",
"proxy": { "pgBouncer": { "image": "docker.io/percona/percona-
pgbouncer:1.24.1" } },
"backups": { "pgbackrest": { "image": "docker.io/percona/percona-
pgbackrest:2.55.8" } },
"pmm": { "image": "docker.io/percona/pmm-client:3.3.0" }
P

The following image names in the above example were taken from the list of certified images:

docker.io/percona/percona-postgresql-operator:2.7.0-ppgl17.5.2-postgres,
docker.io/percona/percona-pgbouncer:1.24.1,
docker.io/percona/percona-pgbackrest:2.55.0,

docker.io/percona/pmm-client:3.3.0.

Without PMM Client

S kubectl patch pg cluster1l -n postgres-operator --type=merge --patch '{

"spec”: {
“crVersion":"2.7.0",
"image": "docker.io/percona/percona-postgresql-operator:2.7.0-ppgl17.5.2-
postgres",
"proxy": { "pgBouncer": { "image": "docker.io/percona/percona-
pgbouncer:1.24.1" } },
"backups": { "pgbackrest": { "image": "docker.io/percona/percona-
pgbackrest:2.55.8" } }
P

The following image names in the above example were taken from the list of certified images:

* “docker.io/percona/percona-postgresql-operator:2.7.0-ppgl17.5.2-postgres ",
* “docker.io/percona/percona-pgbouncer:1.24.1",
* “docker.io/percona/percona-pgbackrest:2.55.0",

G After you applied the patch, the deployment rollout will be triggered automatically. The update
process is successfully finished when all Pods have been restarted.

Page 127

E Expected output

NAME

cluster1-backup-4vwt-p5d9j
cluster1-instancel1-b5mr-0
clusterl1-instancel1-b8p7-0
clusteri1-instancel1-w7q2-0
cluster1-pgbouncer-79bbf55c45-62x1k
cluster1-pgbouncer-79bbf55c45-9g4ch
cluster1-pgbouncer-79bbf55c45-9nrmd
clusteri1-repo-host-0
percona-postgresql-operator-79cd8586f5-2qzcs

READY
0/1
4/4
4/4
4/4
2/2
2/2
2/2
2/2
1/1

STATUS
Completed
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

0
0
0
0
0
0
9
0
0

AGE
97m
99m
99m
99m
99m
99m
99m
99m
120m

e Scan for indexes that rely on collations other than C or POSIX and whose collations were provided by
the operating system (¢) or dynamic libraries (d). Connect to PostgreSQL and run the following

query:

SELECT DISTINCT
indrelid::regclass: :text,
indexrelid: :regclass: :text,

collname,
pg_get_indexdef(indexrelid)
FROM (
SELECT
indexrelid,
indrelid,
indcollation[i] coll
FROM
pg_index,
generate_subscripts(indcollation, 1) g(i)
) s
JOIN pg_collation ¢ ON coll = c.oid
WHERE

collprovider IN ('d', 'c')
AND collname NOT IN ('C', 'POSIX');

G If you see the list of affected images, find the database names where indexes use a different collation

version:

SELECT * FROM pg_database;

Page 128

E Sample output v

“*{.text .no-copy} oid | datname | datdba | encoding | datlocprovider | datistemplate | datallowconn | datconnlimit |
datfrozenxid | datminmxid | dattablespace | datcollate | datctype | daticulocale | daticurules | datcollversion |

datacl

4 -+
T T

+
}.
-
+
+
}.
-
+
i
}.

4 =+ 4 <+
T T T T

5| postgres|10|6|c|flt]-11722|1|1663|en_US.utf-8 | en_US.utf-8|]2.28 |1 |template1 |10|6|c|t|t]-1
| 7221111663 | en_US.utf-8 | en_US.utf-8 | | | 2.28 | {=c/postgres,postgres=CTc/postgres} 4 | template0 | 106 | c |
t1f1-117221111663 | en_US.utf-8 | en_US.utf-8 | | | | {=c/postgres,postgres=CTc/postgres} 16466 | cluster1 | 10 |
6lc|fltl-11722]1]1663|en_US.utf-8|en_US.utf-8|||2.28]|
{=Tc/postgres,postgres=CTc/postgres,cluster1=CTc/postgres} (4 rows)

e Refresh collection metadata and rebuild affected indexes. This command requires the privileges of a

superuser or a database owner:

ALTER DATABASE cluster1 REFRESH COLLATION VERSION;

Maijor version upgrade

Major version upgrade allows you to jump from one database major version to another (for example,
upgrade from PostgreSQL 15.5 to PostgreSQL 16.3).

° Note

Maijor version upgrades feature is currently a tech preview, and it is not recommended for production environments.

Also, currently the major version upgrade only works if the images in Custom Resource (deploy/cr.yaml manifest)
are specified without minor version numbers:

image: docker.io/percona/percona-postgresql-operator:2.7.0-ppgl15-postgres
postgresVersion: 15

It will not work for images specified like percona/percona-postgresql-operator:2.4.0-ppg15.7-postgres.

The upgrade is triggered by applying the YAML file which refers to the special Operator upgrade image and
contains the information about the existing and desired major versions. An example of this file is present

in deploy/upgrade.yaml:

Page 129

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
name: cluster1-15-to-16
spec:
postgresClusterName: clusterl
image: docker.io/percona/percona-postgresql-operator:2.7.0-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16
toPostgresImage: docker.io/percona/percona-postgresql-operator:2.7.06-ppgl16.9-
postgres
toPgBouncerImage: docker.io/percona/percona-pgbouncer:1.24.1
toPgBackRestImage: docker.io/percona/percona-pgbackrest:2.55.0

As you can see, the manifest includes image names for the database cluster components (PostgreSQL,
pgBouncer, and pgBackRest). You can find them in the list of certified images for the current Operator
release. For older versions, please refer to the old releases documentation archive [%).

After you apply the YAML manifest as usual (by running kubectl apply -f deploy/upgrade.yaml
command), the actual upgrade takes place:
1. The Operator pauses the cluster, so the cluster will be unavailable for the duration of the upgrade,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade:
<PerconaPGUpgrade.Name> annotation,

3. Jobs are created to migrate the data,
4. The cluster starts up after the upgrade finishes.

5. Scan for indexes that rely on collations other than C or POSIX and whose collations were provided by
the operating system (¢) or dynamic libraries (d). Connect to PostgreSQL and run the following
query:

Page 130

https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

SELECT DISTINCT
indrelid: :regclass: :text,
indexrelid::regclass: :text,

collname,
pg_get_indexdef(indexrelid)
FROM (
SELECT
indexrelid,
indrelid,
indcollation[i] coll
FROM
pg_index,
generate_subscripts(indcollation, 1) g(i)
) s
JOIN pg_collation ¢ ON coll = c.oid
WHERE

collprovider IN ('d', 'c')
AND collname NOT IN ('C', 'POSIX');

6. If you see the list of affected images, find the database names where indexes use a different collation
version:

SELECT * FROM pg_database;

H Sample output v

“*{.text .no-copy} oid | datname | datdba | encoding | datlocprovider | datistemplate | datallowconn | datconnlimit |
datfrozenxid | datminmxid | dattablespace | datcollate | datctype | daticulocale | daticurules | datcollversion | datacl

=+ =+ + -+ + =+ + -+ + -+ + =+
T T T T T T T T T T T T

+ +. + +.
T T T T

5| postgres |10 |6]|c|f|t]-1]1722]|1]1663|en_US.utf-8 | en_US.utf-8]]2.28|1 |template1 |10|6]|c|t|t]-1]
7221111663 | en_US.utf-8 | en_US.utf-8 | | | 2.28 | {=c/postgres,postgres=CTc/postgres} 4 | template0 |10 |6 | c |t
[f1-11722]1111663|en_US.utf-8 | en_US.utf-8 | | | | {=c/postgres,postgres=CTc/postgres} 16466 | cluster1 | 10| 6
lclfltl-11722]1]1663|en_US.utf-8 | en_US.utf-8||]2.28 |
{=Tc/postgres,postgres=CTc/postgres,cluster1=CTc/postgres} (4 rows)

7. Refresh collection metadata and rebuild affected indexes. This command requires the privileges of a
superuser or a database owner:

ALTER DATABASE cluster1 REFRESH COLLATION VERSION;

Page 131

0 Note

If the upgrade fails for some reason, the cluster will stay in paused mode. Resume the cluster manually to check what
went wrong with upgrade (it will start with the old version). You can check the PerconaPGUpgrade resource with
kubectl get perconapgupgrade -o yaml command, and check the logs of the upgraded Pods to debug the issue.

During the upgrade data are duplicated in the same PVC for each major upgrade, and old version data are
not deleted automatically. Make sure your PVC has enough free space to store data. You can remove data
at your discretion by executing_into containers and running the following commands (example for
PostgreSQL 15):

$ rm -rf /pgdata/pg15
$ rm -rf /pgdata/pg15_wal

You can also delete the PerconaPGUpgrade resource (this will clean up the jobs and Pods created during

the upgrade):

$ kubectl delete perconapgupgrade cluster1-15-to-16

Upgrade pg_stat_monitor (for Operator earlier than 2.6.0)

pg_stat_monitor is the built-in extension, which is used to provide query analytics for Percona
Monitoring and Management (PMM). If you enabled it in the Custom Resource (deploy/cr.yaml
manifest), you need to manually update it after the database upgrade (this manual step is not required for

the Operator versions 2.6.0 and newer):

1. Find the primary instance of your PostgreSQL cluster. You can do this using Kubernetes Labels as
follows (replace the <namespace> placeholder with your value):

S kubectl get pods -n <namespace> -1 postgres-
operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instancef

Page 132

H Sample output v

clusteri1-instancel1-bmdp-0 4/4 Running 0 2m23s clusteri-
instancel1-bmdp replica
clusteri1-instancel-fm7w-0 4/4 Running © 2m22s clusteri-
instancel-fm7w replica
clusteri1-instancel-ttm9-0 4/4 Running 0 2m22s clusteri-

instancel1-ttm9 master

PostgreSQL primary is labeled as master, while other PostgreSQL instances are labeled as replica.

2. Log into a primary instance (clusteri1-instance1-ttm9-0 in the above example) as an
administrative user:

kubectl exec -n <namespace> -ti clusterl-instancel1-ttm9-0 -c database -- psql
postgres

3. Execute the following SQL statement:

postgres=# alter extension pg_stat_monitor update;

Upgrading PostgreSQL extensions

If there are custom PostgreSQL extensions installed in the cluster, they need to be taken into account: you

need to build and package each custom extension for the new PostgreSQL major version. During the
upgrade the Operator will install extensions into the upgrade container.

Upgrade from the Operator version 1.x to version 2.x

The Operator version 2.x has a lot of differences compared to the version 1.x. This makes upgrading from
version 1.x to version 2.x quite different from a normal upgrade. In fact, you have to migrate the cluster
from version 1.x to version 2.x.

There are several ways to do such version 1.x to version 2.x upgrade. Choose the method based on your
downtime preference and roll back strategy:

Pros Cons
Data Volumes migration - re-use the volumes that The simplest - Requires downtime
were created by the Operator version 1.x method - Impossible to roll back

Page 133

Backup and restore - take the backup with the

Operator version 1.x and restore it to the cluster
deployed by the Operator version 2.x

Replication - replicate the data from the Operator
version 1.x cluster to the standby cluster deployed by
the Operator version 2.x

Pros

Allows you to
quickly test version
2.X

- Quick test of v2
cluster

- Minimal downtime
during upgrade

Cons

Provides significant downtime in
case of migration

Requires significant computing
resources to run two clusters in

parallel

Page 134

Upgrade from version 1to version 2

Page 135

Upgrade using data volumes

Prerequisites:
The following conditions should be met for the Volumes-based migration:

¢ You have a version 1.x cluster with spec.keepData: true inthe Custom Resource
¢ You have both Operators deployed and allow them to control resources in the same namespace
e 0Old and new clusters must be of the same PostgreSQL major version

This migration method has two limitations. First of all, this migration method introduces a downtime. Also,
you can only reverse such migration by restoring the old cluster from the backup. See other migration

methods if you need lower downtime and a roll back plan.

Prepare version 1.x cluster for the migration

a Remove all Replicas from the cluster, keeping only primary running. It is required to assure that
Volume of the primary PVC [4 does not change. The deploy/cr.yaml configuration file should have

it as follows:
pgReplicas:
hotStandby:
size: ©

9 Apply the Custom Resource in a usual way:

S kubectl apply -f deploy/cr.yaml

Q When all Replicas are gone, proceed with removing the cluster. Double check that spec.keepData is
in place, otherwise the Operator will delete the volumes!

S kubectl delete perconapgcluster cluster1

0 Find PVC for the Primary and pgBackRest :

S kubectl get pvc --selector=pg-cluster=cluster1l -n pgo

Page 136

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

E Expected output v

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

cluster Bound pvc-940cdc23-cd4c-4f62-ac3a-dc69850042b0 161 RWO
standard-rwo 57m

cluster1-pgbr-repo Bound pvc-afb00496-5a45-45ch-alch-10af8e48bb13 1G1i RWO

standard-rwo 57m

A third PVC used to store write-ahead logs (WAL) may also be present if external WAL volumes were
enabled for the cluster.

e Permissions for pgBackRest repo folders are managed differently in version 1 and version 2. We
need to change the ownership of the backrest folder on the Persistent Volume to avoid errors
during migration. Running a chown command within a container fixes this problem. You can use the
following manifest to execute it:

chown-pod.yaml

apiVersion: v
kind: Pod
metadata:
name: chown-pod
spec:
volumes:
- name: backrestrepo
persistentVolumeClaim:
claimName: clusterl-pgbr-repo
containers:
- name: task-pv-container
image: ubuntu
command :
- chown
- -R
- 26:26
- /backrestrepo/clusteri-backrest-shared-repo
volumeMounts:
- mountPath: "/backrestrepo"
name: backrestrepo

Apply it as follows:

S kubectl apply -f chown-pod.yaml -n pgo

Page 137

Execute the migration to version 2.x

The old cluster is shut down, and Volumes are ready to be used to provision the new cluster managed by

the Operator version 2.x.

0 Install the Operator version 2 (if not done yet). Pick your favorite method from our documentaion.

9 Run the following command to show the names of PVC belonging to the old cluster:

S kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

B Expected output v
NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

clusteri Bound pvc-db9bf618-04d5-4807-948d-e32e81098575 161 RWO
standard-rwo 87m

cluster1-pgbr-repo Bound pvc-37d93aa9-bf082-4295-bbbc-c1f834ed6645 1Gi RWO
standard-rwo 87m

6 Now edit the Custom Resource manifest (deploy/cr.yaml configuration file) of the version 2.x
cluster: add fields to the dataSource.volumes subsection, pointing to the PVCs of the version 1.x

cluster:

dataSource:
volumes:
pgDataVolume:
pvcName: cluster1
directory: clusteri
pgBackRestVolume:
pvcName: cluster1-pgbr-repo
directory: clusteril-backrest-shared-repo

0 Do not forget to set the proper PostgreSQL major version. It must be the same version that was used
in version 1 cluster. You can set the version in the corresponding image sections and
postgresVersion. The following example sets version 14:

Page 138

spec:
image: percona/percona-postgresql-operator:2.7.0-ppgl4-postgres
postgresVersion: 14
proxy:
pgBouncer:
image: percona/percona-postgresql-operator:2.7.06-ppgl4-pgbouncer
backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.7.06-ppgl4-pgbackrest

e Apply the manifest:

S kubectl apply -f deploy/cr.yaml

The new cluster will be provisioned shortly using the volume of the version 1.x cluster. You should remove

the spec.datasource.volumes section from your manifest.

Page 139

Upgrade using backup and restore

This method allows you to migrate from the version 1.x to version 2.x cluster by restoring (actually
creating) a new version 2.x PostgreSQL cluster using a backup from the version 1.x cluster.

o Note

To make sure that all transactions are captured in the backup, you need to stop the old cluster. This brings downtime to

the application.

Prepare the backup

0 Create the backup on the version 1.x cluster, following the official guide for manual (on-demand)
backups. This involves preparing the manifest in YAML and applying it in the ususal way:

S kubectl apply -f deploy/backup/backup.yaml

e Pause or delete the version 1.x cluster to ensure that you have the latest data.

A Warning

Before deleting the cluster, make sure that the spec.keepBackups Custom Resource option is set to true. When
it's set, local backups will be kept after the cluster deletion, so you can proceed with deleting your cluster as

follows:

$ kubectl delete perconapgcluster clusterl

Restore the backup as a version 2.x cluster

Restore from S3 / Google Cloud Storage for backups repository

a To restore from the S3 or Google Cloud Storage for backups (GCS) repository, you should first
configure the spec.backups.pgbackrest.repos subsection in your version 2.x cluster Custom
Resource to point to the backup storage system. Just follow the repository documentation instruction
for S3 or GCS. For example, for GCS you can define the repository similar to the following:

Page 140

https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/pause.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/operator.html#spec-keepbackups

spec:
backups:
pgbackrest:
repos:
- name: repol
gcs:

bucket: MY-BUCKET
region: us-centrall

g Create and configure any required Secrets or desired custom pgBackrest configuration as described
in the backup documentation for te Operator version 2.x.

e Set the repository path in the backups.pgbackrest.global subsection. By default it is

/backrestrepo/&1lt;clusterName>-backrest-shared-repo:

spec:
backups:
pgbackrest:
global:
repol: /backrestrepo/clusterl-backrest-shared-repo

a Set the spec.dataSource option to create the version 2.x cluster from the specific repository:

spec:
dataSource:
postgresCluster:
repoName: repol

You can also provide other pgBackRest restore options, e.g. if you wish to restore to a specific point-
in-time (PITR).

e Create the version 2.x cluster:

S kubectl apply -f cr.yaml

Page 141

Migrate using Standby

This method allows you to migrate from version 1.x to version 2.x by creating a new version 2.x
PostgreSQL cluster in a “standby” mode, mirroring the version 1.x cluster to it continuously. This method
can provide minimal downtime, but requires additional computing resources to run two clusters in parallel.

This method only works if the version 1.x cluster uses Amazon S3 or S3-compatible storage [4, or Google
Cloud storage (GCS)_[4 for backups. For more information on standby clusters, please refer to this article
.

Migrate to version 2

There is no need to perform any additional configuration on version 1.x cluster, you will only need to

configure the version 2.x one.

n Configure spec.backups.pgbackrest.repos Custom Resource option to point to the backup
storage system. For example, for GCS, the repository would be defined similar to the following:

spec:
backups:
pgbackrest:
repos:
- name: repol
gcs:
bucket: MY-BUCKET
region: us-centrall

e Create and configure any required secrets or desired custom pgBackrest configuration as described
in the backup documentation for the version 2.x.

e Set the repository path in backups.pgbackrest.global section of the Custom Resource
configuration file. By default it will be /backrestrepo/<clusterName>-backrest-shared-repo:

spec:
backups:
pgbackrest:
global:
repol: /backrestrepo/clusterl-backrest-shared-repo

9 Enable the standby mode in spec.standby and point to the repository:

Page 142

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html

spec:
standby:
enabled: true
repoName: repol

e Create the version 2.x cluster:

S kubectl apply -f deploy/cr.yaml

Promote version 2.x cluster
Once the standby cluster is up and running, you can promote it.
0 Delete version 1.x cluster, but ensure that spec.keepBackups is setto true.

S kubectl delete perconapgcluster cluster1

e Promote version 2.x cluster by disabling the standby mode:

spec:
standby:
enabled: false

You can use version 2.x cluster now. Also the 2.x version is now managing the object storage with
backups, so you should not start your old cluster.

Create the replication user

Right after disabling standby, run the following SQL commands as a PostgreSQL superuser. For example,
you can login as the postgres user, or exec into the Pod and use psql:

e add the managed replication user
CREATE ROLE _crunchyrepl WITH LOGIN REPLICATION;

« allow for the replication user to execute the functions required as part of “rewinding”

Page 143

GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO
_crunchyrepl;

GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint,
boolean) TO _crunchyrepl;

The above step will be automated in upcoming releases.

Page 144

Back up and restore

Page 145

About backups

In this section you will learn how to set up and manage backups of your data using the Operator.
You can make backups in two ways:

¢ On-demand. You can do them manually at any moment.

e Schedule backups. Configure backups and their schedule in the deploy/cr.yaml (4 file. The Operator
makes them automatically according to the schedule.

What you need to know

Backup repositories
To make backups, the Operator uses the open source pgBackRest [4 backup and restore utility.

When the Operator creates a new PostgreSQL cluster, it also creates a special pgBackRest repository to
facilitate the usage of the pgBackRest features. You can notice an additional repo-host Pod after the
cluster creation.

A pgBackRest repository consists of the following Kubernetes objects:

e A Deployment,

o A Secret that contains information specific to the PostgreSQL cluster (e.g. SSH keys, AWS S3 keys,
etc.),

¢ A Pod with a number of supporting scripts,

e A Service.

Inthe /deploy/cr.yml file, pgBackRest repositories are listed in the backups.pgbackrest.repos
subsection. You can have up to 4 repositories as repo1, repo2, repo3, and repo4.

Backup types

You can make the following types of backups:

o full: A full backup of all the contents of the PostgreSQL cluster,
o differential: A backup of only the files that have changed since the last full backup,

e incremental: Default. A backup of only the files that have changed since the last full or differential
backup.

Page 146

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/

Backup storage

You have the following options to store PostgreSQL backups:

¢ Cloud storage:

e Amazon S3, or any S3-compatible storage,

e Google Cloud Storage,

e Azure Blob Storage

o A Persistent Volume attached to the pgBackRest Pod.

Next steps

Ready to move forward? Configure backup storage

Page 147

Configure backup storage

Configure backup storage for your backup repositories in the backups.pgbackrest.repos section of the

deploy/cr.yaml configuration file.

Follow the instructions relevant to the cloud storage or Persistent Volume you are using for backups.

Page 148

@ S3-compatible backup storage

To use Amazon S3 [/ or any S3-compatible storage [4 for backups, you need to have the following S3-
related information:

e The name of S3 bucket;
¢ The region - the location of the bucket

e S3 credentials such as S3 key and secret to access the storage. These are stored in an encoded form in
Kubernetes Secrets [along with other sensitive information.

e For S3-compatible storage other than native Amazon S3, you will also need to specify the endpoint - the
actual URI to access the bucket - and the URI style (see below).

° Note

The pgBackRest tool does backups based on write-ahead logs (WAL) archiving. If you are using an S3 storage in a
region located far away from the region of your PostgreSQL cluster deployment, it could lead to the delay and
impossibility to create a new replica/join delayed replica if the primary restarts. A new WAL file is archived in 60
seconds at the backup start by default [4, causing both full and incremental backups fail in case of long delay.

To prevent issues with PostgreSQL archiving and have faster restores, it's recommended to use the same S3 region for

both the Operator and backup options. Additionally, you can replicate the S3 bucket to another region with tools like
Amazon S3 Cross Region Replication [4.

Configuration steps

0 Encode the S3 credentials and the pgBackRest repository name that you will use for backups. In this
example, we use AWS S3 key and S3 key secret and repo2.

Page 149

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html

A Linux

S cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

& macos

S cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

e Create the Secret configuration file and specify the base64-encoded string from the previous step.
The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

apiVersion: v
kind: Secret
metadata:
name: clusteri1-pgbackrest-secrets
type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

o Note

This Secret can store credentials for several repositories presented as separate data keys.

e Create the Secrets object from this YAML file. Replace the <namespace> placeholder with your value:

S kubectl apply -f clusteril-pgbackrest-secrets.yaml -n <namespace>

0 Update your deploy/cr.yaml configuration. Specify the Secret file you created in the
backups.pgbackrest.configuration subsection, and put all other S3 related information in the
backups.pgbackrest.repos subsection under the repository name that you intend to use for
backups. This name must match the name you used when you encoded S3 credentials on step 1.

Page 150

Provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path option (prefix it's name with the
repository name, for example repol1-path). Also, if your S3-compatible storage requires additional
repository options [for the pgBackRest tool, you can specify these parameters in the same
backups.pgbackrest.global subsection with standard pgBackRest option names, also prefixed

with the repository name.

Page 151

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global
https://pgbackrest.org/configuration.html#section-repository
https://pgbackrest.org/configuration.html#section-repository
https://pgbackrest.org/configuration.html#section-repository

aws Amazon S3 storage

For example, the S3 storage for the repo2 repository looks as follows:

backups:

pgbackrest:
configuration:
- secret:
name: clusteri-pgbackrest-secrets
global:

repo2-path: /pgbackrest/postgres-operator/cluster1/repo2

repos:
- hame: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
region: "<YOUR_AWS_S3_REGION>"

Using AWS EC2 instances for backups makes it possible to automate access to AWS S3 buckets based v
on |AM roles for Service Accounts with no need to specify the S3 credentials explicitly.

To use this feature, add annotation to the spec part of the Custom Resource and also add pgBackRest custom
configuration option to the backups subsection as follows:

spec:
crVersion: 2.7.0
metadata:
annotations:
eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-s3-
bucket
backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.7.0-ppgl16-pgbackrest

global:
repo2-s3-key-type: web-id

@ S3-compatible storage

For example, the S3-compatible storage for the repo2 repository looks as follows:

Page 152

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html

backups:
pgbackrest:
configuration:
- secret:
name: clusterl-pgbackrest-secrets
global:
repo2-path: /pgbackrest/postgres-operator/clusteri1/repo2
repo2-storage-verify-tls=y
repo2-s3-uri-style: path
repos:
- hame: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

The repo2-storage-verify-tls option in the above example enables TLS verification for
pgBackRest (when set to y or simply omitted) or disables it, when setto n.

The repo2-s3-uri-style option should be set to path_[4 if you use S3-compatible storage

(otherwise you might see “host not found error” in your backup job logs), and is not needed for
Amazon S3.

e Create or update the cluster. Replace the <namespace> placeholder with your value:

S kubectl apply -f deploy/cr.yaml -n <namespace>

& Google Cloud Storage

To use Google Cloud Storage (GCS)_[4 as an object store for backups, you need the following
information:

e aproper GCS bucket name. Pass the bucket name to pgBackRest via the gcs.bucket key in the
backups.pgbackrest.repos subsection of deploy/cr.yaml.

e your service account key for the Operator to access the storage.

Configuration steps

a Create your service account key following the official Google Cloud instructions [4.

Page 153

https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/storage
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://cloud.google.com/iam/docs/creating-managing-service-account-keys

9 Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin - Service Accounts in the left
menu panel, then click your account and open the KEYS tab):

& my-service-account

DETAILS PERMISSIONS KEYS METRICS LOGS

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the
Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

ADDKEY ¥

Click the ADD KEY button, choose Create new key and choose JSON as a key type. These actions will
result in downloading a file in JSON format with your new private key and related information (for
example, gcs-key.json).

9 Create the Kubernetes Secret [4. The Secret consists of base64-encoded versions of two files: the

gcs-key. json file with the Google service account key you have just downloaded, and the special
gcs.conf configuration file.

Create the gcs.conf configuration file. The file contents depends on the repository name for
backups in the deploy/cr.yaml file. In case of the repo3 repository, it looks as follows:

[global]
repo3-gcs-key=/etc/pgbackrest/conf.d/gcs-key.json

Encode both gcs-key.json and gcs.conf files.

A Linux

base64 --wrap=0 <filename>
.’ MacOS

base64 -i <filename>

Page 154

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Create the Kubernetes Secret configuration file and specify your cluster name and the base64-
encoded contents of the files from previous steps. The following is the example of the
clusteri1-pgbackrest-secrets.yaml Secret file

apiVersion: v

kind: Secret

metadata:
name: clusteri1-pgbackrest-secrets

type: Opaque

data:
gcs-key.json: <base64-encoded-json-file-contents>
gcs.conf: <base64-encoded-conf-file-contents>

@ Info This Secret can store credentials for several repositories presented as separate data keys.

0 Create the Secrets object from the Secret configuration file. Replace the <namespace> placeholder
with your value:

S kubectl apply -f clusteril-pgbackrest-secrets.yaml -n <namespace>

e Update your deploy/cr.yaml configuration. Specify your GCS credentials Secret in the
backups.pgbackrest.configuration subsection, and put GCS bucket name into the bucket
option in the backups.pgbackrest.repos subsection. The repository name must be the same as
the name you specified when you created the gcs.conf file.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path option (prefix it's name with the
repository name, for example repo3-path).

For example, GCS storage configuration for the repo3 repository would look as follows:

Page 155

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global

backups:
pgbackrest:

configuration:
- secret:
name: clusteri-pgbackrest-secrets
global:
repo3-path: /pgbackrest/postgres-operator/clusteri/repo3

repos:
- name: repo3
gcs:
bucket: "<YOUR_GCS_BUCKET_NAME>"

Q Create or update the cluster. Replace the <namespace> placeholder with your value:

$ kubectl apply -f deploy/cr.yaml -n <namespace>

/A Azure Blob Storage (tech preview)

To use Microsoft Azure Blob Storage [4 for storing backups, you need the following:

e a proper Azure container name.

e Azure Storage credentials. These are stored in an encoded form in the Kubernetes Secret [4.

Configuration steps

a Encode the Azure Storage credentials and the pgBackRest repo name that you will use for backups
with base64. In this example, we are using repo4.

Page 156

https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

& Linux

S cat <<EOF | base64 --wrap=0

[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT _NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

@ macos

S cat <<EOF | base64

[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

e Create the Secret configuration file and specify the base64-encoded string from the previous step.
The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

apiVersion: v
kind: Secret
metadata:
name: cluster1-pgbackrest-secrets
type: Opaque
data:
azure.conf: <base64-encoded-configuration-contents>

o Note

This Secret can store credentials for several repositories presented as separate data keys.

e Create the Secrets object from this yaml file. Replace the <namespace> placeholder with your value:

S kubectl apply -f clusteril-pgbackrest-secrets.yaml -n <namespace>

0 Update your deploy/cr.yaml configuration. Specify the Secret file you have created in the previous step
in the backups.pgbackrest.configuration subsection. Put Azure container name in the
backups.pgbackrest.repos subsection under the repository name that you intend to use for
backups. This name must match the name you used when you encoded Azure credentials on step 1.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path option (prefix it's name with the

repository name, for example repo4-path).

Page 157

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global

For example, the Azure storage for the repo4 repository looks as follows.

backups:

pgbackrest:
configuration:
- secret:
name: clusteri-pgbackrest-secrets
global:

repod-path: /pgbackrest/postgres-operator/clusteri1/repo4

repos:
- hame: repo4
azure:
container: "<YOUR_AZURE_CONTAINER>"

e Create or update the cluster. Replace the <namespace> placeholder with your value:

S kubectl apply -f deploy/cr.yaml -n <namespace>

& Persistent Volume

Percona Operator for PostgreSQL uses Kubernetes Persistent Volumes to store Postgres data. You can

also use them to store backups. A Persistent volume is created at the same time when the Operator
creates PostgreSQL cluster for you. You can find the Persistent Volume configuration in the
backups.pgbackrest.repos section of the cr.yaml file under the repo1 name:

Page 158

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services

backups:
pgbackrest:

global:
repol-path: /pgbackrest/postgres-operator/clusteri/repof

repos:
- name: repol
volume:
volumeClaimSpec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 1Gi

This configuration is sufficient to make a backup.

Next steps

e Make an on-demand backup

e Make a scheduled backup

Page 159

Make scheduled backups

Backups schedule is defined on the per-repository basis in the backups.pgbackrest.repos subsection

of the deploy/cr.yaml file.

You can supply each repository with a schedules.<backup type> key equal to an actual schedule that

you specify in crontab format.

0 Before you start, make sure you have configured a backup storage.

a Configure backup schedule in the deploy/cr.yaml file. The schedule is specified in crontab format
as explained in Custom Resource options. The repository name must be the same as the one you
defined in the backup storage configuration. The following example shows the schedule for repo1

repository:
backups:
pgbackrest:
repos:
- name: repol
schedules:

full: "0 @ * * 6"
differential: "®@ 1 * * 1-6"

1. Update the cluster:

S kubectl apply -f deploy/cr.yaml

Next steps

Restore from a backup

Useful links

Backup retention

Page 160

Making on-demand backups

To make an on-demand backup manually, you need a backup configuration file. You can use the example
of the backup configuration file deploy/backup.yaml [:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backupT
spec:
pgCluster: clusteri
repoName: repol
options:
- --type=full

Here's a sequence of steps to follow:

c Before you start, make sure you have configured a backup storage.

9 In the deploy/backup.yaml configuration file, specify the cluster name and the repository name to
be used for backups. The repository name must be the same as the one you defined in the backup
storage configuration. It must also match the repository name specified in the

backups.pgbackrest.manual subsection of the deploy/cr.yaml file.

e If needed, you can add any pgBackRest command line options [4.

o Make a backup with the following command (modify the -n postgres-operator parameter if your
database cluster resides in a different namespace):

S kubectl apply -f deploy/backup.yaml -n postgres-operator

B Expected output v

perconapgbackup.pgv2.percona.com/backup1 created

e Making a backup takes time. Use the kubectl get pg-backup command to track the backup
progress. When finished, backup should obtain the Succeeded status:

S kubectl get pg-backup backupl -n postgres-operator

Page 161

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/backup.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/backup.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/backup.yaml
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

H Expected output

NAME CLUSTER REPO DESTINATION
backup1 clustert repofl

STATUS
Succeeded

TYPE
incr

COMPLETED
3m38s

AGE
3m53s

) Tip
To list available backups, run:

S kubectl get pg-backup -n postgres-operator

Next steps

Restore from a backup

Useful links

Backup retention

Page 162

Restore the cluster from a previously saved
backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-
time-recovery. There are two ways to restore a cluster:

e restore to a new cluster using the dataSource.postgresCluster subsection,

« restore in-place to an existing cluster (note that this is destructive).

Restore to a new PostgreSQL cluster

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster
that can run alongside an existing one. There are several scenarios where using this technique is helpful:

o Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting
this is creating a clone.
e Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either an active one, or a former cluster whose pgBackRest
repository still exists, edit the dataSource.postgresCluster subsection options in the Custom Resource

manifest of the new cluster (the one you are going to create). The content of this subsection should copy
the backups keys of the original cluster - ones needed to carry on the restore:
e dataSource.postgresCluster.clusterName should contain the source cluster name,

e dataSource.postgresCluster.clusterNamespace should contain the namespace of the source
cluster (it is needed if the new cluster will be created in a different namespace, and you will need the

Operator deployed in multi-namespace/cluster-wide mode to make such cross-namespace restore),

e dataSource.postgresCluster.options allow you to set the needed pgBackRest command line
options,

e dataSource.postgresCluster.repoName should contain the name of the pgBackRest repository,
while the actual storage configuration keys for this repository should be placed into
dataSource.pgbackrest.repo subsection,

e dataSource.pgbackrest.configuration.secret.name should contain the name of a Kubernetes
Secret with credentials needed to access cloud storage, if any.

Page 163

The following example bootstraps a new cluster from a backup, which was made on the cluster1
cluster deployed in percona-db-1 namespace. For simplicity, this backup uses repo1 repository from
the Persistent Volume backup storage example, which needs no cloud credentials. The resulting

deploy/cr.yaml manifest for the new cluster should contain the following lines:

dataSource:
postgresCluster:
clusterName: clusteri
repoName: repoil
clusterNamespace: percona-db-1

Creating the new cluster in its namespace (for example, percona-db-2) with such a manifest will initiate
the restoration process:

S kubectl apply -f deploy/cr.yaml -n percona-db-2

Restore to an existing PostgreSQL cluster

To restore the previously saved backup, use a backup restore configuration file. The example of the backup
configuration file is deploy/restore.yaml [4:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restorel
spec:
pgCluster: cluster
repoName: repol
options:
- --type=time
- --target="2022-11-30 15:12:11+63"

The following keys are the most important ones:

e pgCluster specifies the name of your cluster,

e repoName specifies the name of one of the 4 pgBackRest repositories, already configured in the
backups.pgbackrest.repos subsection,

e options passes through any pgBackRest command line options (4.

Page 164

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

To start the restoration process, run the following command (modify the -n postgres-operator
parameter if your database cluster resides in a different namespace):

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Specifying which backup to restore
When there are multiple backups, the Operator will restore the latest full backup by default.

if you want to restore to some previous backup, not the last one, follow these steps:

1. Find the label of the backup you want to restore. For this, you can list available backups with kubectl
get pg-backup command, and then get detailed information about the backup of your interest with
kubectl describe pg-backup <BACKUP NAME>. The output should look as follows:

Name : cluster1-backup-c55w-f858g

Namespace: default

Labels: <none>

Annotations: pgv2.percona.com/pgbackrest-backup-job-name: clusteri-backup-
cS5w

pgv2.percona.com/pgbackrest-backup-job-type: replica-create
API Version: pgv2.percona.com/v2

Kind: PerconaPGBackup
Metadata:
Creation Timestamp: 2024-06-28T07:44:08Z
Generate Name: cluster1-backup-c55w-
Generation: 1
Resource Version: 1199
UID: 92a8193c-6¢cbd-4cdf-82e5-a4623bf7f2d9
Spec:
Pg Cluster: clustert
Repo Name: repof
Status:

Backup Name: 20240628-074416F
Backup Type: full

The “Backup Name” status field will contain needed backup label.

2. Now use a backup restore configuration file with additional --set=<backup_label> pgBackRest

option. For example, the following yaml file will result in restoring to a backup labeled 20240628-
074416F :

Page 165

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:

name: restorel
spec:

pgCluster: clusteri

repoName: repol

options:

- --type=immediate

- --set=20240628-074416F

3. Start the restoration process, as usual:

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Restore the cluster with point-in-time recovery

Point-in-time recovery functionality allows users to revert the database back to a state before an
unwanted change had occurred.

0 Note

For this feature to work, the Operator initiates a full backup immediately after the cluster creation, to use it as a basis

for point-in-time recovery when needed (this backup is not listed in the output of the kubectl get pg-backup
command).

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few
additional spec.options fieldsin deploy/restore.yaml:

e set --type optionto time,

e set --target to a specific time you would like to restore to. You can use the typical string formatted
as <YYYY-MM-DD HH:MM:DD>, optionally followed by a timezone offset: "2021-04-16 15:13:32+00"
(+08 in the above example means UTC),

e optional --set argument followed with a pgBackRest backup ID allows you to choose the backup
which will be the starting point for point-in-time recovery. This option must be specified if the target is
one or more backups away from the current moment. You can look through the available backups with
the pgBackRest info [4 command to find out the proper backup ID.

Page 166

https://pgbackrest.org/command.html#command-info
https://pgbackrest.org/command.html#command-info
https://pgbackrest.org/command.html#command-info

H pgBackRest backup ID example v

After obtaining the Pod name with kubectl get pods command, you canrun pgbackrest --stanza=db info
command on the appropriate Pod as follows:

$ kubectl -n postgres-operator exec -it clusterl-instancel-hcgr-0 -c database --
pgbackrest --stanza=db info

Then find ID of the needed backup in the output:

stanza: db
status: ok
cipher: none

db (prior)
wal archive min/max (16): ©00000OFOV00VOBVOBN00B01C/0000002000000036000000C5

full backup: 20240401-173403F
timestamp start/stop: 2024-04-01 17:34:03+00 / 2024-04-01 17:36:57+00
wal start/stop: 000000120000000000000022 / 0000VO120000000000000024
database size: 31MB, database backup size: 31MB
repol: backup set size: 4.1MB, backup size: 4.1MB

incr backup: 20240401-173403F_20240415-2012501
timestamp start/stop: 2024-04-15 20:12:50+00 / 2024-04-15 20:14:19+00
wal start/stop: 00000019000000000000005C / 000OOB19000000000000005D
database size: 46.0MB, database backup size: 25.7MB
repol: backup set size: 6.1MB, backup size: 3.8MB
backup reference list: 20240401-173403F

incr backup: 20240401-173403F_260240415-2014301

Now you can put this backup ID to the backup restore configuration file as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restorel
spec:
pgCluster: clusteri
repoName: repol
options:
| - --set="20240401-173403F"

The example may look as follows:

Page 167

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restorel
spec:
pgCluster: clusteril
repoName: repol
options:
- --type=time
- --target="2022-11-36 15:12:11+63"

o Note

Latest succeeded backup available with the kubectl get pg-backup command has a “Latest restorable time”
information field handy when selecting a backup to restore. Tracking latest restorable time is turned on by default, and

you can easily query the backup for this information as follows:

S kubectl get pg-backup <backup_name> -n postgres-operator -o
jsonpath="'{.status.latestRestorableTime}"'

After setting these options in the backup restore configuration file, start the restoration process:

S kubectl apply -f deploy/restore.yaml -n postgres-operator

0 Note

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time
where you do not have a backup. All relevant write-ahead log files must be successfully pushed before you make the
restore.

Providing pgBackRest with a custom restore command

There may be cases where it is needed to control what files are restored from the backup and apply fine-
grained filtering to them. For such scenarios there is a possibility to overwrite the restore_command used
in PosgreSQL archive recovery [4. You can do it in the patroni.dynamicConfiguration subsection of

the Custom Resource as follows:

Page 168

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY

patroni:
dynamicConfiguration:
postgresql:
parameters:
restore_command: "pgbackrest --stanza=db archive-get %f \"%p\

The %f template in the above example is replaced by the name of the file to retrieve from the archive, and
%p is replaced by the copy destination path name on the server. See PostgreSQL official documentation

(4 for more low-level details about this feature.

Fix the cluster if the restore fails

The restore process changes database files, and therefore restoring wrong information or causing restore
fail by misconfiguring can put the database cluster in non-operational state.

For example, adding wrong pgBackRest arguments to PerconaGPRestore custom resource breaks

existing database installation while the restore hangs.

In this case it's possible to remove the restore annotation from the Custom Resource correspondent to
your cluster. Supposing that your cluster cluster1 was deployed in postgres-operator namespace,
you can do it with the following command:

$ kubectl annotate -n postgres-operator pg clusterl1 postgres-
operator.crunchydata.com/pgbackrest-restore-

Alternatively, you can temporarily delete the database cluster by removing the Custom Resource (check

the finalizers.percona.com/delete-pvc finalizer is not turned on, otherwise you will not retain your

datal), and recreate the cluster back by running kubectl apply -f deploy/cr.yaml -n postgres-
operator command you have used to deploy the it previously.

One more reason of failed restore to consider is the possibility of a corrupted backup repository or
missing files. In this case, you may need to delete the database cluster by removing the Custom Resource,

find the startup PVC to delete it and recreate again.

Page 169

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY

Configure backup encryption

Backup encryption is a security best practice that helps protect your organization’s confidential
information and prevents unauthorized access.

The pgBackRest tool used by the Operator allows encrypting backups using AES-256 encryption. The
approach is repository-based: pgBackRest encrypts the whole repository where it stores backups.
Encryption is enabled if a user-supplied encryption key was passed to pgBackRest with the -repo-
cypher-pass option when configuring the backup storage.

Limitation: You cannot change encryption settings after the backups are established. You must
create a new repository to enable encryption or change the encryption key.

This document describes how to configure backup encryption.

Generate the encryption key

You should use a long, random encryption key. You can generate it using OpenSSL as follows:

$ openssl rand -base64 48

Configure backup storage

Follow the general backup storage configuration instruction relevant to the backup storage you are using.

The only difference is in encoding your cloud credentials and the pgBackRest repository name to be used
for backups: you also add the encryption key to the configuration file as the repo-cipher-pass option.
The repo name within the option must match the pgBackRest repo name.

The following example shows the configuration for S3-compatible storage and the pgBackRest repo name
repo2 (other cloud storages are configured similarly).

1. Encode the storage configuration file.

Page 170

& Linux

S cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>

EOF

@ macos

S cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>

EOF

2. Create the Secrets configuration file and the Secrets object as described in steps 2-3 of the S3-

compatible backup storage configuration. Follow the instructions relevant to the backup storage you
are using.

3. Update the deploy/cr.yaml configuration. Specify the following information:
¢ The Secret name you created in the backups.pgbackrest.configuration subsection

o All storage-related information in the backups.pgbackrest.repos subsection under the
repository name that you intend to use for backups. This name must match the name you used
when you encoded S3 credentials on step 1.

e The cipher type in the pgbackrest.global subsection

The following example shows the configuration for the S3-compatible storage and the pgBackRest
repo name repo2:

Page 171

backups:
pgbackrest:

configuration:
- secret:
name: clusteri1-pgbackrest-secrets
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

global:
cipher-type: aes-256-cbc

4. Apply the changes. Replace the <namespace> placeholder with your value.

S kubectl apply -f deploy/cr.yaml -n <namespace>

Make a backup

C Make an on-demand backup) C Make a scheduled backup)

Page 172

Speed-up backups with pgBackRest
asynchronous archiving

Backing up a database with high write-ahead logs (WAL) generation can be rather slow, because
PostgreSQL archiving process is sequential, without any parallelism or batching. In extreme cases backup
can be even considered unsuccessful by the Operator because of the timeout.

The pgBackRest tool used by the Operator can, if necessary, solve this problem by using the WAL

asynchronous archiving_[4 feature.

You can set up asynchronous archiving in your storage configuration file for pgBackRest. Turn on the
additional archive-async flag, and set the process-max value for archive-push and archive-get
commands. Your storage configuration file may look as follows:

s3.conf

[global]
repo2-s3-key=REPLACE-WITH-AWS-ACCESS-KEY
repo2-s3-key-secret=REPLACE-WITH-AWS-SECRET-KEY
repo2-storage-verify-tls=n
repo2-s3-uri-style=path

archive-async=y

spool-path=/pgdata

[global:archive-get]
process-max=2

[global:archive-push]
process-max=4

No modifications are needed aside of setting these additional parameters. You can find more information
about WAL asynchronous archiving in gpBackRest official documentation [4 and in this blog_post [4.

Page 173

https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/

Backup retention

The Operator supports setting pgBackRest retention policies for full and differential backups. When a full
backup expires according to the retention policy, pgBackRest cleans up all the files related to this backup
and to the write-ahead log. Thus, the expiration of a full backup with some incremental backups based on

it results in expiring of all these incremental backups.
You can control backup retention by the following pgBackRest options:

e --<repo name>-retention-full number of full backups to retain,

e --<repo name>-retention-diff number of differential backups to retain.

You can also specify retention type for full backups as <repo name>-retention-full-type, setting it to
either count (the number of full backups to keep) or time (the number of days to keep a backup for).

You can set both backup type and retention policy for each of 4 repositories as follows.

backups:
pgbackrest:

global:

repol-retention-full: "14"
repol-retention-full-type: time

Differential retention can be set in a similar way:

backups:
pgbackrest:

global:
repol-retention-diff: "3"

Page 174

Delete the unneeded backup

The maximum amount of stored backups is controlled by the retention policies. Older backups are

automatically deleted.

Manual deleting of a previously saved backup requires not more than the backup name. This name can be
taken from the list of available backups returned by the following command:

S kubectl get pg-backup
When the name is known, backup can be deleted as follows:

S kubectl delete pg-backup/<backup-name>

Delete backups on cluster deletion

You can enable percona.com/delete-backups finalizer in the Custom Resource (turned off by default)

to ensure that all backups are removed when the cluster is deleted. If the finalizer is enabled, the Operator
will delete all the backups from all the configured repos on cluster deletion. Besides removing all the
physical backup files, finalizer will also delete all pg-backup objects.

Warning

This percona.com/delete-backups finalizer is in tech preview state, and it is not yet recommended for production

environments.

Page 175

Disable backups

The recommended approach to deploy and run the database is with the disaster recovery strategy in mind.
Therefore, the Operator is designed and running with the backups enabled by default.

There are some specific use cases when you may wish to run a database without enabled backups.
Disabling backups should be a conscious decision based on your data’s value and recoverability. These
are example use cases where it is considered acceptable are when the data is fully disposable:

o Ephemeral development/testing environments: For clusters that are frequently torn down and rebuilt
from application code or test data scripts.

o CI/CD pipeline jobs: For automated pipeline runs where the cluster’s entire lifecycle is temporary and
tied to a single job.

Key considerations before disabling backups

Before you proceed with disabling backups, here’'s what you need to know and carefully assess:

1. Without backups you have no way to restore data. If by mistake you drop a table, that data is lost as
you have no option to recover it.

2. You cannot clone a cluster when you deploy a standby cluster for disaster recovery. This is because

cloning is based on restoring a backup on a new cluster.

3. When you run a cluster without backups, pgBackRest metrics are unavailable.

Start a new cluster with disabled backups

To deploy a new cluster without backups, do the following:
1. Clone the Operator repository to be able to edit resource manifests.
$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
2. Edit the deploy/cr.yaml Custom Resource and set the backups.enabled optionto false

spec:
backups:
enabled: false

Page 176

3. Apply the Custom Resource to start the cluster creation.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Disable backups for a running cluster

Before you start, read the considerations carefully.

To disable backups for a running cluster, update the deploy/cr.yaml Custom Resource manifest with
the following configuration:

e Setthe backups.enabled optionto false

¢ Add the annotation pgv2.percona.com/authorizeBackupRemoval:"true"

Since it is a running cluster, we will use the kubectl patch command to update its configuration:

S kubectl patch pg cluster1 --type merge \
-p A
"metadata": {
"annotations": {
"pgv2.percona.com/authorizeBackupRemoval”: "true"

}
s
"spec”: {
"backups": {
"enabled": false

}
}

}' -n <namespace>

Warning

After you apply this configuration and disable backups, the Operator deletes the repo-host PVC. Thus, all data that
was stored in that PVC will be deleted too. The backups stored on the cloud backup storage remain.

Re-enable backups

To re-enable backups for a running cluster, do the following:

1. Remove the annotation pgv2.percona.com/authorizeBackupRemoval:"true"

Page 177

S kubectl annotate pg clusterl1 pgv2.percona.com/authorizeBackupRemoval-

2. Apply the patch to your running cluster and enable backups:

S kubectl patch pg cluster1l --type merge \
-p A
"spec": {
"backups": {
"enabled": true
}
}
y!

Page 178

High availability and scaling

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an
application scaling. Scaling an application results in adding resources or Pods and scheduling them to
available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to
PostgreSQL nodes; horizontal scaling is about adding more nodes to the cluster. High availability looks
technically similar, because it also involves additional nodes, but the reason is maintaining liveness of the
system in case of server or network failures.

Vertical scaling

Scale compute

There are multiple components that the Operator deploys and manages: PostgreSQL instances,
pgBouncer connection pooler, pgBackRest and others (See Architecture for the full list of components.)

You can manage compute resources for a specific component using the corresponding section in the
Custom Resource manifest. We follow the structure for requests and limits [4 that Kubernetes provides.

The most common resources to specify are CPU and memory (RAM).

You can specify a request for CPU or memory for a component’s Pod. In this case, the Kubernetes
scheduler uses these values to decide on which Kubernetes node to place the Pod, ensuring the node has
at least the requested resources available. The Pod will only be scheduled on a node that can satisfy all its
resource requests.

If you specify a limit for the resources, this is the maximum amount of CPU or memory the container is
allowed to use. If the container tries to use more than the limit, it may be throttled (for CPU) or terminated
(for memory).

You can set both requests and limits inthe resources section of your Custom Resource. For
example:

Page 179

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

spec:

instances:

- name: instancel
replicas: 3
resources:

requests:
cpu: 1.0
memory: 2Gi
limits:
cpu: 2.0
memory: 4Gi

If you only set 1imits and omit requests, Kubernetes will default the request to the limit value.

Use our reference documentation for the Custom Resource options for more details about other

components.

Scale storage

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the
administrator, and a PersistentVolumeClaim (PVC), a request for storage from a user. In Kubernetes v1.11
the feature was added to allow a user to increase the size of an existing PVC object (considered stable
since Kubernetes v1.24). The user cannot shrink the size of an existing PVC object.

Scaling with Volume Expansion capability

Certain volume types support PVCs expansion (exact details about PVCs and the supported volume types
can be found in Kubernetes documentation [4).

You can run the following command to check if your storage supports the expansion capability:

S kubectl describe sc <storage class name> | grep AllowVolumeExpansion

H Expected output v

AllowVolumeExpansion: true

The Operator versions 2.5.0 and higher will automatically expand such storage for you when you change
the appropriate options in the Custom Resource.

For example, you can do it by editing and applying the deploy/cr.yaml file:

Page 180

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims

spec:
instances:

dataVolumeClaimSpec:
resources:
requests:
storage: <NEW STORAGE SIZE>

Apply changes as usual:
$ kubectl apply -f cr.yaml

Automated scaling with auto-growable disk

The Operator 2.5.0 and newer is able to detect if the storage usage on the PVC reaches a certain
threshold, and trigger the PVC resize. Such autoscaling needs the upstream “auto-growable disk” feature
turned on when deploying the Operator. This is done via the PGO_FEATURE_GATES environment variable
set in the deploy/operator.yaml manifest (or in the appropriate part of deploy/bundle.yaml):

subjects:
- kind: ServiceAccount
name: percona-postgresql-operator
namespace: pg-operator
spec:
containers:
- env:

- name: PGO_FEATURE_GATES
value: "AutoGrowVolumes=true"

When the support for auto-growable disks is turned on, the auto grow will be working automatically if the
maximum value available for the Operator to scale up is set in the
spec.instances|[].dataVolumeClaimSpec.resources.limits.storage Custom Resource option:

Page 181

spec:
instances:

dataVolumeClaimSpec:
resources:
requests:
storage: 161
limits:
storage: 5Gi

High availability

Percona Operator allows you to deploy highly-available PostgreSQL clusters. High-availability
implementation is based on the Patroni template, which uses PostgreSQL streaming replication. The
cluster includes a number of replicas, one of which is a primary PostgreSQL instance: it is available for
writes, and streams changes to other replicas (standby servers in terms of PostgreSQL). Streaming
replication used in this configuration is asynchronous by default, which means transferring data to a
different instance without waiting for a confirmation of its receiving. Alternatively, a synchronous
replication can be used, where the data transfer waits for a confirmation of its successful processing on
the standby. If the primary server crashes then some transactions that were committed may not have
been replicated to the standby server, causing data loss (the amount of data loss is proportional to the
replication delay at the time of failover). Synchronous replication is slower but minimizes the data loss
possibility in case if the primary server crash.

There are two ways how to control the number replicas in your HA cluster:

1. Through changing spec.instances.replicas value

2. By adding new entry into spec.instances

Using spec.instances.replicas
For example, you have the following Custom Resource manifest:

spec:

instances:
- name: instancel
replicas: 2

This will provision a cluster with two nodes - one Primary and one Replica. Add the node by changing the
manifest...

Page 182

spec:

instances:
- name: instancel
| replicas: 3

...and applying the Custom Resource:

$ kubectl apply -f deploy/cr.yaml

The Operator will provision a new replica node. It will be ready and available once data is synchronized
from Primary.

Using spec.instances

Each instance’s entry has its own set of parameters, like resources, storage configuration, sidecars, etc.
When you add a new entry into instances, this creates replica PostgreSQL nodes, but with a new set of
parameters. This can be useful in various cases:

e Test or migrate to new hardware
e Blue-green deployment of a new configuration

e Try out new versions of your sidecar containers

For example, you have the following Custom Resource manifest:

spec:

instances:
- name: instancel
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

Now you have a goal to migrate to new disks, which are coming with the new-ssd storage class. You can
create a new instance entry. This will instruct the Operator to create additional nodes with the new
configuration keeping your existing nodes intact.

Page 183

spec:

instances:
- name: instancel
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi
- name: instance2
replicas: 2
dataVolumeClaimSpec:
storageClassName: new-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

Using Synchronous replication

Synchronous replication offers the ability to confirm that all changes made by a transaction have been
transferred to one or more synchronous standby servers. When requesting synchronous replication, each
commit of a write transaction will wait until confirmation is received that the commit has been written to
the write-ahead log on disk of both the primary and standby server. The drawbacks of synchronous
replication are increased latency and reduced throughput on writes.

You can turn on synchronous replication by customizing the patroni.dynamicConfiguration Custom
Resource option.

¢ Enable synchronous replication by setting synchronous_mode option to on.

e Use synchronous_node_count option to set the number of replicas (PostgreSQL standby servers)
which should operate in syncrhonous mode (the default value is 1).

The result in your deploy/cr.yaml manifest may look as follows:

patroni:
dynamicConfiguration:

synchronous_mode: "on
synchronous_node_count: 2

Page 184

You will have the desired amount of replicas switched to synchronous replication after applying changes
as usual, with kubectl apply -f deploy/cr.yaml command.

Find more options useful to tune how your database cluster should operate in synchronous mode in the
official Patroni documentation (7.

Page 185

https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode

Using sidecar containers

Sidecar containers are extra containers that run alongside the main container in a Pod. They are often
used for logging, proxying, or monitoring.

The Operator uses a set of “predefined” sidecar containers to manage the cluster operation:

e replica-cert-copy -isresponsible for copying TLS certificates needed for replication between
PostgreSQL instances

e pgbouncer-config - handles configuration management for pgBouncer

pgbackrest -runs the main backup/restore agent

pgbackrest-config - handles configuration management for pgBackRest

The Operator allows you to deploy your own sidecar containers to the Pod. You can use this feature to run
debugging tools, some specific monitoring solutions, etc.

o Note

Custom sidecar containers can easily access other components of your cluster [4. Therefore use them with caution,

only when you are sure what you are doing.

Adding a custom sidecar container

You can add sidecar containers to these Pods:

e a PostgreSQL instance Pod

e apgBouncer Pod

To add a sidecar container, use the instances.sidecars or proxy.pgBouncer.sidecars subsection in
the deploy/cr.yaml configuration file. Specify this minimum required information in this subsection:

¢ the container name
¢ the container image

e acommand to run

Note that you cannot reuse the name of the predefined containers. For example, PostgreSQL instance
Pods cannot have custom sidecar containers named as database, pgbackrest, pgbackrest-config,

and replica-cert-copy.

Use the kubectl describe pod command to check which names are already in use.

Page 186

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication
https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

Here is the sample configuration of a sidecar container for a PostgreSQL instance Pod:

spec:
instances:
- name: instancel

sidecars:
- image: busybox:latest
command: ["sleep", "306d"]
args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; sleep
5: done"]
name: my-sidecar-1

Find additional options suitable for the sidecars subsection in the Custom Resource options reference
and the Kubernetes Workload API reference [

Apply your modifications as usual:
$ kubectl apply -f deploy/cr.yaml

Running kubectl describe command for the appropriate Pod can bring you the information about the
newly created container:

$ kubectl describe pod clusterl-instance1

Page 187

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#container-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#container-v1-core

H Expected output v
Name: cluster1-instance1-n8v4-0
Containers:
testcontainer:
Container ID: containerd://c2a9dc1057ba30ac25d73e1856d99c04e49fd0942a03501405904510bc15cf5b
Image: nginx:latest
Image ID:
docker.io/library/nginx@sha256:dc53c8f25a10f9109190ed5b59bda2d707a3bdeBe45857ce9elefaa32ff9ch
il
Port: <none>
Host Port: <none>
Command :
sleep
3ed
State: Running
Started: Thu, 26 Jun 2025 18:13:05 +0200
Ready: True
Restart Count: ©
Environment: <none>
Mounts:
/tmp from tmp (rw)
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-5157g (ro)

Getting shell access to a sidecar container

You can login to your sidecar container as follows:

$ kubectl exec -it clusterl-instanceln8v4-0 -c testcontainer -- sh
/ #

Page 188

Pause/resume and standby mode for a
PostgreSQLl cluster

Pause and resume

Sometimes you may need to temporarily shut down (pause) your cluster and restart it later, such as during
maintenance.

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully stops
the cluster:

To start the cluster after it was paused, revert the spec.pause keyto false.
Troubleshooting tip

If you're pausing the cluster when there is a running backup, the Operator won't pause it for you. It will
print a warning about running backups. In this case delete a running backup job and retry.

Put in standby mode

You can also put the cluster into a standby [(read-only) mode instead of completely shutting it down.
This is done by a special spec.standby key. Setitto true for read-only state. To resume the normal

cluster operation, setitto false.

* T yaml
spec:

standby: false

Page 189

https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html

Monitor with Percona Monitoring and
Management (PMM)

In this section you will learn how to monitor the health of Percona Distribution for PostgreSQL with
Percona Monitoring_.and Management (PMM)_(4.

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you provide.
For PMM 2, the Operator uses API keys for authentication. For PMM 3, it uses service account tokens.

We recommend to use the latest PMM 3.

PMM is a client/server application. It includes the PMM Server [4 and the number of PMM Clients [4
running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you connect
to the PMM Server to see database metrics on a number of dashboards. PMM Server and PMM Client are

installed separately.

Considerations

1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you are
using PMM server version 3, use a PMM client image compatible with PMM 3. Check Percona

certified images for the right one.

2. If you specified both authentication methods for PMM server configuration and they have non-empty
values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation [4. Also check the Automatic
migration of APl keys [4 page.

Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual
appliance, or in Kubernetes. Please refer to the official PMM documentation [4 for the installation

instructions.

Install PMM Client

Page 190

https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html

PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based
environment. To install PMM Client, do the following:

Configure authentication

Page 191

PMM3

PMM3 uses Grafana service accounts to control access to PMM server components and resources. To
authenticate in PMM server, you need a service account token. Generate a service account and token [4.

Specify the Admin role for the service account.

A Warning

When you create a service account token, you can select its lifetime: it can be either a permanent token that never
expires or the one with the expiration date. PMM server cannot rotate service account tokens after they expire. So you

must take care of reconfiguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server [4. The API key must have the role “Admin”. You need this key to
authorize PMM Client within PMM Server.

Is® From PMM Ul

(Generate the PMM API key [J)

From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and

hostname in the following command:

§ API_KEY=S$(curl --insecure -X POST -H "Content-Type: application/json" -d
"{"name" :"operator"”, "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

A Warning

The API key is not rotated.

Create a secret

Now you must pass the credentials to the Operator. To do so, create a Secret object.

Page 192

https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

1. Create a Secret configuration file. You can use the deploy/secrets.yaml [4 secrets file.

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN value in the secrets file:

apiVersion: v
kind: Secret
metadata:
name: cluster1-pmm-secret
type: Opaque
stringData:
PMM_SERVER_TOKEN: ""

PMM 2

Specify the APl key as the PMM_SERVER_KEY value in the secrets file:

apiVersion: v
kind: Secret
metadata:
name: cluster1-pmm-secret
type: Opaque
stringData:
PMM_SERVER_KEY: ""

2. Create the Secrets object using the deploy/secrets.yaml file.

S kubectl apply -f deploy/secrets.yaml -n postgres-operator

H Expected output

secret/cluster1-pmm-secret created

Deploy a PMM Client

1. Update the pmm section in the deploy/cr.yaml (7 file.

e Set pmm.enabled=true.

Page 193

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

e Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The PMM
Server IP address should be resolvable and reachable from within your cluster.
¢ Specify the name of the Secret object that you created earlier
pmm :
enabled: true
image: percona/pmm-client:3.3.0
imagePullPolicy: IfNotPresent

secret: cluster1-pmm-secret
serverHost: monitoring-service

2. Update the cluster
S kubectl apply -f deploy/cr.yaml -n postgres-operator

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there

are errors on the previous steps:

S kubectl get pods -n postgres-operator
S kubectl logs <pod_name> -c pmm-client

Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text
format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If you
want to update the password field, you need to encode the new password into the base64 format and pass

it to the Secrets Object.

To encode a password or any other parameter, run the following command:

6 Linux

$ echo -n "password" | base64 --wrap=0
" macO0S
$ echo -n "password" | base64

For example, to set the new service account token in the my-cluster-name-secrets object, do the

following:

Page 194

A Linux

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
"S(echo -n <new-token> | base64 --wrap=0)'}}"

" macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'$(echo -n <new-token> | base64)'}}’

Check the metrics

Let’s see how the collected data is visualized in PMM.

a Log in to PMM server.
6 Click &} PostgreSQL from the left-hand navigation menu. You land on the Instances Overview page.

9 Click G} PostgreSQL - Other dashboards to see the list of available dashboards that allow you to drill
down to the metrics you are interested in.

Page 195

How-to

Page 196

Install Percona Distribution for PostgreSQL with
customized parameters

You can customize the configuration of Percona Distribution for PostgreSQL and install it with customized

parameters.

To check available configuration options, see deploy/cr.yaml [and Custom Resource Options.

kubectl

To customize the configuration when installing with kubectl, do the following:
1. Clone the repository with all manifests and source code by executing the following command:
S git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
2. Edit the required options and apply your modified deploy/cr.yaml file as follows:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

#ih Helm

To install Percona Distribution for PostgreSQL with custom parameters using Helm, use the following

command:
$ helm install --set key=value

You can pass any of the Operator’s Custom Resource options as a --set key=value[, key=value]

argument.

The following example deploys a PostgreSQL 17.5.2 based cluster in the my-namespace namespace, with
enabled Percona Monitoring and Management (PMM)_I'_,’:

$ helm install my-db percona/pg-db --version 2.7.0 --namespace my-namespace \
--set postgresVersion=17.5.2 \
--set pmm.enabled=true

Page 197

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.7.0/deploy/cr.yaml
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://docs.percona.com/percona-monitoring-and-management/2/index.html
https://docs.percona.com/percona-monitoring-and-management/2/index.html

How to run initialization SQL commands at
cluster creation time

The Operator can execute a custom sequence of PostgreSQL commands when creating the databse
cluster. This sequence can include both SQL commands and meta-commands of the PostgreSQL
interactive shell (psql). This feature may be useful to push any customizations to the cluster: modify user
roles, change error handling, set and use variables, etc.

psql interactive terminal will execute [4 these initialization statements when the cluster is created, after
creating_custom users and databases specifed in the Custom Resource.

To set SQL initialization sequence you need creating a special ConfigMap [4 with it, and reference this
ConfigMap in the databaseInitSQL subsection of your Custom Resource options.

The following example uses initialization SQL command to add a new role to a PostgreSQL database
cluster:

1. Create YAML manifest for the ConfigMap as follows:
my_init.yaml

apiVersion: v
kind: ConfigMap
metadata:
name: cluster1-init-sql
namespace: postgres-operator
data:
init.sql: CREATE ROLE someonenew WITH createdb superuser login password
‘someonenew' ;

The namespace field should point to the namespace of your database cluster, and the init.sql key
contains the sequence of commands, which will be passed to the psql.

Create the ConfigMap by applying your manifest:
$ kubectl apply -f my_init.yaml

2. Update the databaseInitSQL part of the deploy/cr.yaml Custom Resource manifest as follows:

Page 198

https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

databaseInitSQL:
key: init.sql
name: cluster1-init-sql

Now, SQL commands will be executed when you create the cluster by apply the manifest:
S kubectl apply -f deploy/cr.yaml -n postgres-operator

The psql command is executed the standard input and the file flag (psql -f -). If the command returns
0 exit code, SQL will not be run again. When psql returns with an error exit code, the Operator will continue
attempting to execute it as part of its reconcile loop until success. You can fix errors in the SQL sequence,
for example by interactive kubectl edit configmap clusteri1-init-sql -n postgres-namespace
command.

6 Note

You can use following psql meta-command to make sure that any SQL errors would make psql to return the error code:

\set ON_ERROR_STOP
\echo Any error will lead to exit code 3

Page 199

Deploy a standby cluster for Disaster
Recovery

Page 200

How to deploy a standby cluster for Disaster
Recovery

Disaster recovery is not optional for businesses operating in the digital age. With the ever-increasing
reliance on data, system outages or data loss can be catastrophic, causing significant business
disruptions and financial losses.

With multi-cloud or multi-regional PostgreSQL deployments, the complexity of managing disaster recovery
only increases. This is where the Percona Operators come in, providing a solution to streamline disaster
recovery for PostgreSQL clusters running on Kubernetes. With the Percona Operators, businesses can
manage multi-cloud or hybrid-cloud PostgreSQL deployments with ease, ensuring that critical data is
always available and secure, no matter what happens.

Operators automate routine tasks and remove toil. For standby, the Percona Operator for PostgreSQL

version 2 provides the following options:

1. pgBackrest repo based standby. The standby cluster will be connected to a pgBackRest cloud repo, so
it will receive WAL files from the repo and apply them to the database.

2. Streaming_replication. The standby cluster will use an authenticated network connection to the

primary cluster to receive WAL records directly.

3. Combination of (1) and (2). The standby cluster is configured for both repo-based standby and
streaming replicaton. It bootstraps from the pgBackRest repo and continues to receive WAL files as
they are pushed to the repo, and can also directly receive them from primary. Using this approach
ensures the cluster will still be up to date with the pgBackRest repo if streaming falls behind.

Page 201

Standby cluster deployment based on
pgBackRest

The pgBackRest repo-based standby is the simplest one. The following is the architecture diagram:

~
Operator Operator
O O- E -0 O
a pgBackRest pgBackRest e
DB Pods Backup storage DB Pods
cluster1 cluster2 (standby)
_ J _ J

pgBackrest repo based standby

1. This solution describes two Kubernetes clusters in different regions, clouds or running in hybrid mode
(on-premises and cloud). One cluster is Main and the other is Disaster Recovery (DR)

2. Each cluster includes the following components:
a. Percona Operator
b. PostgreSQL cluster
c. pgBackrest
d. pgBouncer
3. pgBackrest on the Main site streams backups and Write Ahead Logs (WALSs) to the object storage

4. pgBackrest on the DR site takes these backups and streams them to the standby cluster

Deploy disaster recovery for PostgreSQL on Kubernetes

Page 202

Configure Main site

1. Deploy the Operator using_your favorite method. Once installed, configure the Custom Resource

manifest, so that pgBackrest starts using the Object Storage of your choice. Skip this step if you
already have it configured.

2. Configure the backups.pgbackrest.repos section by adding the necessary configuration. The
below example is for Google Cloud Storage (GCS):

spec:
backups:
configuration:
- secret:
name: main-pgbackrest-secrets
pgbackrest:
repos:
- name: repol
gcs:
bucket: MY-BUCKET

The main-pgbackrest-secrets value contains the keys for GCS. Read more about the configuration
in the backup and restore tutorial.

3. Once configured, apply the custom resource:

S kubectl apply -f deploy/cr.yaml

H Expected output v

perconapgcluster.pg.percona.com/standby created

The backups should appear in the object storage. By default pgBackrest puts them into the
pgbackrest folder.

Configure DR site

The configuration of the disaster recovery site is similar to that of the Main site, with the only difference in

standby settings.

The following manifest has standby.enabled setto true and points to the repoName where backups
are (GCS in our case):

Page 203

metadata:
name: standby
spec:

backups:
configuration:
- secret:
name: standby-pgbackrest-secrets
pgbackrest:
repos:
- name: repol
gcs:
bucket: MY-BUCKET
standby:
enabled: true
repoName: repol

Deploy the standby cluster by applying the manifest:

S kubectl apply -f deploy/cr.yaml

H Expected output v

perconapgcluster.pg.percona.com/standby created

Page 204

Standby cluster deployment based on

streaming replication

The following diagram explains how the standby based on streaming replication works:

~

Operator Operator
Qo0 .0-

Primary Primary
Replica DB Pod DB Pod Replica
DB Pods DB Pods

Cluster 1 (Main) Cluster 2 (DR)
_ J \

1. This solution describes two Kubernetes clusters in different regions, clouds, data centers or even two
namespaces, or running in hybrid mode (on-premises and cloud). One cluster is Main site, and the

other is Disaster Recovery site (DR)

2. Each site supposedly includes Percona Operator and for sure includes PostgreSQL cluster.

3. In the DR site the cluster is in Standby mode

4. We set up streaming replication between these two clusters

Deploy disaster recovery for PostgreSQL on Kubernetes

Page 205

Configure Main site

1. Deploy the Operator using_your favorite method.

2. The Main cluster needs to expose it, so that standby can connect to the primary PostgreSQL instance.
To expose the primary PostgreSQL instance, use the spec.expose section:

spec:

expose:
type: ClusterIP

Use here a Service type of your choice. For example, ClusterIP is sufficient for two clusters in
different Kubernetes namespaces.

3. Once configured, apply the custom resource:

S kubectl apply -f deploy/cr.yaml -n main-pg

H Expected output v

perconapgcluster.pg.percona.com/standby created

The service that you should use for connecting to standby is called -ha (main-ha in my case):

main-ha ClusterIP 10.118.227.214 <none> 5432/TCP 163m

Configure DR site

To get the replication working, the Standby cluster would need to authenticate with the Main one. To get
there, both clusters must have certificates signed by the same certificate authority (CA). Default
replication user _crunchyrepl will be used.

In the simplest case you can copy the certificates from the Main cluster. You need to look out for two files:

e main-cluster-cert

e main-replication-cert

Copy them to the namespace where DR cluster is going to be running and reference under spec.secrets
(in the following example they were renamed, replacing “main” with “dr”):

Page 206

spec:
secrets:
customTLSSecret:
name: dr-cluster-cert
customReplicationTLSSecret:
name: dr-replication-cert

If you are generating your own certificates, just remember the following rules:

1. Certificates for both Main and Standby clusters must be signed by the same CA

2. customReplicationTLSSecret must have a Common Name (CN) setting that matches
_crunchyrepl, which is a default replication user.

You can find more about certificates in the TLS doc.

Apart from setting certificates correctly, you should also set standby configuration.

standby:
enabled: true
host: main-ha.main-pg.svc

e standby.enabled controls if it is a standby cluster or not

e standby.host must point to the primary node of a Main cluster. In this example it is a main-ha

Service in another namespace.

Deploy the standby cluster by applying the manifest:

$ kubectl apply -f dr-cr.yaml -n dr-pg

H Expected output v

perconapgcluster.pg.percona.com/standby created

Once both clusters are up, you can verify that replication is working.

1. Insert some data into Main cluster

2. Connect to the DR cluster

To connect to the DR cluster, use the credentials that you used to connect to Main. This also verifies that
the connection is working. You should see whatever data you have in the Main cluster in the Disaster

Recovery.

Page 207

Failover

In case of the Main site failure or in other cases, you can promote the standby cluster. The promotion
effectively allows writing to the cluster. This creates a net effect of pushing Write Ahead Logs (WALs) to
the pgBackrest repository. It might create a split-brain situation where two primary instances attempt to
write to the same repository. To avoid this, make sure the primary cluster is either deleted or shut down
before trying to promote the standby cluster.

Once the primary is down or inactive, promote the standby through changing the corresponding section:

spec:
standby:
enabled: false

Now you can start writing to the cluster.

Split brain

There might be a case, where your old primary comes up and starts writing to the repository. To recover
from this situation, do the following:

1. Keep only one primary with the latest data running

2. Stop the writes on the other one

3. Take the new full backup from the primary and upload it to the repo

Automate the failover

Automated failover consists of multiple steps and is outside of the Operator’s scope. There are a few
steps that you can take to reduce the Recovery Time Objective (RTO). To detect the failover we
recommend having the 3" site to monitor both DR and Main sites. In this case you can be sure that Main
really failed and it is not a network split situation.

Another aspect of automation is to switch the traffic for the application from Main to Standby after
promotion. It can be done through various Kubernetes configurations and heavily depends on how your
networking and application are designed. The following options are quite common:

1. Global Load Balancer - various clouds and vendors provide their solutions

2. Multi Cluster Services or MCS - available on most of the public clouds

3. Federation or other multi-cluster solutions

Page 208

Change the PostgreSQL primary instance

The Operator uses PostgreSQL high-availability implementation based on the Patroni template (4. This
means that each PostgreSQL cluster includes one member availiable for read/write transactions
(PostgreSQL primary instance, or leader in terms of Patroni) and a number of replicas which can serve
read requests only (standby members of the cluster).

You may wish to manually change the primary instance in your PostgreSQL cluster to achieve more
control and meet specific requirements in various scenarios like planned maintenance, testing failover
procedures, load balancing and performance optimization activities. Primary instance is re-elected during
the automatic failover (Patroni’s “leader race” mechanism), but still there are use cases to controll this
process manually.

In Percona Operator, the primary instance election can be controlled by the patroni.switchover section
of the Custom Resource manifest. It allows you to enable switchover targeting a specific PostgreSQL
instance as the new primary, or just running a failover if PostgreSQL cluster has entered a bad state.

This document provides instructions how to change the primary instance manually.

For the following steps, we assume that you have the PostgreSQL cluster up and running. The cluster
name is clusteri.

1. Check the information about the cluster instances. Cluster instances are defined in the

spec.instances Custom Resource section. By default you have one cluster instance named
instance1 with 3 PostgreSQL instances in it. You can check which cluster instances you have. Do
this using Kubernetes Labels as follows (replace the <namespace> placeholder with your value):

S kubectl get pods -n <namespace> -1 postgres-
operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instancel

H Sample output v
cluster1-instancel1-bmdp-0 4/4 Running © 2m23s clusteri-
instancel1-bmdp replica
cluster1-instancel-fm7w-0 4/4 Running © 2m22s clusteri-
instancel-fm7w replica
cluster1-instancel-ttm9-0 4/4 Running @ 2m22s clusteri-
instancel-ttm9 master

PostgreSQL primary is labeled as master, while other PostgreSQL instances are labeled as replica.

Page 209

https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements

. Now update the following options in the patroni.switchover subsection of the Custom Resource:

patroni:
switchover:
enabled: true
targetInstance: <instance-name>

You can do it with kubectl patch command, specifying the name of the instance that you want to
be the new primary. For example, let's set the cluster1-instancel-bmdp as a new PostgreSQL
primary:

S kubectl -n <namespace> patch pg clusterl --type=merge --patch '{
"spec": {
"patroni": {
"switchover": {
"enabled": true,
"targetInstance": "clusterl1-instancel-bmdp"
}
}
}
y!

. Trigger the switchover by adding the annotation to your Custom Resource. The recommended way is
to set the annotation with the timestamp, so you know when switchover took place. Replace the
<namespace> placeholder with your value:

$ kubectl annotate --overwrite -n <namespace> pg cluster1 postgres-
operator.crunchydata.com/trigger-switchover="$(date)"

The --overwrite flag in the above command allows you to overwrite the annotation if it already
exists (useful if that's not the first switchover you do).

. Verify that the cluster was annotated (replace the <namespace> placeholder with your value, as
usual):

$ kubectl get pg cluster1 -o yaml -n <namespace>

Page 210

H Sample output v
apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{....
"patroni":{"switchover":{"enabled":true, "targetInstance":"clusteri-instancel-
bmdp”}}, }
5. Now, check instances of your cluster once again to make sure the switchover took place:
S kubectl get pods -n <namespace> -1 postgres-
operator.crunchydata.com/cluster=cluster1 \
-L postgres-operator.crunchydata.com/instance \
-L postgres-operator.crunchydata.com/role | grep instancel
v

H Sample output

instancel-bmdp master
instancel-fm7w replica

instancel-ttm9 replica

clusteri1-instancel1-bmdp-0 4/4 Running 9 24m clusteri-
clusteri1-instancel-fm7w-0 4/4 Running 0 24m clusteri-

clusteri1-instancel1-ttm9-0 4/4 Running 9 23m clusteri-

6. Set patroni.switchover.enabled Custom Resource optionto false once the switchover is done:

$ kubectl -n <namespace> patch pg clusterl --type=merge --patch '{
"spec": {
"patroni”: {
"switchover": {
"enabled": false

Page 211

Use Docker images from a private registry

Using images from a private Docker registry may be required for privacy, security or other reasons. In
these cases, Percona Operator for PostgreSQL allows the use of a custom registry. The following example
illustrates how this can be done by the example of the Operator deployed in the OpenShift environment.

Prerequisites

1. First of all login to the OpenShift and create project.

$ oc login

Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin

Password:

Login successful.

$ oc new-project pg

Now using project "pg" on server "https://192.168.1.100:8443".

2. There are two things you will need to configure your custom registry access:

¢ the token for your user,

e your registry IP address.

The token can be found with the following command:

$ oc whoami -t
AD0O8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

And the following one tells you the registry IP address:

S kubectl get services/docker-registry -n default
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

3. Use the user token and the registry IP address to login to the registry:

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s
172.30.162.173:5000

Page 212

H Expected output v

Login Succeeded

4. Use the Docker commands to pull the needed image by its SHA digest:

$ docker pull docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fh4ab08554993748fde1e67b2f46f26b
fo

H Expected output v

Trying to pull repository docker.io/perconalab/percona-postgresql-operator ...
sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling from
docker.io/perconalab/percona-server-mongodb

Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab8554993748fde1e67b2f46f26bf0
Status: Image is up to date for docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

You can find correct names and SHA digests in the current list of the Operator-related images officially.
certified by Percona.

5. The following method can push an image to the custom registry for the example OpenShift pg
project:

S docker tag \

docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fbh4ab0554993748fde1e67b2f46f26b
fo \

172.30.162.173:5000/psmdb/percona-postgresql-operator:17.5.2
§ docker push 172.30.162.173:5000/pg/percona-postgresql-operator:17.5.2

6. Verify the image is available in the OpenShift registry with the following command:

S oc get is

H Expected output v
NAME DOCKER REPO
TAGS UPDATED
percona-postgresql-operator docker-registry.default.svc:5000/pg/percona-postgresql-
operator 17.5.2 2 hours ago

Page 213

7. When the custom registry image is available, edit the the image: optionin deploy/operator.yaml
configuration file with a Docker Repo + Tag string (it should look like docker-
registry.default.svc:5000/pg/percona-postgresql-operator:17.5.2)

6 Note

If the registry requires authentication, you can specify the imagePullSecrets option for all images.

8. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml file.

9. Now follow the standard Percona Operator for PostgreSQL installation instruction.

Page 214

Add custom PostgreSQL extensions

One of the specific PostgreSQL features is the ability to provide it with additional functionality via
Extensions [4. Percona Distribution for PostgreSQL supports a number of extensions [4, making this list

available for the database cluster managed by the Operator as well.

Still there are cases when the needed extension is not in this list, or when it's a custom extension
developed by the end-user. Adding more extensions is not an easy task in case of a containerized
database in Kubernetes-based environment, as normally it would make the user build a custom
PostgreSQL image.

Still, starting from the Operator version 2.3 there is an alternative way to extend Percona Distribution for
PostgreSQL by downloading prepackaged extensions from an external storage on the fly, as defined in the
extensions section of the Operator Custom Resource.

Enabling or disabling built-in extensions

You can enable or disable built-in extensions in the extensions.builtin section of your
deploy/cr.yaml file. Set an option to true to enable an extension, orto false to disable it. To see
which extensions are enabled by default, check the deploy/cr.yaml [4 Custom Resource manifest.

extensions:
builtin:
pg_stat_monitor: true
pg_audit: true

pgvector: false
pg_repack: false

Apply changes after editing with kubectl apply -f deploy/cr.yaml command. This causes the
Operator to restart the Pods of your cluster.

Adding custom extensions

Custom extensions are downloaded by the Operator from the cloud storage. User is in charge for properly
packaging extension and uploading it to the storage.

Packaging custom extensions

Page 215

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://docs.percona.com/postgresql/latest/extensions.html
https://docs.percona.com/postgresql/latest/extensions.html
https://docs.percona.com/postgresql/latest/extensions.html
https://github.com/percona/percona-postgresql-operator/blob/v2.7.0/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/v2.7.0/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/v2.7.0/deploy/cr.yaml

Custom extension needs specific packaging to make the Operator able using it. The package must be a

.tar.gz archive with all required files in a the correct directory structure.

1. Control file must be in SHAREDIR/extension directory

2. All required SQL script files must be in SHAREDIR/extension directory (there must be at least one

SQL script)

3. Any shared library must be in LIBDIR

c’ Note

and LIBDIR to /usr/pgsql-${PG_MAJOR}/1lib.

In case of Percona Distribution for PostgreSQL images, SHAREDIR corresponds to /usr/pgsql-${PG_MAJOR}/share

For example, the directory for pg_cron extension should look as follows:

$ tree ~/pg_cron-1.6.1/
/home/user/pg_cron-1.6.1/
L— usr
L— pgsql-15
I— 1ib
| L— pg_cron.so
L— share
L— extension
pg_cron--1.0--1.1.
pg_cron--1.0.sql
pg_cron--1.1--1.2.
pg_cron--1.2--1.3.
pg_cron--1.3--1.4.

pg_cron--1.5--1.6.
pg_cron.control

[TTTTTTTT

The archive must be created with usr at the root and the name must conform ${EXTENSION}-

pg${PG_MAJOR}-${EXTENSION_VERSION} :

$ cd pg_cron-1.6.1/

sql

sql
sql
sql

pg_cron--1.4--1.4-1.sql
pg_cron--1.4-1--1.5.sql

sql

$ tar -czf pg_cron-pg15-1.6.1.tar.gz usr/

Page 216

c’ Note

To understand which files are required for given extension could be not an easy task. One of the option to figure this out
would be building and installing the extension from source on a virtual machine with Percona Distribution for
PostgreSQL and copy all the installed files to the archive.

Configuring custom extension loading

When the extension is packaged, it should be uploaded to the cloud storage (for now, Amazon S3 is the
only supported storage type). When the upload is done, the needed access credentials for the cloud
storage should be placed in a Secret, and both the storage and extension details should be specified in the
Custom Resource to make the Operator download and install it.

1. Create the Secrets file with the credentials, which the Operator will need to access extensions stored
on the Amazon S3:

e the metadata.name key is the name which you will further use to refer your Kubernetes Secret,

e the data.AWS_ACCESS_KEY_ID and data.AWS_SECRET_ACCESS_KEY keys are base64-encoded
credentials used to access the storage (obviously these keys should contain proper values to make
the access possible).

Create the Secrets file with these base64-encoded keys as follows:
extensions-secret.yaml|

apiVersion: v

kind: Secret

metadata:
name: clusterl-extensions-secret

type: Opaque

data:
AWS_ACCESS_KEY_ID: <base64 encoded secret>
AWS_SECRET_ACCESS_KEY: <base64 encoded secret>

Page 217

0 Note

You can use the following command to get a base64-encoded string from a plain text one:
in Linux
For GNU/Linux:

$ echo -n 'plain-text-string' | base64 --wrap=0

in macOS
For Apple macOS:

S echo -n 'plain-text-string' | base64

Once the editing is over, create the Kubernetes Secret object as follows:

S kubectl apply -f extensions-secret.yaml

2. Storage credentials are specified in the Custom Resource extensions.storage subsection. The
appropriate fragment of the deploy/cr.yaml configuration file should look as follows:

extensions:
storage:
type: s3
bucket: pg-extensions
region: eu-central-1
endpoint: s3.eu-central-1.amazonaws.com

secret:
name: clusterl-extensions-secret

3. When the storage is configured, and the archive with the extension is already present in the
appropriate bucket, the extension itself can be specified to the Operator in the Custom Resource via
the deploy/cr.yaml configuration file as in the following example:

extensions:
custom:
- name: pg_cron
version: 1.6.1

Page 218

The installed extension will not be enabled by default. Enabling it in can be done for desired databases
using the CREATE EXTENSION statement:

CREATE EXTENSION pg_cron;

Also, some extensions (such as pg_cron) can be used only if added to shared_preload_libraries.
Users can do it via the deploy/cr.yaml configuration file as follows:

patroni:
dynamicConfiguration:
postgresql:
parameters:
shared_preload_libraries: pg_cron

Page 219

Percona Operator for PostgreSQL single-
namespace and multi-namespace
deployment

There are two design patterns that you can choose from when deploying Percona Operator for
PostgreSQL and PostgreSQL clusters in Kubernetes:

o Namespace-scope - one Operator per Kubernetes namespace,

o Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to configure Percona Operator for PostgreSQL for each scenario.

Namespace-scope

By default, Percona Operator for PostgreSQL functions in a specific Kubernetes namespace. You can

create one during the installation (like it is shown in the installation instructions) or just use the default

namespace. This approach allows several Operators to co-exist in one Kubernetes-based environment,

being separated in different namespaces:

Page 220

8-

Kubernetes API
4 I N\ [I)
Operator Operator
- Q0 0O0-0 0 -0
DB Pod 1 DB Pod 2 DB Pod N DB Pod 1 DB Pod N
percona-db-1 Namespace percona-db-2 Namespace
_ VRN J
. T

b1 o :
Q 0~ - @

Normally this is a recommended approach, as isolation minimizes impact in case of various failure
scenarios. This is the default configuration of our Operator.

Let's say you will use a Kubernetes Namespace called percona-db-1.
1. Clone percona-postgresql-operator repository:

$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
$ cd percona-postgresql-operator

2. Create your percona-db-1 Namespace (if it doesn’t yet exist) as follows:
S kubectl create namespace percona-db-1

3. Deploy the Operator using_[4 the following command:

Page 221

https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

S kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-1

4. Once Operator is up and running, deploy the database cluster itself:

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

You can deploy multiple clusters in this namespace.

Add more namespaces

What if there is a need to deploy clusters in another namespace? The solution for namespace-scope
deployment is to have more than one Operator. We will use the percona-db-2 namespace as an
example.

1. Create your percona-db-2 namespace (if it doesn't yet exist) as follows:

$ kubectl create namespace percona-db-2
2. Deploy the Operator:

S kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-2
3. Once Operator is up and running deploy the database cluster itself:

S kubectl apply -f deploy/cr.yaml -n percona-db-2

° Note

Cluster names may be the same in different namespaces.

Install the Operator cluster-wide

Sometimes it is more convenient to have one Operator watching for Percona Distribution for PostgreSQL
custom resources in several namespaces.

We recommend running Percona Operator for PostgreSQL in a traditional way, limited to a specific
namespace, to limit the blast radius. But it is possible to run it in so-called cluster-wide mode, one Operator
watching several namespaces, if needed:

Page 222

4)
— > <4 Pp Percona Operator for PostgreSQL
Kubernetes AP Operator Namespace (pg-operator)
U v,
(N\ N\
_> 6 e o 6 o e o
DB Pod 1 DB Pod 2 DB Pod DB Pod
Percona-db-1 Percona-db-2 percona-db-3
Namespace Namespace Namespace
- i J pace) L . Y

CSl
Storage
Area

P
Q 0xE0Q

— -

!
=

To use the Operator in such cluster-wide mode, you should install it with a different set of configuration
YAML files, which are available in the deploy folder and have filenames with a special cw- prefix: e.g.

deploy/cw-bundle.yaml.

While using this cluster-wide versions of configuration files, you should set the following information

there:

subjects.namespace option should contain the namespace which will host the Operator,

e WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-separated
list of the namespaces to be watched by the Operator, and the namespace in which the Operator
resides. If this key is set to a blank string, the Operator will watch only the namespace it runs in, which

would be the same as single-namespace deployment.

° Note

Installing the Operator cluster-wide on OpenShift via the the Operator Lifecycle Manager (OLM) requires making

different selections in the OLM web-based Ul instead of patching YAML files.

Page 223

The following simple example shows how to install Operator cluster-wide on Kubernetes.
1. Clone percona-postgresql-operator repository:

S git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
S cd percona-postgresql-operator

2. Let's say you will use pg-operator namespace for the Operator, and percona-db-1 namespace for
the cluster. Create these namespaces, if needed:

S kubectl create namespace pg-operator
S kubectl create namespace percona-db-1

3. Edit the deploy/cw-bundle.yaml configuration file to make sure it contains proper namespace
name for the Operator:

subjects:

- kind: ServiceAccount
name: percona-postgresql-operator
namespace: pg-operator

spec:
containers:
- env:

- name: WATCH_NAMESPACE
value: "pg-operator,percona-db-1"

4. Apply the deploy/cw-bundle.yaml file with the following command:
S kubectl apply --server-side -f deploy/cw-bundle.yaml -n pg-operator

Right now the operator deployed in cluster-wide mode will monitor all namespaces in the cluster,
either already existing or newly created ones.

5. Deploy the cluster in the namespace of your choice:

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

Verifying the cluster operation

Page 224

When creation process is over, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [, including the one with password for
default PostgreSQL user. This default user has the same login name as the cluster name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute <cluster_name>
with the name of your Percona Distribution for PostgreSQL Cluster). The default variant will be

cluster1-pguser-clusteri.

9 Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace>
--template="'{{.data.password | base64decode}}{{"\n"}}'

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will do
this, naming the new Pod pg-client:

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.5.2 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

a Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 usertoa cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusterl-
pgbouncer .postgres-operator.svc -p 5432 -U cluster1 cluster]

H Sample output v

psql (17.5.2)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Page 225

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Using PostgreSQL tablespaces with Percona
Operator for PostgreSQL

Tablespaces allow DBAs to store a database on multiple file systems within the same server and to
control where (on which file systems) specific parts of the database are stored. You can think about it as if
you were giving names to your disk mounts and then using those names as additional parameters when
creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory, and
Percona Operator for PostgreSQL is a good option to bring this to your Kubernetes environment when
needed.

Possible use cases

The most obvious use case for tablespaces is performance optimization. You place appropriate parts of
the database on fast but expensive storage and engage slower but cheaper storage for lesser-used
database objects. The classic example would be using an SSD for heavily-used indexes and using a large
slow HDD for archive data.

Of course, the Operator already provides you with traditional Kubernetes approaches to achieve this on a

per-Pod basis (Tolerations, etc.). But if you would like to go deeper and make such differentiation at the
level of your database objects (tables and indexes), tablespaces are exactly what you would need for that.

Another well-known use case for tablespaces is quickly adding a new partition to the database cluster
when you run out of space on the initially used one and cannot extend it (which may look less typical for
cloud storage). Finally, you may need tablespaces when migrating your existing architecture to the cloud.

Each tablespace created by Percona Operator for PostgreSQL corresponds to a separate Persistent
Volume, mounted in a container to the /tablespaces directory.

Page 226

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

4,4

Kubernetes API
4)
Operator
_> [X N J
DB Pod 1 DB Pod 2 DB Pod N
Percona Operator for PostgreSQL
Namespace
- J/
L » CSI

Tablespace Storages
for DB Pod N

Storage
Area
Network

Creating a new tablespace

Providing a new tablespace for your database in Kubernetes involves two parts:

1. Configure the new tablespace storage with the Operator,

2. Create database objects in this tablespace with PostgreSQL.

Page 227

The first part is done in the traditional way of Percona Operators, by modifying Custom Resource via the
deploy/cr.yaml configuration file. It has a special spec.tablespaceStorages section for tablespaces.

The example already present in deploy/cr.yaml shows how to create tablespace storage 1Gb in size
(you can see official Kubernetes documentation on Persistent Volumes for details):

spec:
instances:

tablespaceVolumes:
- name: user
dataVolumeClaimSpec:
accessModes:
- 'ReadWriteOnce’
resources:
requests:
storage: 16Gi1i

After you apply this by running the kubectl apply -f deploy/cr.yaml command, the new
/tablespaces/user/ mountpoint will appear for your database. Please take into account that if you add
your new tablespace to the already existing PostgreSQL cluster, it may take time for the Operator to create
Persistent Volume Claims and get Persistent Volumes actually mounted.

Now you should actually create your tablespace on this volume with the CREATE TABLESPACE
<tablespace name> LOCATION <mount point> command, and then create objects in it (of course, your
user should have appropriate CREATE privileges to make it possible):

CREATE TABLESPACE useri121
LOCATION '/tablespaces/user/data';

Now when the tablespace is created you can append TABLESPACE <tablespace_name> to your CREATE
SQL statements to implicitly create tables, indexes, or even entire databases in specific tablespace.

Let's create an example table in the already mentioned user121 tablespace:

CREATE TABLE products (
product_sku character(10),
quantity int,
manufactured_date timestamptz)

TABLESPACE useri121;

It is also possible to set a default tablespace with the SET default_tablespace =

<tablespace_name>; statement. It will affect all further CREATE TABLE and CREATE INDEX commands
without an explicit tablespace specifier, until you unset it with an empty string.

Page 228

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

As you can see, Percona Operator for PostgreSQL simplifies tablespace creation by carrying on all
necessary modifications with Persistent Volumes and Pods. The same would not be true for the deletion
of an already existing tablespace, which is not automated, neither by the Operator nor by PostgreSQL.

Deleting an existing tablespace

Deleting an existing tablespace from your database in Kubernetes also involves two parts:

¢ Delete related database objects and tablespace with PostgreSQL,

o Delete tablespace storage in Kubernetes.

To make tablespace deletion with PostgreSQL possible, you should make this tablespace empty (it is
impossible to drop a tablespace until all objects in all databases using this tablespace have been removed).
Tablespaces are listed in the pg_tablespace table, and you can use it to find out which objects are
stored in a specific tablespace. The example command for the lake tablespace will look as follows:

SELECT relname FROM pg_class WHERE reltablespace=(SELECT oid FROM pg_tablespace
WHERE spcname='user121');

When your tablespace is empty, you can log in to the PostgreSQL Primary instance as a superuser, and then
execute the DROP TABLESPACE <tablespace_name>; command.

Now, when the PostgreSQL part is finished, you can remove the tablespace entry from the
tablespaceStorages section (don’t forget to run the kubectl apply -f deploy/cr.yaml command
to apply changes).

Page 229

Delete Percona Operator for PostgreSQL

When cleaning up your Kubernetes environment (e.g., moving from a trial deployment to a production one,
or testing experimental configurations), you may need to remove some (or all) of the following objects:

e Percona Distribution for PosgreSQL cluster managed by the Operator
o Percona Operator for PostgreSQL itself

e Custom Resource Definition deployed with the Operator

Delete a database cluster

You can delete the Percona Distribution for PosgreSQL cluster managed by the Operator by deleting the
appropriate Custom Resource.

0 Note

There are two finalizers [4 defined in the Custom Resource, which define whether TLS-related objects and data volumes
should be deleted or preserved when the cluster is deleted.

e finalizers.percona.com/delete-ssl: if present, objects, created for SSL (Secret, certificate, and issuer) are

deleted when the cluster deletion occurs.

o finalizers.percona.com/delete-pvc: if present, Persistent Volume Claims [for the database cluster Pods are

deleted when the cluster deletion occurs.

Both finalizers are off by default in the deploy/cr.yaml configuration file, and this allows you to recreate the cluster
without losing data, credentials for the system users, etc.

Here's a sequence of steps to follow:

0 List Custom Resources, replacing the <namespace> placeholder with your namespace.

S kubectl get pg -n <namespace>

E Sample output v
NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

Page 230

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

e Delete the Custom Resource with the name of your cluster (for example, let's use the default
cluster1 name).

$ kubectl delete pg cluster1 -n <namespace>

H Sample output

perconapgcluster.pgv2.percona.com "cluster1" deleted

e Check that the cluster is deleted by listing the available Custom Resources once again.

S kubectl get pg -n <namespace>

E Sample output

No resources found in <namespace> namespace.

Delete the Operator

You can uninstall the Operator by deleting the Deployments [4 related to it.

ﬂ List the deployments. Replace the <namespace> placeholder with your namespace.

$ kubectl get deploy -n <namespace>

H Sample output

NAME READY UP-TO-DATE AVAILABLE AGE
percona-postgresql-operator 1/1 1 1 13m

e Delete the percona-* deployment

S kubectl delete deploy percona-postgresgl-operator -n <namespace>

Page 231

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

e Check that the Operator is deleted by listing the Pods. As a result you should have no Pods related to
it.

$ kubectl get pods -n <namespace>

H Sample output v

No resources found in <namespace> namespace.

Delete Custom Resource Definition

If you are not just deleting the Operator and PostgreSQL cluster from a specific namespace, but want to
clean up your entire Kubernetes environment, you can also delete the CustomRecourceDefinitions (CRDs),
.

A Warning

CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you shouldn't
delete CRD if you still have the Operator and database cluster in some namespace.

You can delete CRD as follows:

ﬂ List the CRDs:

$ kubectl get crd

Page 232

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

B Sample output

customresourcedefinition.apiextensions.k8s.io "perconapgbackups.pgv2.percona.com"

deleted

customresourcedefinition.apiextensions.k8s.io "perconapgclusters.pgv2.percona.com"

deleted

customresourcedefinition.apiextensions.k8s.io "perconapgrestores.pgv2.percona.com"”

deleted

E Sample output v
allowlistedv2workloads.auto.gke.io 2023-09-07T14:15:30Z
allowlistedworkloads.auto.gke.io 2023-09-07T14:15:297Z
audits.warden.gke.io 2023-09-07T14:15:327
backendconfigs.cloud.google.com 2023-09-07T14:15:412
capacityrequests.internal.autoscaling.gke.io 2023-09-07T14:15:25Z
frontendconfigs.networking.gke.io 2023-09-07T14:15:41Z
managedcertificates.networking.gke.io 2023-09-07T14:15:412
memberships.hub.gke.io 2023-09-07T14:15:30Z
perconapgbackups.pgv2.percona.com 2023-09-07T14:28:59Z
perconapgclusters.pgv2.percona.com 2023-09-07T14:29:02Z
perconapgrestores.pgv2.percona.com 2023-09-07T14:29:03Z
postgresclusters.postgres-operator.crunchydata.com 2023-09-07T14:29:06Z
serviceattachments.networking.gke.io 2023-09-07T14:15:44Z
servicenetworkendpointgroups.networking.gke.io 2023-09-07T14:15:43Z
storagestates.migration.k8s.io 2023-09-07T14:15:53Z
storageversionmigrations.migration.k8s.io 2023-09-07T14:15:53Z
updateinfos.nodemanagement.gke.io 2023-09-07T14:15:55Z
volumesnapshotclasses.snapshot.storage.k8s.io 2023-09-07T14:15:52Z
volumesnapshotcontents.snapshot.storage.k8s.io 2023-09-07T14:15:52Z
volumesnapshots.snapshot.storage.k8s.io 2023-09-07T14:15:527

9 Now delete the percona*.pgv2.percona.com CRDs:
S kubectl delete crd perconapgbackups.pgv2.percona.com
perconapgclusters.pgv2.percona.com perconapgrestores.pgv2.percona.com
v

Page 233

Monitor Kubernetes

Monitoring the state of the database is crucial to timely identify and react to performance issues. Percona
Monitoring_.and Management (PMM)_solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it's
important to have metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has been
tested with the PMM Server [4 as the centralized data storage and the Victoria Metrics Kubernetes
monitoring stack as the metrics collector. These steps may also apply if you use another Prometheus-
compatible storage.

Pre-requisites

To set up monitoring of Kubernetes, you need the following:

1. PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or on an
AWS instance. Please refer to the official PMM documentation [for the installation instructions.

2. Helm v3 [4.

3. kubectl (7.

4. The PMM Server API key. The key must have the role “Admin”.
Get the PMM API key:

Page 234

https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

58 From PMM UI

(Generate the PMM API key [4)

From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password, and

hostname in the following command:

S API_KEY=$§(curl --insecure -X POST -H "Content-Type: application/json" -d
"name"” :"operator”, "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

° Note

The API key is not rotated.

Install the Victoria Metrics Kubernetes monitoring stack

Page 235

https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

ik Quick install

1. To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the quick
install command. Replace the following placeholders with your values:

e API-KEY - The API key of your PMM Server

e PMM-SERVER-URL - The URL to access the PMM Server

e UNIQUE-K8s-CLUSTER-IDENTIFIER - Identifier for the Kubernetes cluster. It can be the name you
defined during the cluster creation.

You should use a unique identifier for each Kubernetes cluster. The use of the same identifer for more
than one Kubernetes cluster will result in the conflicts during the metrics collection.

e NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If you
haven't created the namespace before, it will be created during the command execution.

We recommend to use a separate namespace like monitoring-system.

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-install.sh | bash -s -
- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id
<UNIQUE-K8s-CLUSTER-IDENTIFIER> --namespace <NAMESPACE>

6 Note

The Prometheus node exporter is not installed by default since it requires privileged containers with the access to
the host file system. If you need the metrics for Nodes, add the --node-exporter-enabled flag as follows:

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/quick-install.sh | bash -s -- --api-key
<API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-CLUSTER-
IDENTIFIER> --namespace <NAMESPACE> --node-exporter-enabled

24 Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

¢ Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics
Operator. Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled and
vmcluster.enabled parameters setto false in this setup.

e Check all the role-based access control (RBAC) rules [4 of the victoria-metrics-k8s-stack chart

and the dependencies chart, and modify them based on your requirements.

Page 236

https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/
https://helm.sh/docs/topics/rbac/

Configure authentication in PMM

To access the PMM Server resources and perform actions on the server, configure authentication.
1. Encode the PMM Server API key with base64.
g})Unux
$ echo -n <API-key> | base64 --wrap=0
" macOS

S echo -n <API-key> | base64

2. Create the Namespace where you want to set up monitoring. The following command creates the
Namespace monitoring-system. You can specify a different name. In the latter steps, specify your
namespace instead of the <namespace> placeholder.

S kubectl create namespace monitoring-system

3. Create the YAML file for the Kubernetes Secrets [and specify the base64-encoded API key value
within. Let’s name this file pmm-api-vmoperator.yaml.

pmm-api-vmoperator.yaml

apiVersion: v
data:
api_key: <base-64-encoded-API-key>
kind: Secret
metadata:
name: pmm-token-vmoperator
#namespace: default
type: Opaque

4. Create the Secrets object using the YAML file you created previously. Replace the <filename>
placeholder with your value.

S kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>
5. Check that the secret is created. The following command checks the secret for the resource named

pmm-token-vmoperator (as defined in the metadata.name option in the secrets file). If you defined
another resource name, specify your value.

Page 237

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

S kubectl get secret pmm-token-vmoperator -n <namespace>

Create a ConfigMap to mount for kube-state-metrics

The kube-state-metrics _(KSM)_I'_’,' is a simple service that listens to the Kubernetes API server and
generates metrics about the state of various objects - Pods, Deployments, Services and Custom
Resources.

To define what metrics the kube-state-metrics should capture, create the ConfigMap [4 and mount it
to a container.

Use the example configmap.yaml _configuration file [4 to create the ConfigMap.

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/ksm-configmap.yaml -n
<namespace>

As a result, you have the customresource-config-ksm ConfigMap created.

Install the Victoria Metrics Kubernetes monitoring stack

1. Add the dependency repositories of victoria-metrics-k8s-stack [4 chart.

S helm repo add grafana https://grafana.github.io/helm-charts
S helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

2. Add the Victoria Metrics Kubernetes monitoring stack repository.

S helm repo add vm https://victoriametrics.github.io/helm-charts/
3. Update the repositories.

S helm repo update

4. Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the following
configuration:

o the URL to access the PMM server in the externalVM.write.url option in the format <PMM-
SERVER-URL>/victoriametrics/api/v1/write. The URL can contain either the IP address or
the hostname of the PMM server.

e the unique name or an ID of the Kubernetes cluster in the
vmagent.spec.externallLabels.k8s_cluster_id option. Ensure to set different values if you

Page 238

https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack
https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack

are sending metrics from multiple Kubernetes clusters to the same PMM Server.

e the <namespace> placeholder with your value. The Namespace must be the same as the
Namespace for the Secret and ConfigMap

{.bash data-prompt="$" }
$ helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/values.yaml \
--set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write \
--set vmagent.spec.externallLabels.k8s_cluster_id=<UNIQUE-CLUSTER-
IDENTIFER/NAME> \

-N <namespace>

To illustrate, say your PMM Server URL is https://pmm-example.com, the cluster ID is test-
cluster and the Namespace is monitoring-system. Then the command would look like this:

“*{bash .no-copy } $ helm install vm-k8s vm/victoria-metrics-k8s-stack \ -f
https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-k8s-
stack/values.yaml \ —set externalVM.write.url=https://pmm-
example.com/victoriametrics/api/v1/write \ —set vmagent.spec.externalLabels.k8s_cluster_id=test-

cluster \ -n monitoring-system

Validate the successful installation

$ kubectl get pods -n <namespace>

H Sample output v
vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs 1/1 Running ©
28m
vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n 1/1 Running ©
28m
vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx 2/2 Running ©
28m

What Pods are running depends on the configuration chosen in values used while installing victoria-

metrics-k8s-stack chart.

Verify metrics capture

Page 239

1. Connect to the PMM server.
2. Click Explore and switch to the Code mode.
3. Check that the required metrics are captured, type the following in the Metrics browser dropdown:

e cadvisor [4:
@ Explore < Metrics v

A (Metrics) ® 0 © w
Query patterns v Explain Builder Code

Metrics browser > container_
5] blkio_device_usage_total
> Options Legend: Auto Formai ® cpu_cfs_periods_total
D cpu_cfs_throttled_periods_total
+ Add query O Query histc D cpu_cfs_throttled_seconds_total
cpu_load_average_10s
cpu_system_seconds_total
cpu_usage_seconds_total
cpu_user_seconds_total
file_descriptors
fs_inodes_free

fs_inodes_total

N
N
N
N
N,
@
@
@

fs_io_current

container_blkio_device_usage_total :

e kubelet:

Page 240

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

® Explore < Metrics S v

A (Metrics) ® 0 © W
Query patterns v Explain @ Builder ~Code

Metrics browser > kubelet_

@ kubelet_certificate_manager_server_rotation_seconds_bu..
> Options Legend: Auto Forl ¢ kubelet_certificate_manager_server_rotation_seconds_co..

@ kubelet_certificate_manager_server_rotation_seconds_sum

+ Add query 9 Query hi: @ kubelet_certificate_manager_server_ttl_seconds

@ kubelet_cgroup_manager_duration_seconds_bucket

@ kubelet_cgroup_manager_duration_seconds_count

@ kubelet_cgroup_manager_duration_seconds_sum

@ kubelet_container_log_filesystem_used_bytes

@ kubelet_containers_per_pod_count_bucket

@ kubelet_containers_per_pod_count_count

@ kubelet_containers_per_pod_count_sum

@ kubelet_graceful_shutdown_end_time_seconds

kubelet_certificate_manager_server_rotation_seconds_b

ucket :

e kube-state-metrics [4 metrics that also include Custom resource metrics for the Operator and
database deployed in your Kubernetes cluster:

® Explore Metrics S v

A (Metrics) ®@ 0 @ w
Query patterns v Explain @ Builder ~Code

Metrics browser > kube_pg
@ kube_pg_info

> Options Legend: Auto Fol ¢ kube_pg_status_pgbouncer_replicas
@ kube_pg_status_pgbouncer_replicas_ready

+ Add query o) Query h @ kube_pg_status_postgres_replicas

@ kube_pg_status_postgres_replicas_ready
@ kube_pg_status_state
@ kube_poddisruptionbudget_annotations
@ kube_poddisruptionbudget_created
@ kube_poddisruptionbudget_labels
@ kube_poddisruptionbudget_status_current_healthy
@ kube_poddisruptionbudget_status_desired_healthy
& kube_poddisruptionbudget_status_expected_pods

kube_pg_1info :

Page 241

https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs
https://github.com/kubernetes/kube-state-metrics/tree/main/docs

Uninstall Victoria metrics Kubernetes stack

To remove Victoria metrics Kubernetes stack used for Kubernetes cluster monitoring, use the cleanup
script. By default, the script removes all the Custom Resource Definitions(CRD)_[4 and Secrets associated

with the Victoria metrics Kubernetes stack. To keep the CRDs, run the script with the --keep-crd flag.

[Remove CRDs

Replace the <NAMESPACE> placeholder with the namespace you specified during the Victoria metrics
Kubernetes stack installation:

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace
<NAMESPACE>

[Keep CRDs

Replace the <NAMESPACE> placeholder with the namespace you specified during the Victoria metrics
Kubernetes stack installation:

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace
<NAMESPACE> --keep-crd

Check that the Victoria metrics Kubernetes stack is deleted:
$ helm list -n <namespace>

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

$ helm uninstall vm-k8s-stack -n < namespace>

Page 242

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

Use PostGIS extension with Percona
Distribution for PostgreSQL

PostGIS [4 is a PostgreSQL extension that adds GIS capabilities to this database.

Starting from the Operator version 2.3.0 it became possible to deploy and manage PostGIS-enabled
PostgreSQL.

Due to the large size and domain specifics of this extension, Percona provides separate PostgreSQL
Distribution images with it.

Deploy the Operator with PostGIS-enabled database cluster

Following steps will allow you to deploy PostgreSQL cluster with these images.
1. Clone the percona-postgresql-operator repository:

$ git clone -b v2.7.0 https://github.com/percona/percona-postgresql-operator
S cd percona-postgresql-operator

0 Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

2. The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from the
deploy/crd.yaml file. Custom Resource Definition extends the standard set of resources which
Kubernetes “knows” about with the new items (in our case ones which are the core of the Operator).
Apply.it (4 as follows:

S kubectl apply --server-side -f deploy/crd.yaml

3. Create the Kubernetes namespace for your cluster if needed (for example, let's name it postgres-

operator):

S kubectl create namespace postgres-operator

Page 243

https://postgis.net/
https://postgis.net/
https://postgis.net/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with the
deploy/rbac.yaml file. Role-based access is based on defined roles and the available actions which
correspond to each role. The role and actions are defined for Kubernetes resources in the yaml file.
Further details about users and roles can be found in Kubernetes documentation (4.

S kubectl apply -f deploy/rbac.yaml -n postgres-operator

6 Note

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google Kubernetes
Engine can grant user needed privileges with the following command:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --
user=$(gcloud config get-value core/account)

5. Start the Operator within Kubernetes:
$ kubectl apply -f deploy/operator.yaml -n postgres-operator

6. After the Operator is started, modify the deploy/cr.yaml configuration file with PostGIS-enabled
image - use percona/percona-postgresql-operator:2.7.08-ppg17.5.2-postgres-gis instead
of percona/percona-postgresql-operator:2.7.08-ppg17.5.2-postgres

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:

name: cluster
spec:

image: percona/percona-postgresql-operator:2.7.0-ppgl17.5.2-postgres-gis

When done, Percona Distribution for PostgreSQL cluster can be created at any time with the following
command:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

$ kubectl get pg -n postgres-operator

Page 244

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

H Expected output v

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1l cluster1-pgbouncer.default.svc ready 3 3 30m

Check PostGIS extension

To use PostGIS extension you should enable it for a specific database.

For example, you can create the new database named mygisdata with the psql tool as follows:

CREATE database mygisdata;
\c mygisdata;
CREATE SCHEMA gis;

Next, enable the postgis extension. Make sure you are connected to the database you created earlier
and run the following command:

CREATE EXTENSION postgis;
Finally, check that the extension is enabled:
SELECT postgis_full_version();
The output should resemble the following:

postgis_full_version

POSTGIS="3.3.3" [EXTENSION] PGSQL="1408" GE0S="3.10.2-CAPI-1.16.0" PR0OJ="8.2.1"
LIBXML="2.9.13" LIBJSON="0.15" LIBPROTOBUF="1.3.3" WAGYU="0.5.0 (Internal)"

You can find more about using PostGIS in the official Percona Distribution for PostgreSQL documentation

(4, as well as in this blogpost [7.

Page 245

https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/

Troubleshooting

Page 246

Initial troubleshooting

Percona Operator for PostgreSQL uses Custom Resources [4 to manage options for the various

components of the cluster.

e PerconaPGCluster Custom Resource with Percona PostgreSQL Cluster options (it has handy pg
shortname also),

e PerconaPGBackup and PerconaPGRestore Custom Resources contain options for pgBackRest used
to backup PostgreSQL Cluster and to restore it from backups (pg-backup and pg-restore
shortnames are available for them).

The first thing you can check for the Custom Resource is to query it with kubectl get command:

$ kubectl get pg

H Expected output v
NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
clusteri cluster1-pgbouncer.default.svc ready 3 B 30m

The Custom Resource should have Ready status.

0 Note

You can check which Percona’s Custom Resources are present and get some information about them as follows:

S kubectl api-resources | grep -i percona

a Expected output v

perconapgbackups pg-backup pgv2.percona.com/v2 true
PerconaPGBackup
perconapgclusters pg pgv2.percona.com/v2 true
PerconaPGCluster
perconapgrestores pg-restore pgv2.percona.com/v2 true
PerconaPGRestore

Check the Pods

Page 247

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

If Custom Resource is not getting Ready status, it makes sense to check individual Pods. You can do it as
follows:

$ kubectl get pods

H Expected output v
NAME READY STATUS RESTARTS AGE
cluster1-backup-4vwt-p5d9j 0/1 Completed 0 97m
cluster1-instance1-b5mr-0 4/4 Running 0 99m
cluster1-instance1-h8p7-0 4/4 Running 0 99m
cluster1-instancel-w7q2-0 4/4 Running 0 99m
cluster1-pgbouncer-79bbf55c45-62x1k 2/2 Running 0 99m
cluster1-pgbouncer-79bbf55c45-9g4ch 2/2 Running 0 99m
cluster1-pgbouncer-79bbf55c45-9nrmd 2/2 Running 0 99m
cluster1-repo-host-0 2/2 Running 0 99m
percona-postgresql-operator-79cd8586f5-2qzcs 1/1 Running 0 120m

The above command provides the following insights:

e READY indicates how many containers in the Pod are ready to serve the traffic. In the above example,
cluster1-repo-host-0 container has all two containers ready (2/2). For an application to work
properly, all containers of the Pod should be ready.

e STATUS indicates the current status of the Pod. The Pod should be in a Running state to confirm that
the application is working as expected. You can find out other possible states in the official Kubernetes

documentation [4.

e RESTARTS indicates how many times containers of Pod were restarted. This is impacted by the

Container Restart Policy [4. In an ideal world, the restart count would be zero, meaning no issues from
the beginning. If the restart count exceeds zero, it may be reasonable to check why it happens.

e AGE: Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name>
command.

S $ kubectl describe pods clusteri-instancel-b5mr-90

Page 248

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy

H Expected output

Name : cluster1-instancel1-b5mr-90
Namespace: default

Controlled By: StatefulSet/clusteri-instancel-b5mr
Init Containers:
postgres-startup:

Containers:
database:
pgbackrest:
Restart Count: ©
Liveness: http-get https://:8008/1liveness delay=3s timeout=5s period=10s #success=1
#failure=3
Readiness: http-get https://:8008/readiness delay=3s timeout=5s period=10s #success=1

#failure=3
Environment:

Mounts:
Volumes:

Events:

This gives a lot of information about containers, resources, container status and also events. So, describe

output should be checked to see any abnormalities.

Page 249

Check Storage-related objects

Storage-related objects worth to check in case of problems are the following ones:

e Persistent Volume Claims (PVC)_and Persistent Volumes (PV)_[4, which are playing a key role in

stateful applications.

« Storage Class [4, which automates the creation of Persistent Volumes and the underlying storage.

It is important to remember that PVC is namespace-scoped, but PV and Storage Class are cluster-scoped.

Check the PVC

You can check all the PVC with the following command (use different namespace name instead of
postgres-operator, if needed):

$ kubectl get pvc -n postgres-operator

H Expected output v

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
cluster1-instancel-4xkv-pgdata Bound pvc-2d20abb7-5350-4810-a098-fbdfbffdad41 1G1i

RWO standard 11h
cluster1-instancel-njt9-pgdata Bound pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b 1Gi
RWO standard 11h
cluster1-instancel-ghh6-pgdata Bound pvc-7228300b-81de-4a60-a615-8ca935¢c95139 1G1i
RWO standard 11h
cluster1-repoil Bound pvc-b2eBbac3-993d-499e-b311-3aa7b9851bc2 1Gi
RWO standard 11h

e STATUS: shows the state [of the PVC:
e For normal working of an application, the status should be Bound.
e |f the status is not Bound, further investigation is required.

e VOLUME: is the name of the Persistent Volume with which PVC is Bound to. Obviously, this field will be
occupied only when a PVC is Bound.

e CAPACITY: it is the size of the volume claimed.

e STORAGECLASS: it indicates the Kubernetes storage class [4 used for dynamic provisioning of
Volume.

Page 250

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

e ACCESS MODES: Access mode [4 indicates how Volume is used with the Pods. Access modes should
have write permission if the application needs to write data, which is obviously true in case of
databases.

Now you can check a specific PVC for more details using its name as follows:

$ kubectl get pvc clusterl-instancel-4xkv-pgdata -n postgres-operator -oyaml #
output stripped for brevity, name of PVC may vary

H Expected output v

apiVersion: vi1
kind: PersistentVolumeClaim
metadata:

name: cluster1-instancel-4xkv-pgdata
namespace: postgres-operator

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1G
storageClassName: standard
volumeMode: Filesystem
volumeName: pvc-2d20@abb7-5350-4810-a098-fbdfbffdad41
status:
accessModes:
- ReadWriteOnce
capacity:
storage: 24Gi
phase: Bound

You can use a number of Custom Resource options to tweaking PVC for the components of your cluster:

e options under instances.walVolumeClaimSpec allow you to set access modes and requested

storage size for PostgreSQL Write-ahead Log storage,

e options under instances.dataVolumeClaimSpec allow you to set access modes and also requests
and limits for PostgreSQL database storage,

e options under instances.tablespaceVolumes.dataVolumeClaimSpec allow you to set access
modes and requested storage size for PostgreSQL tablespace volumes,

e options under backups.pgbackrest.repos.volume.volumeClaimSpec allow you to set access
modes and requested storage size for the pgBackRest storage.

Page 251

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

Check the PV

It is important to remember that PV is a cluster-scoped Object. If you see any issues with attaching a
Volume to a Pod, PV and PVC might be looked upon.

Check all the PV present in the Kubernetes cluster as follows:

S kubectl get pv

H Expected output v
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
pvc-2d20abb7-5350-4810-a098-fbdfbffdad41 1Gi RWO Delete Bound
postgres-operator/clusterl-instancel-4xkv-pgdata standard 11h
pvc-7228300b-81de-4a60-a615-8ca935¢95139 161 RWO Delete Bound
postgres-operator/clusterl-instancel-ghh6-pgdata standard 11h
pvc-b2eBbac3-993d-499e-b311-3aa7b9851bc2 1Gi RWO Delete Bound
postgres-operator/clusterl-repol standard 11h
pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b 1G1i RWO Delete Bound
postgres-operator/clusterl-instancel-njt9-pgdata standard 11h

Now you can check a specific PV for more details using its name as follows:

S kubectl get pv pvc-2d2@abb7-5350-4810-a098-fbdfbffdaB41 -oyaml

Page 252

H Expected output v

apiVersion: vi
kind: PersistentVolume
metadata:

name: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b

spec:
accessModes:
- ReadWriteOnce
capacity:
storage: 1Gi
claimRef:
apiVersion: vi1
kind: PersistentVolumeClaim
name: clusteri-instancel-4xkv-pgdata
namespace: postgres-operator
resourceVersion: "912868"
uid: f3e7097f-accd-4f5d-9c9d-6f29b54a368b
gcePersistentDisk:
fsType: ext4
pdName: pvc-f3e7097f-accd-4f5d-9¢c9d-6f29b54a368b
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/zone
operator: In

values:

- us-centralil-a

- key: topology.kubernetes.io/region
operator: In

values:

- us-centrali
persistentVolumeReclaimPolicy: Delete
storageClassName: standard
volumeMode: Filesystem

status:
phase: Bound

Fields to check if there are any issues in binding with PVC, are the claimRef and nodeAffinity.

The claimRef one indicates to which PVC this volume is bound to. This means that if by any chance PVC
is deleted (e.g. by the appropriate finalizer), this section needs to be modified so that it can bind to a new
PVC.

The spec.nodeAffinity field may influence the PV availability as well: for example, it can make Volume
accessed in one availability zone only.

Check the StorageClass

Page 253

StorageClass is also a cluster-scoped object, and it indicates what type of underlying storage is used for

the Volumes.

You can set StorageClass in instances.dataVolumeClaimSpec.storageClassName,

instances.walVolumeClaimSpec.storageClassName, and

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName Custom Resource

options.

The following command checks all the storage class present in the Kubernetes cluster, and allows to see

which storage class is the default one:

$ kubectl get sc

H Expected output

NAME PROVISIONER
ALLOWVOLUMEEXPANSION AGE

premium-rwo pd.csi.storage.gke.io
44d

standard (default) kubernetes.io/gce-pd
44d

standard-rwo pd.csi.storage.gke.io
44d

RECLAIMPOLICY

Delete

Delete

Delete

VOLUMEBINDINGMODE

WaitForFirstConsumer true

Immediate true

WaitForFirstConsumer true

If some PVC does not refer any storage class explicitly, it means that the default storage class is used.

Ensure there is only one default Storage class.

You can check a specific storage class as follows:

$ kubectl get sc standard -oyaml

Page 254

H Expected output

allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
annotations:
storageclass.kubernetes.io/is-default-class: "true'
creationTimestamp: "2022-10-09T06:28:03Z"
labels:
addonmanager .kubernetes.io/mode: EnsureExists
name: standard
resourceVersion: "906"
uid: 933d37db-996b-4b2d-bf3a-dde91debobae
parameters:
type: pd-standard
provisioner: kubernetes.io/gce-pd
reclaimPolicy: Delete
volumeBindingMode: Immediate

Important things to observe here are the following ones:

e Check if the provisioner and parameters are indicating the type of storage you intend to provision.

e Check the volumeBindingMode [4 especially if the storage cannot be accessed across availability
zones. “WaitForFirstConsumer” volumeBindingMode ensures volume is provisioned only after a Pod

requesting the Volume is created.

 If you are going to rely on the Operator storage scaling functionality, ensure the storage class supports
PVC expansion (it should have allowVolumeExpansion: true inthe output of the above command).

You can set PVC storage class with the following Custom Resource options:

instances.walVolumeClaimSpec.storageClassName allows you to set storage class for

PostgreSQL Write-ahead Log storage,

instances.dataVolumeClaimSpec.storageClassName allows you to set storage class for

PostgreSQL database storage,

instances.tablespaceVolumes.dataVolumeClaimSpec.storageClassName allows you to set

storage class for PostgreSQL tablespace volumes,

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName allows you to set

storage class for the pgBackRest storage.

Page 255

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode

Exec into the containers

If you want to examine the contents of a container “in place” using remote access to it, you can use the
kubectl exec command. It allows you to run any command or just open an interactive shell session in
the container. Of course, you can have shell access to the container only if container supports it and has a
“Running” state.

In the following examples we will access the container database of the cluster1-instancel1-b5mr-0
Pod.

e Run date command:

S kubectl exec -ti clusterl-instancel-b5mr-0 -c database -- date

H Expected output v

Wed Jun 14 11:18:47 UTC 2023

You will see an error if the command is not present in a container. For example, trying to run the time
command, which is not present in the container, by executing kubectl exec -ti clusteri-
instancel-b5mr-0 -c database -- time would show the following result:

OCI runtime exec failed: exec failed: unable to start container process: exec:
"time": executable file not found in SPATH: unknown command terminated with exit
code 126

e Print log files to a terminal:

S kubectl exec -ti clusterl-instancel-b5mr-0 -c database -- cat
/pgdata/pg16/log/postgresql-*.1log

o Similarly, opening an Interactive terminal, executing a pair of commands in the container, and exiting it
may look as follows:

Page 256

S kubectl exec -ti clusterl-instancel-b5mr-0 -c database -- bash
bash-4.4$ hostname

cluster1-pxc-0

bash-4.4$ 1s /pgdata/pg16/log/

postgresql-Wed.log

bash-4.4$ exit

exit

$

Page 257

Check the logs

Logs provide valuable information. It makes sense to check the logs of the database Pods and the
Operator Pod. Following flags are helpful for checking the logs with the kubectl logs command:

Flag Description

-c, --container= Print log of a specific container in case of multiple containers in a Pod

<container-name>

-f, --follow Follows the logs for a live output

--since=<time> Print logs newer than the specified time, for example: --since="10s"

--timestamps Print timestamp in the logs (timezone is taken from the container)

-p, --previous Print previous instantiation of a container. This is extremely useful in case of container

restart, where there is a need to check the logs on why the container restarted. Logs of
previous instantiation might not be available in all the cases.

In the following examples we will access containers of the cluster1-instancel1-b5mr-8 Pod.

Check logs of the database container:

S kubectl logs clusterl-instancel-b5mr-8 --container database

Check logs of the pgbackrest container:

S kubectl logs clusterl-instancel-b5mr-8 --container pgbackrest

Filter logs of the database container which are not older than 600 seconds:

$ kubectl logs cluster1-instancel-b5mr-0 --container database --since=600s

Check logs of a previous instantiation of the database container, if any:

$ kubectl logs clusterl-instancel-b5mr-8 --container database --previous

Page 258

Increase pgBackRest log verbosity

The pgBackRest tool used for backups supports different log_verbosity levels [4. By default, it logs

warnings and errors, but sometimes fixing backup/restore issues can be simpler when you get more
debugging information from it.

Log verbosity is controlled by pgBackRest —log-level-stderr [4 option.

You can add it to the deploy/backup.yaml file to use it with on-demand backups as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1
spec:
pgCluster: clusteri
repoName: repol
options:
- --log-level-stderr=debug

Page 259

https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr

Manual management of database clusters
deployed with Percona Operator for
PostgreSQL

The purpose of the Operator is to automate database management tasks for you. However, you may need
to manage the database cluster manually. For example, to troubleshoot issues or for maintenance.

The following sections explain how you can manage your cluster manually.

Disable health check probes for maintenance

Probes are tasks Kubernetes runs to gather information about the health and status of containers running
within Pods. They serve as a mechanism to ensure the system is running smoothly by periodically
checking the state of applications and services.

Kubernetes has various types of probes:

o Startup probe verifies whether the application within a container is started
e Liveness probe determines when to restart a Pod

o Readiness probe checks that the container is ready to start accepting traffic

Sometimes it's necessary to take a manual control over the postgres process for maintenance. This
means you need to disable a Kubernetes liveness probe so that it doesn't restart the database container
during the maintenance period.

Here's what you need to do:
1. Create a sleep-forever file in the data directory with the following command:
$ kubectl exec clusterl-instance1-24b8-8 -- touch /pgdata/sleep-forever
2. Delete the Pod:
S kubectl delete pod clusterl-instance1-24b8-0
3. After the Pod restarts, it won't start PostgreSQL. You can check it with the following command:

S kubectl logs clusterl-instance1-24b8-0 database

Page 260

H Expected output v

The pgdata/sleep-forever file is detected, node entered an infinite sleep
If you want to exit from the infinite sleep, remove the pgdata/sleep-forever file

4. Now you can start PostgreSQL manually:

S kubectl exec clusterl-instance1-24b8-8 -- pg_ctl -D /pgdata/pgl17 start

H Expected output v

2025-04-01 16:27:41.850 UTC [1434] LOG: pgaudit extension initialized

2025-04-01 16:27:42.075 UTC [1434] LOG: redirecting log output to logging collector
process

2025-04-01 16:27:42.075 UTC [1434] HINT: Future log output will appear in directory
"log".

done

server started

5. When you are done with the maintenance, remove the sleep-forever file to re-enable the liveness
probe.

S kubectl exec clusterl-instance1-24b8-0 -- rm /pgdata/sleep-forever

Stop reconciliation by putting a cluster into an unmanaged
mode

The Operator reconciles the database cluster to ensure its current state doesn'’t differ from the state
defined in the configuration. It can automatically install, update, or repair the cluster when needed.

By doing this, the Operator might interfere with your operations during the maintenance. Therefore, you
can put a cluster in an unmanaged mode to stop the Operator from reconciling the cluster at all.

Edit the deploy/cr.yaml Custom Resource manifest and set the spec.unmanaged optionto true:

Page 261

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:

name: cluster
spec:

unmanaged: true

Apply the changes:

S kubectl apply -f deploy/cr.yaml -n <namespace>

A Warning

Putting a cluster in an unmanaged mode doesn't disable any of the health check probes already configured for
containers. The Operator is only responsible for configuring the probes, not for running them. Refer to the Disabling
health check probes for maintenance section for the steps.

Override Patroni configuration

For a whole cluster

The Operator creates a ConfigMap called <cluster-name>-config to store a Patroni cluster
configuration. If you just edit the ConfigMap contents, the Operator will immediately rewrite and remove
your changes. To override anything in this ConfigMap and keep the changes, you need to annotate it using
a special annotation pgv2.percona.com/override-config.

Here is the example command for the cluster named cluster1:

$ kubectl annotate cm clusterl-config pgv2.percona.com/override-config=true

H Expected output v

configmap/cluster1-config annotated

As long as the ConfigMap has this pgv2.percona.com/override-config annotation, the Operator
doesn’t rewrite your changes. You can edit the ConfigMap’s contents however you want.

Page 262

A Warning

The Operator does not validate your configuration changes.

Before applying any changes, consult the Patroni documentation [to ensure your configuration is correct. This will

help you avoid issues caused by invalid settings.

It takes some time for your changes of ConfigMap to propagate to running containers. You can verify if
changes are propagated by checking the mounted file in containers. For example:

S kubectl exec -it clusterl-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_cluster.yaml

Operator doesn't apply a new configuration for Patroni automatically. You must run patronictl reload
<cluster_name> <pod-name> to apply it after your changes are propagated to the container.

A Warning

Don't forget to remove this annotation once you've finished. It's not recommended to use this feature to permanently
override Patroni configuration. As long as this annotation exists, the Operator won't touch the ConfigMap and you might

have problems with your cluster.

To remove the annotation, use the following command:

S kubectl annotate cm clusterl-config pgv2.percona.com/override-config-

For an individual Pod

Operator creates a ConfigMap called <pod-name>-config to store Patroni instance configuration for
each Pod. If you just edit the ConfigMap contents, the Operator will immediately rewrite and remove your
changes. To override anything in these ConfigMaps and keep the changes, you need to annotate them

using a special annotation:

S kubectl annotate cm clusterl-instance1-24b8-config pgv2.percona.com/override-
config=true

E Expected output v

configmap/cluster1-instance1-24b8-config annotated

Page 263

https://patroni.readthedocs.io/en/latest/patroni_configuration.html
https://patroni.readthedocs.io/en/latest/patroni_configuration.html
https://patroni.readthedocs.io/en/latest/patroni_configuration.html

As long as the ConfigMap has the pgv2.percona.com/override-config annotation, the Operator
doesn’t rewrite your changes. You can edit the ConfigMap’s contents however you want.

A Warning

The Operator does not validate your configuration changes.

Before applying any changes, consult the Patroni documentation [4 to ensure your configuration is correct. This will

help you avoid problems caused by invalid settings.

It takes some time for your changes of ConfigMap to propagate to running containers. You can verify if
changes are propagated by checking the mounted file in containers for a Pod. For example:

S kubectl exec -it clusterl-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_cluster.yaml

Operator doesn't apply a new configuration automatically. You must run patronictl reload
<cluster_name> <pod_name> to apply it after your changes are propagated to the container.

To find the cluster name, run:

S kubectl exec -it clusterl1-instance1-24b8-0 -- patronictl list

H Expected output v
Cluster: clusteri-ha (7523193408153182293) -------------—-—-———————- Poommmmoos Pommcomo=o=s ==
B +
| Member | Host | Role | State |
TL | Lag in MB |
R T o - e R T
R e T +
| clusteri1-instance1-24b8-08 | clusterl-instancel-bw58-0.cluster1-pods | Replica | streaming |
3 | 0 |
| clusterl-instancel-tmqj-0 | clusterl-instancel-tmqj-0.clusterl-pods | Leader | running |
3 | |
| cluster1-instancel1-xf85-0 | cluster1-instancel-xf85-08.clusteri-pods | Replica | streaming |
3 | 0 |
o B ittt R o mm -
R e T +

Page 264

https://patroni.readthedocs.io/en/latest/patroni_configuration.html
https://patroni.readthedocs.io/en/latest/patroni_configuration.html
https://patroni.readthedocs.io/en/latest/patroni_configuration.html

A Warning

Don't forget to remove this annotation once you've finished. It's not recommended to use this feature to permanently
override Patroni configuration. As long as this annotation exists, the Operator won't touch the ConfigMap and you might

have problems with your cluster.

To remove the annotation, use the following command:

$ kubectl annotate cm clusterl-instancel1-24b8-8 pgv2.percona.com/override-config-

Override PostgreSQL parameters

Use the patronictl show-config command to print PostgreSQL parameters used in the cluster. For

example:

$ kubectl exec clusterl-instance1-24b8-0 -- patronictl show-config

Page 265

H Expected output v

loop_wait: 10
postgresql:
parameters:
archive_command: 'pgbackrest --stanza=db archive-push "%p" && timestamp=$(pg_waldump "%p"
| grep -oP "COMMIT \K[7;]+" | sed -E "s/([0-9]{4}-[0-9]{2}-[06-9]1{2}) ([©-9]{2}:[0-9]{2}:[0-9]
{2}\.[0-91{6}) (UTC|[\\+\\-1[8-91{2})/\1T\2\3/" | sed "s/UTC/Z/" | tail -n 1 | grep -E "A[@-
91{4}-[0-9]{2}-[0-91{2}T[6-9]{2}:[0-9]{2}:[0-9]1{2}\.[6-9]{6}(Z|[\+\-]1[8-9]{2})$"); if [! -z
S{timestamp}]; then echo ${timestamp} > /pgdata/latest_commit_timestamp.txt; fi'
archive_mode: 'on'
archive_timeout: 60s
huge_pages: 'off'
jit: 'off’
password_encryption: scram-sha-256
restore_command: pgbackrest --stanza=db archive-get %f "%p"
ssl: 'on'
ssl_ca_file: /pgconf/tls/ca.crt
ssl_cert_file: /pgconf/tls/tls.crt
ssl_key_file: /pgconf/tls/tls.key
track_commit_timestamp: 'true’
unix_socket_directories: /tmp/postgres
wal_level: logical
pg_hba:
- local all "postgres" peer
- hostssl replication "_crunchyrepl” all cert
- hostssl "postgres" "_crunchyrepl" all cert
- host all "_crunchyrepl” all reject
- host all "monitor" "127.0.0.0/8" scram-sha-256
- host all "monitor" "::1/128" scram-sha-256
- host all "monitor" all reject
- hostssl all "_crunchypgbouncer” all scram-sha-256
- host all "_crunchypgbouncer" all reject
- hostssl all all all md5
use_pg_rewind: true
use_slots: false
ttl: 30

Use the patronictl edit-config command to change any PostgreSQL parameter.

For example, run the following command to change the restore_command parameter:

S kubectl exec -it clusteril-instance1-24b8-0 -- patronictl edit-config --pg
restore_command=/bin/true

Page 266

H Expected output v

+++
@@ -9,7 +9,7 0@

huge_pages: 'off'

jit: 'off’

password_encryption: scram-sha-256
- restore_command: pgbackrest --stanza=db archive-get %f "%p"
+ restore_command: /bin/true

ssl: 'on'

ssl_ca_file: /pgconf/tls/ca.crt

ssl_cert_file: /pgconf/tls/tls.crt

Apply these changes? [y/N]:

This command changes the shared_preload_libraries parameter:

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl edit-config --pg
shared_preload_libraries=""

H Expected output v

+++
@@ -11,7 +11,6 @@

password_encryption: scram-sha-256

pg_stat_monitor.pgsm_query_max_len: '2048'

restore_command: pgbackrest --stanza=db archive-get %f "%p"
- shared_preload_libraries: pg_stat_monitor

ssl: 'on'

ssl_ca_file: /pgconf/tls/ca.crt

ssl_cert_file: /pgconf/tls/tls.crt

Apply these changes? [y/N]:

A Warning

If you update any object controlled by the Operator, it'll reconcile the cluster and your configuration changes will be
reverted. You can put the cluster in an unmanaged mode to prevent this.

Override pg_hba entries

Page 267

You may want to append entries to pg_hba. You can use the spec.patroni.postgresl.pg_hba field to
add your rules.

patroni:
dynamicConfiguration:
postgresql:
pg_hba:
- local all all trust
- reject all all all

The order of parameters matters in pg_hba.conf, so consider overriding the list completely. For this, you
can use the patronictl edit-config command:

$ kubectl exec -it clusteril-instancel1-24b8-0 -- patronictl edit-config --set
postgresql.pg_hba="[

"local all all trust",

"reject all all all"
]

A Warning

If you update any object controlled by the Operator, it'll reconcile the cluster and your configuration changes will be
reverted. You can put the cluster in an unmanaged mode to prevent this.

Page 268

Reinitialize replicas

When you create a new Percona PostgreSQL cluster, the Operator uses the basebackup method to create
replicas for it. After the database instances are ready, the Operator automatically creates a full backup.
Once this backup finishes successfully, the Operator updates the Patroni configuration and prepends (puts
as the first method) pgBackRest inthe create_replica_methods list so that new replicas are created
using it.

Warning
The Operator doesn’t run patronictl reload in old replicas even if Patroni instance configurations are updated to put

pgBackRest as the first method in the create_replica_methods list. For this configuration to run into force, you

need to either restart the Pods or manually run patronictl reload <cluster_name> on all old replicas.

You may need to reinitialize cluster replicas. For example, if the data on the replica becomes corrupted or
inconsistent with the primary node. Reinitialization ensures the replica is rebuilt with the correct data. Or, if
the replica falls significantly behind the primary or encounters issues that prevent successful
synchronization, reinitialization can reset the replica to match the current state of the primary.

This document provides the ways how to do it.

Reinitialize by deleting replica Pod and its
PersistentVolumecClaim

You can force reinitialization by deleting the Pod and its PersistentVolumeClaim:

S kubectl delete pvc/clusteri-instance1-24b8-pgdata pod/cluster1-instancel1-24b8-9

H Expected output v

persistentvolumeclaim "cluster1-instance1-24b8-pgdata” deleted
pod "clusterl-instance1-24b8-0" deleted

The Operator will reinitialize a replica using the method configured in this instance’s Patroni configuration.
This configuration is stored within the ConfigMap for the instance. Use the following command to find it:

S kubectl get cm clusterl-instancel1-24b8-config

Page 269

H Expected output v

NAME DATA AGE
cluster1-instance1-24b8-config 1 95m

Reinitialize with patronictl reinit

You can reinitialize a replica using the patronictl reinit command. Note that configuration in
ConfigMap might not have been applied to a running Patroni instance. The recommended approach is to
first run patronictl reload <cluster_name> and thenrun patronictl reinit.

For example:
1. List and verify Patroni configuration:

S kubectl exec -it clusterl-instancel1-24b8-0 -- cat /etc/patroni/~postgres-
operator_instance.yaml

2. Find the cluster name:

S kubectl exec -it clusterl-instance1-24b8-0 -- patronictl list

H Expected output v

Clustar: clustari=ha (7528198408188182208) —meccmessssossssssasasass Pomesmmams Pommmmmmons
e R +

| Member | Host | Role | State

| TL | Lag in MB |

et B ettt Fomm - Fomm oo
e e S +

| clusteri-instance1-24b8-0 | cluster1-instancel-bw58-0.clusteri-pods | Replica |
streaming | 3 | 0 |

| clusteri-instance1-84xm-0 | clusterl-instancel-tmqj-0.clusterl1-pods | Leader | running
[3| I

| clusteri-instancel-nv28-0 | clusterl1-instancel-xf85-0.clusteri-pods | Replica |
streaming | 3 | 0 |

3. Reload the configuration:

Page 270

$ kubectl exec -it clusterl-instance1-24b8-0 -- patronictl reload clusteri1-ha
clusterl1-instance1-24b8-06

H Expected output v
+ Cluster: clusterl-ha (7487948770079264836) --------=—----=-=-————-———- Pooommco=s Peoommo=s
B e PP +
| Member | Host | Role | State
| TL | Lag in MB |
et B et e R T Fom -
B e PP +
| cluster1-instance1-24b8-06 | clusterl-instance1-24b8-0.cluster1-pods | Replica |
streaming | 1 | 0 |
| clusteri-instance1-84xm-0 | clusterl-instancel1-84xm-0.clusterl1-pods | Leader | running

1 I

| cluster1-instance1-nv28-0 | clusterl-instancel-nv28-0.cluster1-pods | Replica |
streaming | 1 | 0 |

Are you sure you want to reload members clusterl-instancel1-24b8-08? [y/N]: vy
Reload request received for member clusterl-instancel1-24b8-0 and will be processed within
10 seconds

4. Reinitialize the replica:

S kubectl exec -it clusterl-instancel1-24b8-0 -- patronictl reinit clusteri1-ha
cluster1-instance1-24b8-06

H Expected output v

Page 271

+ Cluster: clusteri-ha (7487948770079264836) ---------------—-———————-

| cluster1-instance1-24b8-0 | clusterl-instance1-24b8-0.cluster1-pods |

| cluster1-instance1-84xm-0 | clusterl-instancel1-84xm-0.cluster1-pods | Leader

| cluster1-instancel1-nv28-0 | clusterl-instancel-nv28-0.cluster1-pods |

R e s T +
| Member | Host

| State | TL | Lag in MB |
e et
L s T T +

Replica | streaming | 1 |

| running |1 | |

Replica | streaming | 1 |

T T et
R et +

Are you sure you want to reinitialize members clusterl-instance1-24b8-07?

[y/N]: y

Success: reinitialize for member cluster1-instancel1-24b8-0

Configure create_replica_methods

The Operator uses basebackup and pgBackRest methods to create replicas by default. These methods

are defined within the create_replica_methods configuration block of a Patroni instance.

If you want to change create_replica_methods list for any reason, you can use the

spec.patroni.create_replica_methods optioninthe deploy/cr.yaml Custom Resource manifest:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
name: clusteri
spec:
patroni:
createReplicaMethods:
- basebackup
- pgbackrest

Apply this configuration:

$ kubectl apply -f deploy/cr.yaml

The Operator updates Patroni instances’ ConfigMaps. You can check their configuration with this

command:

Page 272

S kubectl get configmap clusterl-instancel1-24b8-config -o yaml

H Expected output

apiVersion: vi1
kind: ConfigMap
metadata:
name: clusteri-instancel1-24b8-config
data:

patroni.yaml: |
Generated by postgres-operator. DO NOT EDIT UNLESS YOU KNOW WHAT YOU'RE DOING.

If you want to override the config, annotate this ConfigMap with
pgv2.percona.com/override-config=true
kubernetes: {}
postgresql:
basebackup:
- waldir=/pgdata/pg17_wal
create_replica_methods:

- basebackup
- pgbackrest
pgbackrest:
command: ''‘'bash'' ''-ceu'' ''--'' ''install --directory --mode=0700 "S${PGDATA?}"
&& exec "S@"'' ''-'' ''pgbackrest'' ''restore'' ''--delta'' ''--stanza=db''
"'--repo=1'" ''--link-map=pg_wal=/pgdata/pg17_wal'' ''--type=standby'""’

keep_data: true
no_leader: true
no_params: true
pgpass: /tmp/.pgpass
use_unix_socket: true
restapi: {}
tags: {}

After the ConfigMap is updated, it takes some time for changes to appear in mounted files in containers.
You can verify the updates by manually checking the file:

S kubectl exec -it clusterl-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_instance.yaml

Page 273

H Expected output

Generated by postgres-operator. DO NOT EDIT UNLESS YOU KNOW WHAT YOU'RE DOING.

config=true

kubernetes: {}

postgresql:
basebackup:
- waldir=/pgdata/pg17_wal
create_replica_methods:

- basebackup
- pgbackrest
pgbackrest:
command: ''‘'bash'' ''-ceu'' ''--'' ''install --directory --mode=0700 "S${PGDATA?}"
&& exec "S@"'' ''-'' ''pgbackrest'' ''restore'' ''--delta'' ''--stanza=db''
"'--repo=1'"' ''--link-map=pg_wal=/pgdata/pg17_wal'' ''--type=standby'"’

keep_data: true
no_leader: true
no_params: true
pgpass: /tmp/.pgpass
use_unix_socket: true
restapi: {}
tags: {}

If you want to override the config, annotate this ConfigMap with pgv2.percona.com/override-

Though the Operator updates the ConfigMaps, it doesn’t automatically apply the new configuration for

Patroni. To make Patroni aware of the changes, reload its configuration on every instance with the

patronictl reload <cluster_name> <pod-name> command.

Page 274

Reference

Page 275

Custom Resource options

The Cluster is configured via the deploy/cr.yaml [7 file.

metadata

The metadata part of this file contains the following keys:

name (cluster1 by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it
should include only URL-compatible characters [4, not exceed 22 characters, start with an alphabetic
character, and end with an alphanumeric character;

e annotations.pgv2.percona.com/custom-patroni-version Kubernetes annotation [4 which
allows turning off automatic Patroni version detection by the Operator. You can use this annotation to
set the version manually (“3” for Patroni 3.x, “4” for Patroni 4.x).

e finalizers.percona.com/delete-ssl if present, activates the Finalizer (4 which deletes objects,
created for SSL (Secret, certificate, and issuer) after the cluster deletion event (off by default).

e finalizers.percona.com/delete-pvc if present, activates the Finalizer [which deletes Persistent
Volume Claims [for the database cluster Pods after the deletion event (off by default).

e finalizers.percona.com/delete-backups if present, activates the Finalizer [4 which deletes all the
backups of the database cluster from all configured repos on cluster deletion event (off by default).

delete-backups finalizer is in tech preview state, and it is not yet recommended for production
environments.

Toplevel spec elements

The spec part of the deploy/cr.yaml [file contains the following:

crVersion

Version of the Operator the Custom Resource belongs to.

Value type Example

8 string 2.7.0

Page 276

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

metadata.annotations

The Kubernetes annotations [4 metadata to be set at a global level for all resources created by the

Operator.
Value type Example
D label example-annotation: value

metadata.labels

The Kubernetes labels [4 metadata to be set at a global level for all resources created by the Operator.

Value type Example
D label example-label: value
tlsOnly

Enforce the Operator to use only Transport Layer Security (TLS) for both internal and external
communications.

Value type Example
@ boolean false
standby.enabled

Enables or disables running the cluster in a standby mode (read-only copy of an existing cluster, useful for
disaster recovery, etc).

Value type Example
@ boolean false
standby.host

Page 277

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Host address of the primary cluster this standby cluster connects to.

Value type Example
B string "<primary-ip>"
standby.port

Port number used by a standby copy to connect to the primary cluster.

Value type Example
8 string "<primary-port>"
openshift

Set to true if the cluster is being deployed on OpenShift, set to false otherwise, or unset it for
autodetection.

Value type Example

@ boolean true

autoCreateUserSchema

If setto true, the cluster will have automatically created schemas for the custom user defined in the
spec.users subsection for all of the databases listed for this specific user.

Value type Example

@ boolean true

standby. repoName

Name of the pgBackRest repository in the primary cluster this standby cluster connects to.

Page 278

Value type Example

B string repol

secrets.customRootCATLSSecret.name

Name of the secret with the custom root CA certificate and key for secure connections to the PostgreSQL
server, see Transport Layer Security (TLS) for details.

Value type Example

B strin clusteri-ca-cert
g

secrets.customRootCATLSSecret.items

Key-value pairs of the key (a key from the secrets.customRootCATLSSecret.name secret) and the
path (name on the file system) for the custom root certificate and key. See Transport Layer Security (TLS)

for details.
Value type Example
= subdoc - key: “tls.crt”

path: “root.crt”
- key: “tls.key”
path: “root.key”

secrets.customTLSSecret.name

A secret with TLS certificate generated for external communications, see Transport Layer Security (TLS)

for details.
Value type Example
B string clusterl-cert

secrets.customReplicationTLSSecret.name

Page 279

A secret with TLS certificate generated for internal communications, see Transport Layer Security (TLS),

for details.

Value type Example

B string replicationl-cert
users.name

The name of the PostgreSQL user.

Value type Example
B string rhino
users.databases

Databases accessible by a specific PostgreSQL user with rights to create objects in them (the option is
ignored for postgres user; also, modifying it cant be used to revoke the already given access).

Value type Example
B string Z00
users.password.type

The set of characters used for password generation: can be either ASCII (default) or AlphaNumeric.

Value type Example
B string ASCII
users.options

The ALTER ROLE options other than password (the option is ignored for postgres user).

Page 280

Value type Example

8 string "SUPERUSER"

users.secretName

The custom name of the user’s Secret; if not specified, the default <clusterName>-pguser-<userName>
variant will be used.

Value type Example

B string "rhino-credentials”

users.grantPublicSchemaAccess

Grants access to the public schema to the user for all databases associated with this user.

Value type Example
B string false
databaseInitSQL.key

Data key for the Custom configuration options ConfigMap [4 with the init SQL file, which will be executed

at cluster creation time.

Value type Example

8 string init.sql

databaseInitSQL.name

Name of the ConfigMap [4 with the init SQL file, which will be executed at cluster creation time.

Page 281

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/

Value type Example

B string cluster1-init-sql

pause

Setting it to true gracefully stops the cluster, scaling workloads to zero and suspending CronJobs;
setting itto false after shut down starts the cluster back.

Value type Example
B string false
unmanaged

Setting it to true stops the Operator’s activity including the rollout and reconciliation of changes made in
the Custom Resource; setting it to false starts the Operator’s activity back.

Value type Example

8 string false

dataSource.postgresCluster.clusterName

Name of an existing cluster to use as the data source when restoring backup to a new cluster.

Value type Example

B string cluster1

dataSource.postgresCluster.clusterNamespace

Namespace of an existing cluster used as a data source (is needed if the new cluster will be created in a

different namespace; needs the Operator deployed in multi-namespace/cluster-wide mode).

Page 282

Value type Example

8 string cluster1-namespace

dataSource.postgresCluster.repoName

Name of the pgBackRest repository in the source cluster that contains the backup to be restored to a new

cluster.
Value type Example
B string repot

dataSource.postgresCluster.options

The pgBackRest command-line options for the pgBackRest restore command.

Value type Example

8 string

dataSource.postgresCluster.tolerations.effect

The Kubernetes Pod tolerations [4 effect for data migration.

Value type Example

B strin NoSchedule
g

dataSource.postgresCluster.tolerations.key

The Kubernetes Pod tolerations [key for data migration.

Value type Example

8 string role

Page 283

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

dataSource.postgresCluster.tolerations.operator

The Kubernetes Pod tolerations [4 operator for data migration.

Value type Example

8 string Equal

dataSource.postgresCluster.tolerations.value

The Kubernetes Pod tolerations [value for data migration.

Value type Example

B strin connection-poolers
p

dataSource.pgbackrest.stanza

Name of the pgBackRest stanza [to use as the data source when restoring backup to a new cluster.

Value type Example

B string db

dataSource.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object [4 with custom pgBackRest configuration, which will be added to

the pgBackRest configuration generated by the Operator.

Value type Example

8 string pgo-s3-creds

dataSource.pgbackrest.global

Settings, which are to be included in the global section of the pgBackRest configuration generated by
the Operator.

Page 284

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://pgbackrest.org/command.html
https://pgbackrest.org/command.html
https://pgbackrest.org/command.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

Value type Example

= subdoc /pgbackrest/postgres-operator/hippo/repo1

dataSource.pgbackrest.repo.name

Name of the pgBackRest repository.

Value type Example

8 string repol

dataSource.pgbackrest.repo.s3.bucket

The Amazon S3 bucket [4 or Google Cloud Storage bucket [4 name used for backups. Bucket name

should follow Amazon naming_rules or Google naming_rules, and additionally, it can't contain dots.

Value type Example

B string "my-bucket"

dataSource.pgbackrest.repo.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original
Amazon S3 cloud).

Value type Example

B string "s3.ca-central-1.amazonaws.com"

dataSource.pgbackrest.repo.s3.region

The AWS region [to use for Amazon and all S3-compatible storages.

Page 285

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://cloud.google.com/storage/docs/buckets
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Value type Example

@ boolean "ca-central-1"

dataSource.pgbackrest.tolerations.effect

The Kubernetes Pod tolerations [4 effect for pgBackRest at data migration.

Value type Example

8 string NoSchedule

dataSource.pgbackrest.tolerations.key

The Kubernetes Pod tolerations [4 key for pgBackRest at data migration.

Value type Example

B string role

dataSource.pgbackrest.tolerations.operator

The Kubernetes Pod tolerations [4 operator for pgBackRest at data migration.

Value type Example

B string Equal

dataSource.pgbackrest.tolerations.value

The Kubernetes Pod tolerations [value for pgBackRest at data migration.

Value type Example

B string connection-poolers

Page 286

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

dataSource.volumes.pgDataVolume.pvcName

The PostgreSQL data volume name for the Persistent Volume Claim [4 used for data migration.

Value type Example

8 string clusteri

dataSource.volumes.pgDataVolume.directory

The mount point for PostgreSQL data volume used for data migration.

Value type Example

B string cluster1

dataSource.volumes.pgDataVolume.tolerations.effect

The Kubernetes Pod tolerations [effect for PostgreSQL data volume used for data migration.

Value type Example

B string NoSchedule

dataSource.volumes.pgDataVolume.tolerations.key

The Kubernetes Pod tolerations [4 key for PostgreSQL data volume used for data migration.

Value type Example

8 string role

dataSource.volumes.pgDataVolume.tolerations.operator

The Kubernetes Pod tolerations [4 operator for PostgreSQL data volume used for data migration.

Page 287

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B string Equal

dataSource.volumes.pgDataVolume.tolerations.value

The Kubernetes Pod tolerations [4 value for PostgreSQL data volume used for data migration.

Value type Example

B strin connection-poolers
p

dataSource.volumes.pgDataVolume.annotations

The Kubernetes annotations [4 metadata for PostgreSQL data volume used for data migration.

Value type Example

D label test-annotation: value

dataSource.volumes.pgDataVolume. labels

The Kubernetes labels [4 for PostgreSQL data volume used for data migration.

Value type Example

D label test-label: value

dataSource.volumes.pgWALVolume.pvcName

The PostgreSQL write-ahead logs volume name for the Persistent Volume Claim [used for data

migration.
Value type Example
8 string cluster1

Page 288

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

dataSource.volumes.pgWALVolume.directory

The mount point for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

8 string clusteri

dataSource.volumes.pgWALVolume.tolerations.effect

The Kubernetes Pod tolerations [4 effect for PostgreSQL write-ahead logs volume used for data

migration.
Value type Example
B string NoSchedule

dataSource.volumes.pgWALVolume.tolerations.key

The Kubernetes Pod tolerations [4 key for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

8 string role

dataSource.volumes.pgWALVolume.tolerations.operator

The Kubernetes Pod tolerations [4 operator for PostgreSQL write-ahead logs volume used for data

migration.
Value type Example
B string Equal

dataSource.volumes.pgWALVolume.tolerations.value

The Kubernetes Pod tolerations [value for PostgreSQL write-ahead logs volume used for data migration.

Page 289

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B strin connection-poolers
p

dataSource.volumes.pgWALVolume.annotations

The Kubernetes annotations [4 metadata for PostgreSQL write-ahead logs volume used for data

migration.
Value type Example
D label test-annotation: value

dataSource.volumes.pgWALVolume. labels

The Kubernetes labels [4 for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

D label test-label: value

dataSource.volumes.pgBackRestVolume.pvcName

The pgBackRest volume name for the Persistent Volume Claim [4 used for data migration.

Value type Example

8 string cluster1

dataSource.volumes.pgBackRestVolume.directory

The mount point for pgBackRest volume used for data migration.

Value type Example

8 string cluster1

Page 290

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

dataSource.volumes.pgBackRestVolume.tolerations.effect

The Kubernetes Pod tolerations [effect pgBackRest volume used for data migration.

Value type Example

8 strin NoSchedule
g

dataSource.volumes.pgBackRestVolume.tolerations.key

The Kubernetes Pod tolerations [4 key for pgBackRest volume used for data migration.

Value type Example

8 string role

dataSource.volumes.pgBackRestVolume.tolerations.operator

The Kubernetes Pod tolerations [4 operator for pgBackRest volume used for data migration.

Value type Example

B string Equal

dataSource.volumes.pgBackRestVolume.tolerations.value

The Kubernetes Pod tolerations [4 value for pgBackRest volume used for data migration.

Value type Example

B string connection-poolers

dataSource.volumes.pgBackRestVolume.annotations

The Kubernetes annotations [4 metadata for pgBackRest volume used for data migration.

Page 291

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Value type Example

D label test-annotation: value

dataSource.volumes.pgBackRestVolume.labels

The Kubernetes labels [for pgBackRest volume used for data migration.

Value type Example
D label test-label: value
image

The PostgreSQL Docker image to use.

Value type Example
B string perconalab/percona-postgresql-operator:2.7.0-ppg17.5.2-postgres
imagePullPolicy

This option is used to set the policy [4 for updating PostgreSQL images.

Value type Example
8 string Always
postgresVersion

The major version of PostgreSQL to use.

Value type Example

& int 16

Page 292

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images

port

The port number for PostgreSQL.

Value type Example
@ int 5432
expose. annotations

The Kubernetes annotations [4 metadata for PostgreSQL primary.

Value type Example

D label my-annotation: valuel

expose.labels

Set labels [4 for the PostgreSQL primary.

Value type Example
D label my-label: value2
expose.type

Specifies the type of Kubernetes Service [4 for PostgreSQL primary.

Value type Example

B string LoadBalancer

expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no
limitations).

Page 293

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Value type Example

B string "10.0.0.0/8"

exposeReplicas.annotations

The Kubernetes annotations [4 metadata for PostgreSQL replicas.

Value type Example

D label my-annotation: valuel

exposeReplicas.labels

Set labels [for the PostgreSQL replicas.

Value type Example
DO label my-label: value2
exposeReplicas.type

Specifies the type of Kubernetes Service [4 for PostgreSQL replicas.

Value type Example

B string LoadBalancer

exposeReplicas.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no

limitations).
Value type Example
B string "10.0.0.0/8"

Page 294

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Instances section

The instances section in the deploy/cr.yaml [4 file contains configuration options for PostgreSQL
instances. This section contains at least one cluster instance with a number of PostgreSQL instances in it
(cluster instances are groups of PostgreSQL instances used for fine-grained resources assignment).

instances.metadata.labels

Set labels [4 for PostgreSQL Pods.

Value type Example
D label pg-cluster-label: cluster1
instances.name

The name of the PostgreSQL instance.

Value type Example

8 string rs o

instances.replicas

The number of Replicas to create for the PostgreSQL instance.

Value type Example

| int 3

instances.initContainer.image

Defines an image for an init container to run before the main container in the Pod. The init container is
typically used for setup tasks such as initializing filesystems, setting permissions, or preparing

configuration.

Page 295

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Value type Example

8 string perconalab/percona-postgresql-operator:2.7.0

instances.initContainer.resources.limits.cpu

Kubernetes CPU limits 4 for an init container.

Value type Example

8 string 2.0

instances.initContainer.resources.limits.memory

The Kubernetes memory limits [4 for an init container.

Value type Example

4Gi

8 string

instances.initContainer.securityContext

Security settings for the init container. These settings control privileges, user/group IDs, and other
security-related options. For more details, see the Kubernetes documentation on SecurityContext (4

Value type Example

= subdoc runAsUser: 1001
runAsGroup: 1001
runAsNonRoot: true
privileged: false
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true

instances.resources.requests.cpu

Kubernetes CPU requests [4 for a PostgreSQL instance. It must not exceed the limit.

Page 296

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 1.0

instances.resources. requests.memory

Kubernetes memory requests [4 for a PostgreSQL instance. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 361

instances.resources.limits.cpu

Kubernetes CPU limits [4 for a PostgreSQL instance.

Value type Example

B string 2.0

instances.resources.limits.memory

The Kubernetes memory limits [4 for a PostgreSQL instance.

Value type Example

B strin 4Gi
g

instances.containers.replicaCertCopy.resources.requests.cpu

Kubernetes CPU requests [§ for a replica-cert-copy sidecar container. It must not exceed the limit.

Page 297

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

If you specify a limit and don’t specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 100m

instances.containers.replicaCertCopy.resources.requests.memory

Kubernetes memory requests [4 for a replica-cert-copy sidecar container. It must not exceed the

limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

8 string 120Mi

instances.containers.replicaCertCopy.resources.limits.cpu

Kubernetes CPU limits [for replica-cert-copy sidecar container.

Value type Example

8 string 200m

instances.containers.replicaCertCopy.resources.limits.memory

The Kubernetes memory limits [5 for replica-cert-copy sidecar container.

Value type Example

B string 128Mi

instances.topologySpreadConstraints.maxSkew

Page 298

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread
Constraints [4.

Value type Example

B int 1

instances.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology. Spread Constraints [4.

Value type Example

B string my-node-label

instances.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

B string DoNotSchedule

instances.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

D label postgres-operator.crunchydata.com/instance-set: instancel

instances.tolerations.effect

The Kubernetes Pod tolerations [effect for the PostgreSQL instance.

Page 299

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B strin NoSchedule
g

instances.tolerations.key

The Kubernetes Pod tolerations [4 key for the PostgreSQL instance.

Value type Example

B string role

instances.tolerations.operator

The Kubernetes Pod tolerations [4 operator for the PostgreSQL instance.

Value type Example

8 string Equal

instances.tolerations.value

The Kubernetes Pod tolerations [value for the PostgreSQL instance.

Value type Example

B string connection-poolers

instances.priorityClassName

The Kuberentes Pod priority class [4 for PostgreSQL instance Pods.

Value type Example

B string high-priority

Page 300

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass

instances.securityContext

A custom Kubernetes Security Context for a Pod [4 to be used instead of the default one.

Value type Example

= subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: sB:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
value: “600"
- name: net.ipv4.tcp_keepalive_intvl
value: “60”"

instances.walVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the PostgreSQL Write-ahead Log storage.

Value type Example

B string ReadWriteOnce

instances.walVolumeClaimSpec.storageClassName

Set the Kubernetes storage class [to use with the PostgreSQL Write-ahead Log storage
PersistentVolumeClaim (4.

Value type Example

8 string standard

Page 301

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

instances.walVolumeClaimSpec. resources.requests.storage

The Kubernetes storage requests [4 for the storage the PostgreSQL instance will use.

Value type Example

8 strin 16i
g

instances.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the PostgreSQL storage.

Value type Example

8 string ReadWriteOnce

instances.dataVolumeClaimSpec.storageClassName

Set the Kubernetes storage class [4 to use with PosgreSQL Cluster PersistentVolumeClaim [for the

PostgreSQL storage.
Value type Example
8 string standard

instances.dataVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests [for the storage the PostgreSQL instance will use.

Value type Example

B strin 1G1i
g

instances.dataVolumeClaimSpec.resources.limits.storage

The Kubernetes storage limits [4 for the storage the PostgreSQL instance will use.

Page 302

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

B string 5Gi

instances.tablespaceVolumes.name

Name for the custom tablespace volume.

Value type Example

8 string user

instances.tablespaceVolumes.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the tablespace volume.

Value type Example

8 string ReadWriteOnce

instances.tablespaceVolumes.dataVolumeClaimSpec.resources.requests.st
orage

The Kubernetes storage requests [for the tablespace volume.

Value type Example

B string 161

instances.sidecars subsection

The instances.sidecars subsection in the deploy/cryaml [file contains configuration options for
custom sidecar containers which can be added to PostgreSQL Pods.

instances.sidecars. image

Page 303

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Image for the custom sidecar container for PostgreSQL Pods.

Value type Example

B string busybox:latest

instances.sidecars.name

Name of the custom sidecar container for PostgreSQL Pods.

Value type Example

B strin testcontainer
g

instances.sidecars.imagePullPolicy

This option is used to set the policy [4 for the PostgreSQL Pod sidecar container.

Value type Example

8 string Always

instances.sidecars.env

The environment variables set as key-value pairs [4 for the custom sidecar container for PostgreSQL
Pods.

Value type Example

= subdoc

instances.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps [4 for the custom sidecar container for
PostgreSQL Pods.

Page 304

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

Value type Example

= subdoc

instances.sidecars.command

Command for the custom sidecar container for PostgreSQL Pods.

Value type Example

(1 array ["/bin/sh"]

instances.sidecars.args

Command arguments for the custom sidecar container for PostgreSQL Pods.

Value type Example
(@3 array ["-c", "while true; do trap 'exit @' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]
Backup section

The backup section in the deploy/cr.yaml [4 file contains the following configuration options for the
regular Percona Distribution for PostgreSQL backups.

backups.enabled
Enables to turn on/off backups for the cluster. Use this option with caution. Read more in Disable
backups.

Value type Example

B string true

backups.trackLatestRestorableTime

Page 305

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Enables or disables tracking the latest restorable time for latest successful backup (on by default). It can
be turned off to reduced S3 API usage.

Value type Example

@ boolean true

backups.pgbackrest.metadata.labels

Set labels [4 for pgBackRest Pods.

Value type Example

D label pg-cluster-label: cluster1

backups.pgbackrest.image

The Docker image for pgBackRest.

Value type Example

B string docker.io/percona/percona-pgbackrest:2.55.0

backups.pgbackrest.containers.pgbackrest.resources.requests.cpu

Kubernetes CPU requests [4 for a pgBackRest container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

8 string 150m

backups.pgbackrest.containers.pgbackrest.resources.requests.memory

Kubernetes memory requests [4 for a pgBackRest container. It must not exceed the limit.

Page 306

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 120Mi

backups.pgbackrest.containers.pgbackrest.resources.limits.cpu

Kubernetes CPU limits [4 for a pgBackRest container.

Value type Example

8 string 1.0

backups.pgbackrest.containers.pgbackrest.resources.limits.memory

The Kubernetes memory limits [for a pgBackRest container.

Value type Example

B string 161

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.cpu

Kubernetes CPU limits [4 for pgbackrest-config sidecar container.

Value type Example

8 string 1.0

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.memor
y

The Kubernetes memory limits [4 for pgbackrest-config sidecar container.

Page 307

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

B strin 1Gi
g

backups.pgbackrest.containers.pgbackrestConfig.resources.requests.cpu

Kubernetes CPU requests [4 for a pgbackrest-config sidecar container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 156m

backups.pgbackrest.containers.pgbackrestConfig.resources.requests.mem
ory

Kubernetes memory requests [4 for a pgbackrest-config sidecar container. It must not exceed the

limit.

If you specify a limit and don’t specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 120Mi

backups.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object [4 with custom pgBackRest configuration, which will be added to

the pgBackRest configuration generated by the Operator.

Value type

B string

Example

cluster1-pgbackrest-secrets

Page 308

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

backups.pgbackrest. jobs.backoffLimit

The number of retries to make a backup with incremental pauses of 10 seconds, 20 seconds, etc. between
retries. By default it's 8, which means that pgBackRest job Pod fails after first unsuccessful attempt
(causing creation of a new Pod on failure).

Value type Example

B int 2

backups.pgbackrest. jobs.restartPolicy

The Kuberentes Pod restart policy [4 for pgBackRest jobs.

Value type Example

B string OnFailure

backups.pgbackrest. jobs.priorityClassName

The Kuberentes Pod priority class [4 for pgBackRest jobs.

Value type Example

8 string high-priority

backups.pgbackrest. jobs.resources.limits.cpu

Kubernetes CPU limits [4 for a pgBackRest job.

Value type Example

& int 200

backups.pgbackrest. jobs.resources.limits.memory

The Kubernetes memory limits [4 for a pgBackRest job.

Page 309

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

B string 128Mi

backups.pgbackrest. jobs.resources.requests.cpu

Kubernetes CPU requests [4 for a pgBackRest job. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

8 string 156m

backups.pgbackrest. jobs.resources.requests.memory

Kubernetes memory requests [4 for pgBackRest job. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 120Mi

backups.pgbackrest. jobs.tolerations.effect

The Kubernetes Pod tolerations [4 effect for a backup job.

Value type Example

B strin NoSchedule
g

backups.pgbackrest. jobs.tolerations.key

The Kubernetes Pod tolerations [key for a backup job.

Page 310

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

8 string role

backups.pgbackrest. jobs.tolerations.operator

The Kubernetes Pod tolerations [4 operator for a backup job.

Value type Example

B string Equal

backups.pgbackrest. jobs.tolerations.value

The Kubernetes Pod tolerations [value for a backup job.

Value type Example

B strin connection-poolers
p

backups.pgbackrest. jobs.securityContext

A custom Kubernetes Security Context for a Pod [4 to be used instead of the default one.

Page 311

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

Value type Example

= subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: sB:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
value: “600"
- name: net.ipv4.tcp_keepalive_intvl
value: “60”"

backups.pgbackrest.global

Settings, which are to be included in the global section of the pgBackRest configuration generated by

the Operator.

Value type Example

= subdoc repol-retention-full: “14”
repol-retention-full-type: time

repol-cipher-type: aes-256-cbc
repol-s3-uri-style: path

repol-path: /pgbackrest/postgres-operator/clusteri/repol

repo2-path: /pgbackrest/postgres-operator/clusteri-multi-repo/repo2
repo3-path: /pgbackrest/postgres-operator/clusteri-multi-repo/repo3
repod4-path: /pgbackrest/postgres-operator/clusteri-multi-repo/repo4

backups.pgbackrest.repoHost.resources.requests.cpu

Kubernetes CPU requests [4 for a pgBackRest repo. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested

value for a resource.

Page 312

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

B string 156m

backups.pgbackrest.repoHost.resources.requests.memory

Kubernetes memory requests [4 for pgBackRest repo. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 120Mi

backups.pgbackrest.repoHost.resources.limits.cpu

Kubernetes CPU limits [for a pgBackRest repo.

Value type Example

i@ int 200

backups.pgbackrest.repoHost.resources.limits.memory

The Kubernetes memory limits [4 for a pgBackRest repo.

Value type Example

B string 128Mi

backups.pgbackrest.repoHost.priorityClassName

The Kuberentes Pod priority class [4 for pgBackRest repo.

Page 313

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass

Value type Example

8 string high-priority

backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread
Constraints [4.

Value type Example

B int 1

backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

B string my-node-1label

backups.pgbackrest.repoHost. topologySpreadConstraints.whenUnsatisfiab
le

What to do with a Pod if it doesn't satisfy the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

8 string ScheduleAnyway

backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelector.m
atchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints [4.

Page 314

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Value type Example

D label postgres-operator.crunchydata.com/pgbackrest: ""

backups.pgbackrest.repoHost.affinity.podAntiAffinity

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

Value type Example

= subdoc

backups.pgbackrest.repoHost.tolerations.effect

The Kubernetes Pod tolerations [effect for pgBackRest repo.

Value type Example

B string NoSchedule

backups.pgbackrest.repoHost.tolerations.key

The Kubernetes Pod tolerations [4 key for pgBackRest repo.

Value type Example

B string role

backups.pgbackrest.repoHost.tolerations.operator

The Kubernetes Pod tolerations [4 operator for pgBackRest repo.

Value type Example

B string Equal

Page 315

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

backups.pgbackrest.repoHost.tolerations.value

The Kubernetes Pod tolerations [value for pgBackRest repo.

Value type Example

B strin connection-poolers
p

‘backups.pgbackrest.repoHost.securityContext’

A custom Kubernetes Security Context for a Pod [4 to be used instead of the default one.

Value type Example

= subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: s0:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
value: “600"
- name: net.ipv4.tcp_keepalive_intvl
value: “60”"

backups.pgbackrest.manual. repoName

Name of the pgBackRest repository for on-demand backups.

Value type Example

B string repot

backups.pgbackrest.manual.options

Page 316

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

The on-demand backup command-line options which will be passed to pgBackRest for on-demand

backups.
Value type Example
B string --type=full

backups.pgbackrest.manual.initialDelaySeconds

The time to delay a backup start after the backup Pod is scheduled. The backup process wait for the
defined time before it connectsto the API server to start a backup.

Value type Example

i int 120

backups.pgbackrest.repos.name

Name of the pgBackRest repository for backups.

Value type Example

8 string repol

backups.pgbackrest.repos.schedules.full

Scheduled time to make a full backup specified in the crontab format (4.

Value type Example

B string 00 * * 6

backups.pgbackrest.repos.schedules.differential

Scheduled time to make a differential backup specified in the crontab format [4.

Page 317

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

Value type Example

8 string 0 0 * * 6

backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the pgBackRest Storage.

Value type Example

B string ReadWriteOnce

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName

Set the Kubernetes Storage Class [4 to use with the Percona Operator for PosgreSQL backups stored on

Persistent Volume.

Value type Example

B string standard

backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests.st
orage

The Kubernetes storage requests [4 for the pgBackRest storage.

Value type Example

B strin 1Gi
g

backups.pgbackrest.repos.s3.bucket

The Amazon S3 bucket [4 name used for backups

Page 318

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

Value type Example

B string "my-bucket"”

backups.pgbackrest.repos.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original

Amazon S3 cloud).

Value type Example

B string "s3.ca-central-1.amazonaws.com"

backups.pgbackrest.repos.s3.region

The AWS region [4 to use for Amazon and all S3-compatible storages.

Value type Example

8 string "ca-central-1"

backups.pgbackrest.repos.gcs.bucket

The Google Cloud Storage bucket [4 name used for backups.

Value type Example

8 string "my-bucket"

backups.pgbackrest.repos.azure.container

Name of the Azure Blob Storage container [4 for backups.

Page 319

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers

Value type Example

8 string my-container

backups.restore.tolerations.effect

The Kubernetes Pod tolerations [effect for the backup restore job.

Value type Example

B string NoSchedule

backups.restore.tolerations.key

The Kubernetes Pod tolerations [key for the backup restore job.

Value type Example

8 string role

backups.restore.tolerations.operator

The Kubernetes Pod tolerations [4 operator for the backup restore job.

Value type Example

B string Equal

backups.restore.tolerations.value

The Kubernetes Pod tolerations [value for the backup restore job.

Value type Example

B string connection-poolers

Page 320

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

PMM section

The pmm section in the deploy/cr.yaml [4 file contains configuration options for Percona Monitoring and
Management.

pmm.enabled

Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM [4.

Value type Example
@ boolean false
pmm.image

Percona Monitoring_and Management (PMM)_Client [4 Docker image.

Value type Example
8 string percona/pmm-client:3.3.0
pmm.imagePullPolicy

This option is used to set the policy [4 for updating PMM Client images.

Value type Example
8 string IfNotPresent
pmm.secret

Name of the Kubernetes Secret object [4 for the PMM Server password.

Value type Example

8 string cluster1-pmm-secret

Page 321

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

pmm.serverHost

Address of the PMM Server to collect data from the cluster.

Value type Example

B string monitoring-service

pmm.customClusterName

A custom name to define for a cluster. PMM Server uses this name to properly parse the metrics and
display them on dashboards. Using a custom name is useful for clusters deployed in different data

centers - PMM Server connects them and monitors them as one deployment. Another use case is for
clusters deployed with the same name in different namespaces - PMM treats each cluster separately.

Value type Example

B string postgresqgl-cluster

pmm. resources.requests.cpu

Kubernetes CPU requests [4 for a PMM Client container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

8 string 150m

pmm.resources.requests.memory

Kubernetes memory requests [4 for PMM Client container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested

value for a resource.

Page 322

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

B string 120Mi

pmm. resources.limits.cpu

Kubernetes CPU limits [for a PMM Client container.

Value type Example

& int 200

pmm. resources.limits.memory

The Kubernetes memory limits (4 for a PMM Client container.

Value type Example
8 string 128Mi
pmm.querySource

Query source to track PostgreSQL statistics. Either pg_stat_monitor (pgstatmonitor, the default value)
or pg_stat_statements (pgstatstatements) can be used.

Value type Example
8 string pgstatmonitor
pmm.postgresParams

Additional parameters which will be passed to the pmm-admin add postgresql command for
PostgreSQL Pods.

Page 323

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

8 string

Proxy section

The proxy section in the deploy/cr.yaml [4 file contains configuration options for the pgBouncer [4
connection pooler for PostgreSQL.

proxy.pgBouncer.metadata.labels

Set Jabels [4 for pgBouncer Pods.

Value type Example

D label pg-cluster-label: cluster1

proxy.pgBouncer.replicas

The number of the pgBouncer Pods to provide connection pooling.

Value type Example

B int 3

proxy.pgBouncer.image

Docker image for the pgBouncer [4 connection pooler.

Value type Example

8 string docker.io/percona/percona-pgbouncer:1.24.1

proxy.pgBouncer.exposeSuperusers

Enables or disables exposing_superuser user through pgBouncer.

Page 324

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/

Value type Example

@ boolean false

proxy.pgBouncer.resources.requests.cpu

Kubernetes CPU requests [4 for a pgBouncer container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

8 string 156m

proxy.pgBouncer.resources.requests.memory

Kubernetes memory requests [4 for a pgBouncer container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

B string 120Mi

proxy.pgBouncer.resources.limits.cpu

Kubernetes CPU limits [4 for a pgBouncer container.

Value type Example

8 string 200m

proxy.pgBouncer.resources.limits.memory

The Kubernetes memory limits [for a pgBouncer container.

Page 325

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

B string 128Mi

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.cpu

Kubernetes CPU limits [4 for pgbouncer-config sidecar container.

Value type Example

8 string 1.0

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.memory

The Kubernetes memory limits [4 for pgbouncer-config sidecar container.

Value type Example

B string 16i

proxy.pgBouncer.containers.pgbouncerConfig.resources.requests.cpu

Kubernetes CPU requests [4 for a pgbouncer-config sidecar container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Value type Example

8 string 150m

proxy.pgBouncer.containers.pgbouncerConfig.resources.requests.memory

Kubernetes memory requests [4 for a pgbouncer-config sidecar container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the requested
value for a resource.

Page 326

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

8 string 120Mi

proxy.pgBouncer.expose.type

Specifies the type of Kubernetes Service [4 for pgBouncer.

Value type Example

B strin ClusterIP
g

proxy.pgBouncer.expose.annotations

The Kubernetes annotations [4 metadata for pgBouncer.

Value type Example

D label pg-cluster-annot: cluster1

proxy.pgBouncer.expose. labels

Set labels [4 for the pgBouncer Service.

Value type Example

D label pg-cluster-label: cluster1

proxy.pgBouncer.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there is no

limitations).
Value type Example
8 string "10.0.0.0/8"

Page 327

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

proxy.pgBouncer.affinity.podAntiAffinity

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

= subdoc

Value type

Example

‘proxy.pgBouncer.securityContext’

A custom Kubernetes Security Context for a Pod [4 to be used instead of the default one.

Value type

= subdoc

Example

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: s0:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
value: “600"
- name: net.ipv4.tcp_keepalive_intvl
value: “60”"

proxy.pgBouncer.config

Custom configuration options for pgBouncer. Please note that configuration changes are automatically
applied to the running instances without validation, so having an invalid config can make the cluster

unavailable.
Value type Example
= subdoc global:

pool_mode: transaction

Page 328

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

proxy.pgBouncer.sidecars subsection

The proxy.pgBouncer.sidecars subsection in the deploy/cr.yaml [file contains configuration options

for custom sidecar containers which can be added to pgBouncer Pods.

proxy.pgBouncer.sidecars.image

Image for the custom sidecar container for pgBouncer Pods.

Value type Example

B string mycontainerl:latest

proxy.pgBouncer.sidecars.name

Name of the custom sidecar container for pgBouncer Pods.

Value type Example

B string testcontainer

proxy.pgBouncer.sidecars.imagePullPolicy

This option is used to set the policy [4 for the pgBouncer Pod sidecar container.

Value type Example

B string Always

proxy.pgBouncer.sidecars.env

The environment variables set as key-value pairs [4 for the custom sidecar container for pgBouncer Pods.

Value type Example

= subdoc

Page 329

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

proxy.pgBouncer.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps [for the custom sidecar container for

pgBouncer Pods.

Value type Example

= subdoc

proxy.pgBouncer.sidecars.command

Command for the custom sidecar container for pgBouncer Pods.

Value type Example

(1 array ["/bin/sh"]

proxy.pgBouncer.sidecars.args

Command arguments for the custom sidecar container for pgBouncer Pods.

Value type Example

3 array ["-c", "while true; do trap 'exit @' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Patroni Section

The patroni section in the deploy/cr.yaml [file contains configuration options to customize the
PostgreSQL high-availability implementation based on Patroni [4.

Value type Example

B int 3

patroni.syncPeriodSeconds

Page 330

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/

How often to perform liveness/readiness probes [for the patroni container (in seconds).

Value type Example

B int 3

patroni.leaderLeaseDurationSeconds

Initial delay for liveness/readiness probes [4 for the patroni container (in seconds).

patroni.dynamicConfiguration

Custom PostgreSQL configuration options. Please note that configuration changes are automatically
applied to the running instances without validation, so having an invalid config can make the cluster

unavailable.
Value type Example
= subdoc postgresql:

parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

patroni.switchover.enabled

Enables or disables manual change of the cluster primary instance.

Value type Example

B string true

patroni.switchover.targetInstance

The name of the Pod that should be set as the new primary. When not specified, the new primary will be

selected randomly.

Page 331

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes

Value type Example

8 string

patroni.createReplicaMethods

Defines available replica creation methods and the order of executing them during a cluster start or

reinitialisation. Patroni will stop on the first one that returns 0.

By default, pg_basebackup is used to create replicas during a new cluster deployment. After the Operator

makes an initial backup, it updates the Patroni ConfigMap assing the pgBackRest as the first item in the

list. This configuration is not propagated to Patroni itself until you restart the database instance Pods or

manually reload Patroni configuration.

In the same way, after you define the replica set methods and apply the configuration, the Operator

updates the Patroni ConfigMap. You must manually reload Patroni configuration of every database

instance to make Patroni aware of the changes. Read more about setting replica methods in the Configure

create_replica_methods section.

Value type Example
8 string - pgbackrest
- basebackup

Custom extensions Section

The extensions section in the deploy/cr.yaml [file contains configuration options to manage

PostgreSQL extensions.

extensions.image

Image for the custom PostgreSQL extension loader sidecar container.

Value type Example

B string docker.io/percona/percona-postgresql-operator:2.7.0

Page 332

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

extensions.imagePullPolicy

Policy [for the custom extension sidecar container.

Value type Example

8 string Always

extensions.storage.type

The cloud storage type used for backups. Only s3 type is currently supported.

Value type Example

B string s3

extensions.storage.bucket

The Amazon S3 bucket [4 name for prepackaged PostgreSQL custom extensions.

Value type Example

B string pg-extensions

extensions.storage.region

The AWS region [to use.

Value type Example

B string eu-central-1

extensions.storage.endpoint

The S3 endpoint [to use.

Page 333

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html
https://docs.aws.amazon.com/general/latest/gr/s3.html

Value type Example

8 string s3.eu-central-1.amazonaws.com

extensions.storage.secret.name

The Kubernetes secret [for the custom extensions storage. It should contain ANS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY keys.

Value type Example

B string clusterl-extensions-secret

extensions.builtin.pg_stat_monitor

Enable or disable pg_stat_monitor [4 PostgreSQL extension.

Value type Example

@ boolean true

extensions.builtin.pg_audit

Enable or disable PGAudit [4 PostgreSQL extension.

Value type Example

@ boolean true

extensions.builtin.pgvector

Enable or disable pgvector [4 PostgreSQL extension. This extension is not compatible with PostgreSQL
12!

Page 334

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.percona.com/pg-stat-monitor/index.html
https://docs.percona.com/pg-stat-monitor/index.html
https://docs.percona.com/pg-stat-monitor/index.html
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector

Value type Example

@ boolean false

extensions.builtin.pg_repack

Enable or disable pg_repack [4 PostgreSQL extension.

Value type Example

@ boolean false

extensions.custom.name

Name of the PostgreSQL custom extension.

Value type Example

B string pg_cron

extensions.custom.version

Version of the PostgreSQL custom extension.

Value type Example

B string 1.6.1

Page 335

https://github.com/reorg/pg_repack
https://github.com/reorg/pg_repack
https://github.com/reorg/pg_repack

Backup Resource Options

A Backup resource is a Kubernetes object that tells the Operator how to create and manage your database
backups. The deploy/backup.yaml file is a template for creating backup resources when you make an
on-demand backup. It defines the PerconaPGBackup resource.

This document describes all available options that you can use to customize your backups.

apiVersion

Specifies the API version of the Custom Resource. pgv2.percona.com indicates the group, and v2 is the
version of the API.

kind

Defines the type of resource being created: PerconaPGBackup .

metadata

The metadata part of the deploy/backup.yaml contains metadata about the resource, such as its name
and other attributes. It includes the following keys:

e name - The name of the backup resource used to identify it in your deployment. You also use the
backup name for the restore operation.

spec
This subsection includes the configuration of a backup resource.

pgCluster

Specifies the name of the PostgreSQL cluster to back up.

Value type Example

B string cluster1

Page 336

repoName

Specifies the name of the pgBackRest repository where to save a backup. It must match the name you
specified in the spec.backups.pgBackRest.repos subsection of the deploy/cr.yaml file.

Value type Example
B string repof
options

You can customize the backup by specifying different command line options supported by pgBackRest

:octicons-external-link-16:.

Value type Example

8 string --type=full

Page 337

https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

Restore Resource Options

A Restore resource is a Kubernetes object that tells the Operator how to restore your database from a
specific backup. The deploy/restore.yaml file is a template for creating restore resources. It defines
the PerconaPGRestore resource.

This document describes all available options that you can use to customize a restore.

apiVersion

Specifies the API version of the Custom Resource. pgv2.percona.com indicates the group, and v2 is the
version of the API.

kind

Defines the type of resource being created: PerconaPGRestore.

metadata

The metadata part of the deploy/restore.yaml contains metadata about the resource, such as its
name and other attributes. It includes the following keys:

¢ name - The name of the restore resource used to identify it in your deployment. You use this name to
track the restore operation status and view information about it.

spec
This subsection includes the configuration of a restore resource.

pgCluster

Specifies the name of the PostgreSQL cluster to restore.

Value type Example

B string restorefl

Page 338

repoName

Specifies the name of one of the 4 pgBackRest repositories, already configured in the
backups.pgbackrest.repos subsection of the deploy/cr.yaml file.

Value type Example
B string repof
options

Specify the command line options supported by pgBackRest :octicons-external-link-16:. For example, to

make a point-in-time restore.

Value type Example

B string --type=time
--target=YYYY-MM-DD HH:MM:DD +00

Page 339

https://pgbackrest.org/configuration.html

Secrets Resource options

A Kubernetes Secret is an object used to store sensitive data, such as passwords, tokens, or keys in a
secure and manageable way. Unlike ConfigMaps, Secrets are specifically designed to hold confidential
information and can be mounted as volumes or injected into environment variables within Pods.

apiVersion

Specifies the API version of the Custom Resource.

kind

Defines the type of resource being created: Secret.

metadata.name

Contains the metadata about the resource, such as its name.

type

Defines the type of data stored within the Secret resource. Opague type signals to Kubernetes and to the
Operator that the content of the secret is custom and unstructured.

stringData

The data that you pass to the Operator within the Secret.

Value type Example

8 string PMM_SERVER_TOKEN

Page 340

Percona certified images

Find Percona’s certified Docker images that you can use with the Percona Operator for PostgreSQL in the
following table:

Images released with the Operator version 2.7.0:

Image Digest

percona/percona-postgresql- 96e4e3d7ed4bcbd4880adebc5cch958c0f4385298f0becdef2eb14b81fab407e5
operator:2.7.0 (x86_64)

percona/percona-postgresql- 055da3233a7765f22b318c97223909c20ecbbc9f34c6a8f7845d04ade51364ca
operator:2.7.0 (ARM64)

percona/percona-postgresql- cfb99ebeec00abbefb4fcada8da2b8c3b489dd792bd2f907848197ba09bc9553
operator:2.7.0-ppg17.5.2-

postgres

percona/percona-postgresql- 0787088575b4e4dfec368acbcfddd7aead9620ec4524451e3b44ed424fb0eeebb

operator:2.7.0-ppg16.9-postgres

percona/percona-postgresql- c93f52eald6ec955a368c4539b843a9c57eeda5acc907f0dfb59ae3018560d1b
operator:2.7.0-ppg15.13-
postgres

percona/percona-postgresql- a24059edd9864f7dc9607c3e2964844f417718a5b9f471ceb98c0a0d774a4bca
operator:2.7.0-ppg14.18-
postgres

percona/percona-postgresql- 2¢9a05399b34cfe79698bdaab66db8fdaece0db7b1fa34441124cccdbe375255
operator:2.7.0-ppg13.21-
postgres

percona/percona-postgresql- 860ccc180cTacbbe3c34c354d6ba9148b00330e183ba5913954e34d49c95d22f
operator:2.7.0-ppg17.5.2-
postgres-gis3.3.8

percona/percona-postgresql- ca50f560bc7b3e18ec3360dc1a6b8c860e0346472af051cb0d2aec2a7a45d8b3
operator:2.7.0-ppg16.9-postgres-
gis3.3.8

Page 341

Image

percona/percona-postgresql-
operator:2.7.0-ppg15.13-
postgres-gis3.3.8

percona/percona-postgresql-
operator:2.7.0-ppg14.18-
postgres-gis3.3.8

percona/percona-postgresql-
operator:2.7.0-ppg13.21-
postgres-gis3.3.8

percona/percona-
pgbouncer:1.24.1

percona/percona-
pgbouncer:1.24.1 (ARM64)

percona/percona-
pgbackrest:2.55.0

percona/percona-
pgbackrest:2.55.0 (ARM64)

percona/pmme-client:2.44.1

percona/pmme-client:2.44.1
(ARM®64)

percona/pmm-client:3.3.0

percona/pmme-client:3.3.0
(ARM®64)

Digest

bb6707fd12ea430708e2eb22f6c7dadf3ab4258fcfd31e86f1f78c66ba211742

¢c3b55d1394d8f0a476cea29340442313c9c08dcd8c83f31ccfc66afdbde42488

3df44c1089563b42198ef929e27b9797ef2b04d92736293952163fa7541c0068

451431afa3cd288ecda92b6446bec8833fbf376fbd1b7c7e314fc42f3355255f

479aa893e55c5afe8b97852c90d7551dc55d3fc526773a5a7d992876bbf54chb0

b0d2defbc7a07cf395b1fabc6e13d9d3267c3a2d3c52362ac440db26eadadbad

bc15d058e7820499bf67ccec2fe51c583fe67abe3ed55ec28adf3e252828924a

8b2eaddffd626f02a2d5318ffebc0c277fe8457da6083b8cfcada9b6e6168616

337fecd4afdb3f6daf2caa2b341b9fe41d0418a0e4ec76980c7f29be9d08b5ea

0f4ef6a814946f83ef1ed26cf3526ff606fc7815007f84995492d3e4eaal5a0e

c03aa678d26faf783c3598b3a139a8f3154e5bf1bc9f5a3c9abf0533922f79d6

For older versions, please refer to the old releases documentation archive [4).

Page 342

https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/
https://docs.percona.com/legacy-documentation/

Versions compatibility

Versions of the cluster components and platforms tested with different Operator releases are shown
below. Other version combinations may also work but have not been tested.

Cluster components:

Operator PostgreSQL pgBackRest [pgBouncer (4
54

2.7.0 13-17 2.55.0 1.24.1

2.6.0 13-17 2.54.2 for PostgreSQL 13-16 and 1.24.0 for PostgreSQL 13-16 and
17.4, 17.2,
2.54.0 for PostgreSQL 17.2 1.23.1 for PostgreSQL 17

2.5.1 12-16 2.54.2 1.24.0

2.5.0 12-16 2.53-1 1.23.1

241 12-16 2.51 1.22.1

2.4.0 12-16 2.51 1.22.1

2.3.1 12-16 2.48 1.18.0

2.3.0 12-16 2.48 1.18.0

2.2.0 12-15 2.43 1.18.0

2.1.0 12-15 2.43 1.18.0

2.0.0 12-14 2.41 1.17.0

1.6.0 12-14 2.50 1.22.0

1.5.1 12-14 2.47 1.20.0

1.5.0 12-14 2.47 1.20.0

1.4.0 12-14 2.43 1.18.0

Page 343

https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html

Operator PostgreSQL pgBackRest [4 pgBouncer (4
54

1.3.0 12-14 2.38 1.17.0

1.2.0 12-14 2.37 1.16.1

1.1 12-14 2.34 1.16.0 for PostgreSQL 12,

1.16.1 for other versions
1.0.0 12-13 2.33 1.13.0
Platforms:
Operator KE (7 EKS (4 Openshift (7 Azure Kubernetes Service Minikube
(AKS).(4 54

2.6.0 1.29-1.31 1.29-1.32 414-4.18 1.29-1.31 1.35.0

2.5.1 1.28-1.30 1.28-1.30 4.13.46 - 1.28-1.30 1.33.1
4.16.7

2.5.0 1.28-1.30 1.28-1.30 4.13.46 - 1.28-1.30 1.33.1
4.16.7

2.4.1 1.27-1.29 1.27-1.30 4.12.59 - - 1.33.1
4.15.18

2.4.0 1.27-1.29 1.27-1.30 4.12.59 - - 1.33.1
4.15.18

2.3.1 1.24-1.28 1.24-1.28 4.11.55- - 1.32
4.14.6

2.3.0 1.24-1.28 1.24-1.28 4.11.55- - 1.32
4.14.6

2.2.0 1.23-1.26 1.23-1.27 - - 1.30.1

2.1.0 1.23-1.25 1.23-1.25 - - -

Page 344

https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Operator

N
o
o

—
(o)}
o

—
a1
—

—
a1
o

—
~
o

—
w
o

—
o

—
—
o

Y
o
o

1.22-1.25

1.26-1.29

1.24-1.28

1.24-1.28

1.22-1.25

1.21-1.24

1.19-1.22

1.19-1.22

1.17-1.21

m
(72
RV

1.26-1.29

1.24-1.28

1.24-1.28

1.22-1.25

1.20-1.22

1.19-1.21

1.18-1.21

1.21

Openshift (5

4.12.57 -
4.15.13

4.11-4.14

4.11-4.14

4.10-4.12

4.7-4.10

4.7-4.10

4.7-4.9

46-4.8

Azure Kubernetes Service
(AKS) (4

Minikube

54

1.33

1.32

1.32

1.28

Page 345

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html

Copyright and licensing information

Documentation licensing

Percona Operator for PostgreSQL documentation is (C)2009-2023 Percona LLC and/or its affiliates and is
distributed under the Creative Commons Attribution 4.0 International License [4.

Page 346

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Trademark policy

This Trademark Policy [is to ensure that users of Percona-branded products or services know that what

they receive has really been developed, approved, tested and maintained by Percona. Trademarks help to
prevent confusion in the marketplace, by distinguishing one company’s or person’s products and services
from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB,
XtraBackup, Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons and
logos associated with these marks. Both the unregistered and registered marks of Percona are protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product, service,
website, or other use is not permitted without Percona’s written permission with the following three limited
exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a bona
fide Percona product.

Second, when Percona has released a product under a version of the GNU General Public License (“GPL"),
you may use the appropriate Percona mark when distributing a verbatim copy of that product in
accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona
software that has been modified with minor changes for the sole purpose of allowing the software to
operate on an operating system or hardware platform for which Percona has not yet released the
software, provided that those third party changes do not affect the behavior, functionality, features, design
or performance of the software. Users who acquire this Percona-branded software receive substantially
exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example, if
Percona believes that your modification is beyond the scope of the limited license granted in this Policy or
that your use of the Percona mark is detrimental to Percona, Percona will revoke this authorization. Upon
revocation, you must immediately cease using the applicable Percona mark. If you do not immediately
cease using the Percona mark upon revocation, Percona may take action to protect its rights and interests
in the Percona mark. Percona does not grant any license to use any Percona mark for any other modified
versions of Percona software; such use will require our prior written permission.

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to truncate,
modify or otherwise use any Percona mark as part of your own brand. For example, if XYZ creates a

modified version of the Percona Server, XYZ may not brand that modification as “XYZ Percona Server” or
“Percona XYZ Server”, even if that modification otherwise complies with the third exception noted above.

Page 347

https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy
https://www.percona.com/trademark-policy

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy, as
amended from time to time. For instance, any mention of Percona trademarks should include the full
trademarked name, with proper spelling and capitalization, along with attribution of ownership to Percona
Inc. For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is acceptable to
omit the word “Percona” for brevity on the second and subsequent uses, where such omission does not
cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy, please
contact trademarks@percona.com for assistance and we will do our very best to be helpful.

Page 348

mailto:trademarks@percona.com

Release Notes

Page 349

Percona Operator for PostgreSQL Release
Notes

e Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

o Percona Qperator for PostgreSQL 2.6.0 (2025-03-17)

e Percona Operator for PostgreSQL 2.5.1 (2024-03-03)

e Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

e Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

e Percona Qperator for PostgreSQL 2.4.0 (2024-06-24)

e Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

e Percona Qperator for PostgreSQL 2.3.0 (2023-12-21)

e Percona Operator for PostgreSQL 2.2.0 (2023-06-30),

e Percona Qperator for PostgreSQL 2.1.0 Tech preview (2023-05-04)
e Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30),

Page 350

Percona Operator for PostgresQL 2.7.0 (2025~
07-18)

(Get started with the Operator >)

Release Highlights

This release provides the following features and improvements:

PMM3 support

The Operator is natively integrated with PMM 3, enabling you to monitor the health and performance of
your Percona Distribution for PostgreSQL deployment and at the same time enjoy enhanced performance,
new features, and improved security that PMM 3 provides.

Note that the Operator supports both PMM2 and PMM3. The decision on what PMM version is used
depends on the authentication method you provide in the Operator configuration: PMM2 uses API keys
while PMM3 uses service account token. If the Operator configuration contains both authentication
methods with non-empty values, PMM3 takes the priority.

To use PMM, ensure that the PMM client image is compatible with the PMM Server version. Check
Percona certified images for the correct client image.

For how to configure monitoring with PMM see the documentation.

Improved monitoring for clusters in multi-region or multi-namespace
deployments in PMM

Now you can define a custom name for your clusters deployed in different data centers. This name helps
Percona Management and Monitoring (PMM) Server to correctly recognize clusters as connected and
monitor them as one deployment. Similarly, PMM Server identifies clusters deployed with the same names
in different namespaces as separate ones and correctly displays performance metrics for you on
dashboards.

To assign a custom name, define this configuration in the Custom Resource manifest for your cluster:

spec:
pmm :
customClusterName: postgresql-cluster

Page 351

Added labels to identify the version of the Operator

Custom Resource Definition (CRD) is compatible with the last three Operator versions. To know which
Operator version is attached to it, we've added labels to all Custom Resource Definitions. The labels help
you identify the current Operator version and decide if you need to update the CRD. To view the labels, run:
kubectl get crd perconapgclusters.pgv2.percona.com --show-labels.

Grant users access to a public schema

Starting with PostgreSQL 15, a non-database owner cannot access the default public schema and
cannot create tables in it. We have improved this behavior so that the Operator creates a user and a
schema with the name matching the username for all databases listed for this user. This custom schema
is set by default enabling you to work in the database right away.

You can explicitly grant access to a public schema for a non-superuser setting the
grantPublicSchemaAccess optionto true. This grants the user permission to create tables and update
in the public schema of every database they own. If multiple users are granted access to the public
schema in the same database, each user can only access the tables they have created themselves. If you
want one user to access tables created by another user in the public schema, the owner of those tables
must connect to PostgreSQL and explicitly grant the necessary privileges to the other user.

Superusers have access to the public schema for their databases by default.

Improved troubleshooting with the ability to override Patroni
configuration

You can now override Patroni configuration for the whole cluster as well as for an individual Pod. This
gives you more control over the database and simplifies troubleshooting.

Also, you can redefine what method the Operator will use when it creates replica instances in your
PostgreSQL cluster. For example, to force the Operator to use pgbasebackup, edit the deploy/cr.yaml
manifest:

patroni:
createReplicaMethods:
- basebackup
- pgbackrest

Note that after you apply this configuration, the Operator updates the Patroni ConfigMap, but it doesn't

apply this configuration to Patroni. You must manually reload the Patroni configuration of every database
instance for it to come into force.

Page 352

Read more about these troubleshooting methods in the documentation.

Changelog

New features

e K8SPG-615 - Introduced a custom delay on the entrypoint of the backup pod. The backup process waits
the defined time before connecting to the API server

o K8SPG-708, KBSPG-663 - Added the sleep-forever feature to keep a database container running.

e K8SPG-712 - Added the ability to control every parameter supported by Patroni configuration.
o K8SPG-725 - Added the ability to configure resources for the repo-host container
e K8SPG-719 - Added support for PMM v3

Improvements

e K8SPG-571 - Added the ability to access to a public schema for a non-superuser custom user for every
database listed for them.

o K8SPG-612 - Updated the pgBouncer image to use the official percona-pgbouncer Docker image
e K8SPG-613 - Updated the pgBackRest image to use the official percona-pgbackrest Dockerimage

o K8SPG-654 - Added the ability to add custom parameters in the Custom Resource and pass them to
PMM.

o K8SPG-675 - Added the ability to define resource requests for CPU and memory

e K8SPG-704 - Added the ability to configure create_replica_methods for Patroni
e K8SPG-710 - Added the ability to disable backups

e K8SPG-715 - Improved custom-extensions e2e test by adding pgvector

o K8SPG-726 - Added ability to define security context for all sidecar containers

o K8SPG-729 - Added Labels for Custom Resource Definitions (CRD) to identify the Operator version
attached to them

e K8SPG-732 - Enhanced readability of pgbackrest debug logs by printing log messages on separate
lines

o K8SPG-738 - Added startup log to the Operator Pod to print commit hash, branch and build time

Page 353

https://perconadev.atlassian.net/browse/K8SPG-615
https://perconadev.atlassian.net/browse/K8SPG-708
https://perconadev.atlassian.net/browse/K8SPG-663
https://perconadev.atlassian.net/browse/K8SPG-712
https://perconadev.atlassian.net/browse/K8SPG-725
https://perconadev.atlassian.net/browse/K8SPG-719
https://perconadev.atlassian.net/browse/K8SPG-571
https://perconadev.atlassian.net/browse/K8SPG-612
https://perconadev.atlassian.net/browse/K8SPG-613
https://perconadev.atlassian.net/browse/K8SPG-654
https://perconadev.atlassian.net/browse/K8SPG-675
https://perconadev.atlassian.net/browse/K8SPG-704
https://perconadev.atlassian.net/browse/K8SPG-710
https://perconadev.atlassian.net/browse/K8SPG-715
https://perconadev.atlassian.net/browse/K8SPG-726
https://perconadev.atlassian.net/browse/K8SPG-729
https://perconadev.atlassian.net/browse/K8SPG-732
https://perconadev.atlassian.net/browse/K8SPG-738

o K8SPG-743 - Disabled client-side rate limiting in the Kubernetes Go client to avoid throttling errors when
managing multiple clusters with a single operator. This change leverages Kubernetes' server-side
Priority and Fairness mechanisms introduced in v1.20 and later. (Thank you Joshua Sierles for
contributing to this issue)

e K8SPG-744 - Improved Contributing guide with the steps how to build the Operator for development
purposes

o K8SPG-717, KBSPG-750 - Added the ability to define a custom cluster name for PMM for filtering

o K8SPG-753 - Added the ability to enable pg_stat_statements instead of pg_stat_monitor
o K8SPG-761 - Added the ability to add concurrent reconciliation workers

o K*SPG-828 - Added registry name to images due to Openshift 4.19 changes

Bugs Fixed

e K8SPG-532 - Improved log visibility to include logs about missing data source to INFO logs
o K8SPG-574 - Added pg_repack to the list of built-in extensions in the Custom Resource

o K8SPG-661 - Added documentation about replica reinitialization in the Operator

e K8SPG-677 - Made the imagePullPolicy in pg-db Helm chart configurable

e K8SPG-680 - Prevent scheduled backups to start until the volume expansion is completed with
success.

o K8SPG-698 - Fixed the issue with pgbackrest service account not being created and reconciliation
failing by creating the StatefulSet for this service account first

o KB8SPG-703 - Fixed the issue with the backup Pod being stuck in a running state due to running jobs
being deleted because of the TTL expiration by adding an internal finalizer to keep the job running until
it finishes

o K8SPG-722 - Documented the replica reinitialization behavior.

o K8SPG-772 - Fixed the issue with WAL watcher panicking if some backups have no CompletedAt
status field by using CreationTimestamp as fallback.

o K8SPG-782 - Fixed the issue with crashing WALWatcher by assigning Patroni version to status when
Patroni label is configured through the Custom resource option

e K8SPG-785 - Fixed PMM template in Helm chart (Thank you user Nik for reporting this issue)

e K8SPG-792 - Add the ability to configure and use images defined in environment variables when
starting a cluster (Thank you Jakub Jaruszewski for reporting this issue)

Page 354

https://perconadev.atlassian.net/browse/K8SPG-743
https://perconadev.atlassian.net/browse/K8SPG-744
https://perconadev.atlassian.net/browse/K8SPG-717
https://perconadev.atlassian.net/browse/K8SPG-750
https://perconadev.atlassian.net/browse/K8SPG-753
https://perconadev.atlassian.net/browse/K8SPG-761
https://perconadev.atlassian.net/browse/K8SPG-828
https://perconadev.atlassian.net/browse/K8SPG-532
https://perconadev.atlassian.net/browse/K8SPG-574
https://perconadev.atlassian.net/browse/K8SPG-661
https://perconadev.atlassian.net/browse/K8SPG-677
https://perconadev.atlassian.net/browse/K8SPG-680
https://perconadev.atlassian.net/browse/K8SPG-698
https://perconadev.atlassian.net/browse/K8SPG-703
https://perconadev.atlassian.net/browse/K8SPG-722
https://perconadev.atlassian.net/browse/K8SPG-772
https://perconadev.atlassian.net/browse/K8SPG-782
https://perconadev.atlassian.net/browse/K8SPG-785
https://perconadev.atlassian.net/browse/K8SPG-792

o K8SPG-799 - Fixed the issue with the cluster being blocked due to inability to pull the image fot the
Patroni Version Detector Pod if imagePullSecrets in configured. The issue is fixed by respecting the
configuration for the patroni version check pod. (Thank you Baptiste Balmon for reporting this issue)

o KB8SPG-804 - Fixed an issue where outdated cluster state could cause a duplicate backup job to be
created, blocking new backups. The issue was fixed by ensuring reconcileManualBackup fetches the
latest postgrescluster state.

o K8SPG-812 - Fixed image in PerconaPGUpgrade example

Deprecation, Change, Rename and Removal

e New repositories for pgBouncer and pgBackRest

Now the Operator uses the official Percona Docker images for pgBouncer and pgBackRest

components. Pay attention to the new image repositories when you upgrade the Operator and the
database. Check the Percona certified images for exact image names.

e Changes in image pulling on OpenShift

Starting with OpenShift version 4.19, the way Operator images are pulled has changed. Now the registry
name must be specified for image paths to ensure the images are pulled successfully from DockerHub.

All Custom Resource manifests now include the registry name in image paths. This enables you to
successfully install the Operator using the default manifests from Git repositories. If you upgrade the
Operator and the database cluster via the command line interface, add the docker.io registry name to
image paths for all components in the format:

"docker.io/percona/percona-postgresql-operator:2.7.0-ppgl17.5.2-postgres”

Follow our upgrade documentation for update guidelines.

Supported software

The Operator 2.7.0 is developed, tested and based on:

e PostgreSQL 13.21,14.18,15.13,16.9, 17.5.2 as the database. Other versions may also work but have
not been tested.
e pgBouncer 1.24.1 for connection pooling

o Patroni version 4.0.5 for high-availability

e PostGIS version 3.3.8

Page 355

https://perconadev.atlassian.net/browse/K8SPG-799
https://perconadev.atlassian.net/browse/K8SPG-804
https://perconadev.atlassian.net/browse/K8SPG-812

Supported platforms

Percona Operators are designed for compatibility with all CNCF-certified (4 Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and
OpenShift, as detailed below for Operator version 2.7.0:

» Google Kubernetes Engine (GKE)_[4 1.30-1.32

e Amazon Elastic Container Service for Kubernetes (EKS)_[4 1.30-1.33

e OpenShift [4 4.15-4.19
e Azure Kubernetes Service (AKS) [4 1.30-1.33

e Minikube [4 1.36.0 with Kubernetes v1.33.1

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Percona certified images

Find Percona’s certified Docker images that you can use with the Percona Operator for PostgreSQL in the
following table.

Images released with the Operator version 2.7.0:

Image Digest

percona/percona-postgresql- 96e4e3d7e4bcbd4880adebc5cch958c0f4385298f0becdef2eb14b81fab407e5
operator:2.7.0 (x86_64)

percona/percona-postgresql- 055da3233a7765f22b318c97223909¢c20ecbbc9f34c6a8f7845d04ade51364ca
operator:2.7.0 (ARM64)

percona/percona-postgresql- cfb99ebeec00ab6efb4fcada8da2b8c3b489dd792bd2f907848197ba09bc9553
operator:2.7.0-ppg17.5.2-

postgres

percona/percona-postgresql- 0787088575b4e4fec368acbcf4dd7aead9620ec4524451e3b44ed424fb0eeebb

operator:2.7.0-ppg16.9-postgres

percona/percona-postgresql- c93f52ea1d6ec955a368c4539b843a9c57eed4a5acc907f0dfb59ae3018560d1b
operator:2.7.0-ppg15.13-

Page 356

https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Image

postgres

percona/percona-postgresql-
operator:2.7.0-ppg14.18-
postgres

percona/percona-postgresql-
operator:2.7.0-ppg13.21-
postgres

percona/percona-postgresql-
operator:2.7.0-ppg17.5.2-
postgres-gis3.3.8

percona/percona-postgresql-
operator:2.7.0-ppg16.9-postgres-
gis3.3.8

percona/percona-postgresql-
operator:2.7.0-ppg15.13-
postgres-gis3.3.8

percona/percona-postgresql-
operator:2.7.0-ppg14.18-
postgres-gis3.3.8

percona/percona-postgresql-
operator:2.7.0-ppg13.21-
postgres-gis3.3.8

percona/percona-
pgbouncer:1.24.1

percona/percona-
pgbouncer:1.24.1 (ARM64)

percona/percona-
pgbackrest:2.55.0

percona/percona-
pgbackrest:2.55.0 (ARM64)

Digest

a224059edd9864f7dc9607¢c3e2964844f417718a5b9f471ceb98c0a0d774a4bca

2c9a05399b34cfe79698bdaab66db8fdaece0db7b1fa34441124cccdbe375255

860ccc180cTacbbe3c34¢c354d6ba9148b00330e183ba5913954e34d49¢c95d22f

ca50f560bc7b3e18ec3360dc1ab6b8c860e0346472af051cb0d2aec2a7a45d8b3

bb6707fd12ea430708e2eb22f6c7dadf3ab4258fcfd31e86f1f78c66ba211742

¢c3b55d1394d8f0a476cea29340442313c9c08dcd8c83f31ccfc66afdbde42488

3df44c1089563b42198ef929e27b9797ef2b04d92736293952163fa7541c0068

451431afa3cd288ecda92b6446bec8833fbf376fbd1b7c7e314fc42f3355255f

479aa893e55c5afe8b97852¢90d7551dc55d3fc526773a5a7d992876bbf54ch0

b0d2defbc7a07¢cf395b1fabcb6e13d9d3267c3a2d3c52362ac440db26eadadbad

bc15d058e7820499bf67ccec2fe51c583fe67abe3ed55ec28adf3e252828924a

Page 357

Image

percona/pmme-client:2.44.1

percona/pmme-client:2.44.1
(ARM64)

percona/pmme-client:3.3.0

percona/pmme-client:3.3.0
(ARM64)

Digest

8b2eaddffd626f02a2d5318ffebc0c277fe8457da6083b8cfcadadbbe6168616

337fecd4afdb3fodaf2caa2b341b9fe41d0418a0ed4ec76980c7f29be9d08b5ea

0f4ef6a814946f83ef1ed26cf3526ff606fc7815007f84995492d3e4eaal5ale

c03aa678d26faf783c3598b3a139a8f3154e5bf1bc9f5a3c9abf0533922f79d6

Page 358

Percona Operator for PostgreSQL 2.6.0 (2025-
03-17)

(Installation)

Release Highlights

This release provides the following features and improvements:

Backup improvements

This release implemented several improvements to the backup/restore process:

e Anew delete-backups finalizer was implemented to automatically remove all backups when deleting
the cluster. This finalizer is off by default. It's experimental and, therefore, is not recommended for
production environments.

e Backup logic was improved and now allows retrying a failed backup in the same backup Pod for a
specified number of times before deleting this Pod and creating a new one. This should be beneficial in
case of short connectivity issues or timeouts. This behavior is controlled by the new
backups.pgbackrest.jobs.backoffLimit and backups.pgbackrest.jobs.restartPolicy Custom Resource

options.

¢ You can now overwrite the default restore command for pgBackRest via the
patroni.dynamicConfiguration Custom Resource option. Particularly, this allows to control and filter files

restored to pg_wal directory without editing these files in the backup repository storage.

PostgreSQL 17 support

PostgreSQL 17 is now supported by the Operator in addition to versions 13 - 16. The appropriate images
are now included in the list of Percona-certified images. See these blogposts for details about the latest

PostgreSQL 17 features with the added security and functionality improvements:

 Encrypt PostgreSQL Data at Rest on Kubernetes [4 by Ege Gunes

e The Powerful Features Released in PostgreSQL 17 Beta 2 [4 by Shivam Dhapatkar

e PostgreSQL 17: Two Small Improvements That Will Have a Major Impact [4 by David Stokes.

PostgreSQL 17 is currently not recommended for production environments due to the known limitation.

Page 359

https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/

Update from April 1, 2025: We have added PostgreSQL 17.4 image and database cluster components
based on this image. It is now production ready and we recommend updating the database cluster from
PostgreSQL 17.2 to 17.4. Check the upgrade instructions for steps

pgvector is added to the PostgreSQL image

To support you with your Al journey, we've added the pgvector extension to the PostgreSQL images
shipped with our Operator. Now, you can easily use Percona Distribution for PostgreSQL as a vector
database by simply enabling it in your Custom Resource options. No more custom extension installations
(4 needed.

New features

e K8SPG-628: The custom restore_command can be now passed to pgBackRest via the
patroni.dynamicConfiguration Custom Resource option

o K8SPG-619: New backups.pgbackrest.jobs.backoffLimit and
backups.pgbackrest.jobs.restartPolicy Custom Resource options allow to retry backup in the
backup Pod for a specified number of times before abandoning the Pod and creating the new one

o K8SPG-648: PostgreSQL 17 is now supported by the Operator

Improvements

o K8SPG-487: New spec.metadata.labels and spec.metadata.annotations Custom Resource
options allow setting labels and annotation globally for all Kubernetes objects created by the Operator

e K8SPG-554: New tlsOnly Custom Resource option allows the user to enforce TLS connections for the
database cluster

o K8SPG-586: The new experimental finalizers.delete-backups finalizer (off by default) removes all
backups of the cluster at cluster deletion event

o K8SPG-634: The new autoCreateUserSchema Custom Resource option enhances the declarative user
management by automatically creating per-user schemas

o K8SPG-652: Improve security and meet compliance requirements by using PostgreSQL images built
based on Red Hat Universal Base Image (UBI) 9 instead of UBI 8

o K8SPG-692: Patroni versions 4.x are now supported by the Operator in addition to versions 3.x

o K8SPG-699: The pgvector extension is now included within the PostgreSQL image used by the
Operator

Page 360

https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://jira.percona.com/browse/K8SPG-628
https://jira.percona.com/browse/K8SPG-619
https://jira.percona.com/browse/K8SPG-648
https://jira.percona.com/browse/K8SPG-487
https://jira.percona.com/browse/K8SPG-554
https://jira.percona.com/browse/K8SPG-586
https://jira.percona.com/browse/K8SPG-634
https://jira.percona.com/browse/K8SPG-652
https://jira.percona.com/browse/K8SPG-692
https://jira.percona.com/browse/K8SPG-699

e K8SPG-701: The extensions.image Custom Resource option is now optional, and can be omitted for
builtin PostgreSQL extensions

o K8SPG-702: A retry logic was implemented to fix intermittent Pod exec failures caused by timeouts
(Thanks to dcaputo-harmoni for contribution)

e K8SPG-711: The new README.md [4 explains how to build your own images for the PostgreSQL
cluster components used by the Operator

Bugs Fixed

o K8SPG-594: Fix a bug where extension was still appearing in pg_extension table after being removed
from Custom Resource and physically deleted by the Operator

o K8SPG-637: Fix a bug where restore was failing with “waiting for another restore to finish” if the pg-
restore object of a previous unfinished restore was manually deleted

o K8SPG-638: Fix a bug that caused flooding the logs with no completed backups found error at cluster
initialization.
o K8SPG-645: Fix a bug where creating sidecar containers for pgBouncer did not work

o K8SPG-681: Fixed a bug where the “Last Recoverable Time” information field was missing from the
output of the kubectl get pg-backup command due to misdetection cases

e K8SPG-713: Fix a bug where The cluster not found errors were appearing in the Operator logs on cluster
deletion

Deprecation, Change, Rename and Removal

e The new versions of Percona distribution for PostgreSQL used by the Operator come with Patroni 4.x,
which introduces breaking changes compared to previously used 3.x versions.

To maintain backward compatibility, the Operator detects the Patroni version used in the image. It is
also possible to disable this auto-detection feature by manually setting the Patroni version via the
following_annotation set in the metadata part of the Custom Resource:

pgv2.percona.com/custom-patroni-version: "4"

o PostgreSQL 12 is no longer supported by the Operator 2.6.0 and newer versions.

Known limitations

Page 361

https://jira.percona.com/browse/K8SPG-701
https://jira.percona.com/browse/K8SPG-702
https://jira.percona.com/browse/K8SPG-711
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://jira.percona.com/browse/K8SPG-594
https://jira.percona.com/browse/K8SPG-637
https://jira.percona.com/browse/K8SPG-638
https://jira.percona.com/browse/K8SPG-645
https://jira.percona.com/browse/K8SPG-681
https://jira.percona.com/browse/K8SPG-713

o PostgreSQL 17.2 image and images for other database cluster components based on PostgreSQL 17
contain the known CVE-2025-1094 [- a vulnerability in the libpq PostgreSQL client library, which
makes images used by the Operator vulnerable to SQL injection within the PostgreSQL interactive

terminal due to the lack of neutralizing quoting. Images for PostgreSQL 17 will be available soon, while
images for other PosgreSQL versions have already been fixed.

e PostgreSQL 17.4 image includes the fix for CVE-2025-1094 [, which closed a vulnerability in the
libpqg PostgreSQL client library but introduced a regression related to string handling for non-null

terminated strings. The error would be visible based on how a PostgreSQL client implemented this
behavior.

Supported platforms
The Operator 2.7.0 is developed, tested and based on:
e PostgreSQL 13.20,14.17,15.12,16.8,17.2 and 17.4 as the database. Other versions may also work but
have not been tested.
¢ pgBouncer for connection pooling:
e version 1.23.1 - for PostgreSQL 17.2
e version 1.24.0 - for PostgreSQL 13.20,14.17,15.12,16.8,17.4
 Patroni for high-availability:
e version 4.0.5 - for PostgreSQL 17.4
e version 4.0.3 - for PostgreSQL 17.2
e version 4.0.4 - for PostgreSQL 13.20,14.17,15.12,16.8

Percona Operators are designed for compatibility with all CNCF-certified [Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and
OpenShift, as detailed below for Operator version 2.7.0:

e Google Kubernetes Engine (GKE)_[4 1.29 - 1.31

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.29-1.32

o OpenShift (7 4.14-4.18
o Azure Kubernetes Service (AKS) [4 1.29-1.31

e Minikube [4 1.35.0 with Kubernetes 1.32.0

Page 362

https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 363

Percona Operator for PostgreSQL 2.5.1

e Date
March 03, 2025

¢ Installation

Installing Percona Operator for PostgreSQL

Release highlights

This release fixes the CVE-2025-1094 (4, vulnerability in the libpg PostgreSQL client library, which made
images used by the Operator vulnerable to SQL injection within the PostgreSQL interactive terminal due to

the lack of neutralizing quoting. For now, the fix includes the image of PostgreSQL 16.8 and other
database cluster images based on PostgreSQL 16.8. Fixed images for other PostgreSQL versions are to
follow in the upcoming days.

Update from March 04, 2025: images of PostgreSQL 15.12 and other database cluster components based
on PostgreSQL 15.12 were added.

Update from March 06, 2025: images of PostgreSQL 14.17 and other database cluster components based
on PostgreSQL 14.17 were added.

Update from March 07, 2025: images of PostgreSQL 13.20 and other database cluster components based
on PostgreSQL 13.20 were added.

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.20, 13.20, 14.17,15.12, and 16.8.
Other options may also work but have not been tested. The Operator 2.5.1 provides connection pooling
based on pgBouncer 1.24.0 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are officially supported by the Operator 2.5.1:

e Google Kubernetes Engine (GKE)_(4 1.28 - 1.30

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.28-1.30

e OpenShift (4 4.13.46-4.16.7
e Azure Kubernetes Service (AKS)_[4 1.28-1.30

e Minikube [4 1.34.0 with Kubernetes 1.31.0

Page 364

https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 365

Percona Operator for PostgreSQL 2.5.0

e Date
October 08, 2024

¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Automated storage scaling

Starting from this release, the Operator is able to detect if the storage usage on the PVC reaches a certain
threshold, and trigger the PVC resize. Such autoscaling needs the upstream auto-growable disk [feature
turned on when deploying the Operator. This is done via the PGO_FEATURE_GATES environment variable
set in the deploy/operator.yaml manifest (or in the appropriate part of deploy/bundle.yaml):

- name: PGO_FEATURE_GATES
value: "AutoGrowVolumes=true"

When the support for auto-growable disks is turned on, the
spec.instances|[].dataVolumeClaimSpec.resources.limits.storage Custom Resource option sets
the maximum value available for the Operator to scale up.

See official documentation for more details and limitations of the feature.

Major versions upgrade improvements

Major version upgrade, introduced in the Operator version 2.4.0 as a tech preview, had undergone some
improvements. Now it is possible to upgrade from one PostgreSQL major version to another with custom
images for the database cluster components (PostgreSQL, pgBouncer, and pgBackRest). The upgrade is
still triggered by applying the YAML manifest with the information about the existing and desired major
versions, which now includes image names. The resulting manifest may look as follows:

Page 366

https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk
https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk
https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
name: cluster1-15-to-16
spec:
postgresClusterName: clusterl
image: percona/percona-postgresql-operator:2.4.1-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16
toPostgresImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-postgres
toPgBouncerImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-
pgbouncer1.23.1
toPgBackRestImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-
pgbackrest2.53-1

Azure Kubernetes Service and Azure Blob Storage support

Azure Kubernetes Service (AKS) is now officially supported platform, so developers and vendors of the

solutions based on the Azure platform can take advantage of the official support from Percona or just use

officially certified Percona Operator for PostgreSQL images; also, Azure Blob Storage can now be used for
backups.

New features

e K8SPG-227 and K8SPG-157: Add support for the Azure Kubernetes Service (AKS) platform and allow
using Azure Blob Storage for backups

o K8SPG-244: Automated storage scaling is now supported

Improvements

e K8SPG-630: A new backups.trackLatestRestorableTime Custom Resource option allows to disable
latest restorable time tracking for users who need reducing S3 API calls usage

e K8SPG-605 and K8SPG-593: Documentation now includes information about upgrading the Operator

via Helm and using databaselnitSQL commands

o KB8SPG-598: Database major version upgrade now supports custom images

e K8SPG-560: A pg-restore Custom Resource is now automatically created at bootstrapping_ a new
cluster from an existing_ backup

o K8SPG-555: The Operator now creates separate Secret with CA certificate for each cluster

e K8SPG-553: Users can provide the Operator with their own root CA certificate

Page 367

https://jira.percona.com/browse/K8SPG-227
https://jira.percona.com/browse/K8SPG-157
https://jira.percona.com/browse/K8SPG-244
https://jira.percona.com/browse/K8SPG-630
https://jira.percona.com/browse/K8SPG-605
https://jira.percona.com/browse/K8SPG-593
https://jira.percona.com/browse/K8SPG-598
https://jira.percona.com/browse/K8SPG-560
https://jira.percona.com/browse/K8SPG-555
https://jira.percona.com/browse/K8SPG-553

o K8SPG-454: Cluster status obtained with kubectl get pg command is now “ready” not only when all
Pods are ready, but also takes into account if all StatefulSets are up to date

o K8SPG-577: Anew pmm.querySource Custom Resource option allows to set PMM query source

Bugs Fixed

o K8SPG-629: Fix a bug where the Operator was not deleting backup Pods when cleaning outdated
backups according to the retention policy

o K8SPG-499: Fix a bug where cluster was getting stuck in the init state if pgBackRest secret didn't exist

o K8SPG-588: Fix a bug where the Operator didn’t stop WAL watcher if the namespace and/or cluster
were deleted

o K8SPG-644: Fix a bug in the pg-db Helm chart which prevented from setting more than one Toleration

Deprecation, Change, Rename and Removal

With the Operator versions prior to 2.5.0, autogenerated TLS certificates for all database clusters were
based on the same generated root CA. Starting from 2.5.0, the Operator creates root CA on a per-cluster

basis.

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.20, 13.16, 14.13, 15.8, and 16.4.
Other options may also work but have not been tested. The Operator 2.5.0 provides connection pooling
based on pgBouncer 1.23.1 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are officially supported by the Operator 2.5.0:

e Google Kubernetes Engine (GKE) (4 1.28 - 1.30

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.28-1.30

¢ OpenShift (4 4.13.46-4.16.7
o Azure Kubernetes Service (AKS) [4 1.28-1.30

e Minikube [4 1.34.0 with Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 368

https://jira.percona.com/browse/K8SPG-454
https://jira.percona.com/browse/K8SPG-577
https://jira.percona.com/browse/K8SPG-629
https://jira.percona.com/browse/K8SPG-499
https://jira.percona.com/browse/K8SPG-588
https://jira.percona.com/browse/K8SPG-644
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.4.1

¢ Date
August 6, 2024
¢ Installation

Installing Percona Operator for PostgreSQL

Bugs Fixed

o K8SPG-616: Fix a bug where it was not possible to create a new cluster after deleting the previous one
with the kubectl delete pg command

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.19, 13.15, 14.12, 15.7, and 16.3.
Other options may also work but have not been tested. The Operator 2.4.1 provides connection pooling
based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are officially supported by the Operator 2.4.1:

e Google Kubernetes Engine (GKE)_ (4 1.27 - 1.29

e Amazon Elastic Container Service for Kubernetes (EKS)_[4 1.27 - 1.30

e OpenShift (4 4.12.59-4.15.18
e Minikube [4 1.33.1

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 369

https://jira.percona.com/browse/K8SPG-616
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.4.0

¢ Date
June 26, 2024
¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Major versions upgrade (tech preview)

Starting from this release Operator users can automatically upgrade from one PostgreSQL major version
to another. Upgrade is triggered by applying the yaml file with the information about the existing and
desired major versions, with an example present in deploy/upgrade.yaml:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
name: cluster1-15-to-16
spec:
postgresClusterName: clusteri
image: perconalab/percona-postgresql-operator:main-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16

After applying it as usual, by running kubectl apply -f deploy/upgrade.yaml command, the actual
upgrade takes place as follows:
1. The cluster is paused for a while,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade:
<PerconaPGUpgrade.Name> annotation,

3. Jobs are created to migrate the data,

4. The cluster starts up after the upgrade finishes.

Check official documentation for more details, including ones about tracking the upgrade process and
side effects for users with custom extensions.

Page 370

Supporting PostgreSQL tablespaces

Tablespaces allow DBAs to store a database on multiple file systems within the same server and to
control where (on which file systems) specific parts of the database are stored. You can think about it as if
you were giving names to your disk mounts and then using those names as additional parameters when
creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory.
Tablespaces support was present in Percona Operator for PostgreSQL 1.x, and starting from this version,
Percona Operator for PostgreSQL 2.x can also bring this feature to your Kubernetes environment, when
needed.

Using cloud roles to authenticate on the object storage for
backups

Percona Operator for PostgreSQL has introduced a new feature that allows users to authenticate to AWS
S3 buckets via IAM roles [4. Now Operator This enhancement significantly improves security by

eliminating the need to manage S3 access keys directly, while also streamlining the configuration process
for easier backup and restore operations.

To use this feature, add annotation to the spec part of the Custom Resource and also add pgBackRest
custom configuration option to the backups subsection:

spec:
crVersion: 2.4.0
metadata:
annotations:

eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-
s3-bucket

backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.4.0-ppgl6-pgbackrest

global:
repol-s3-key-type: web-id

New features

e K8SPG-138: Users are now able to use AWS IAM role [4 to provide access to the S3 bucket used for
backups

Page 371

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://jira.percona.com/browse/K8SPG-138
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html

o K8SPG-254: Now the Operator automates upgrading PostgreSQL major versions

o K8SPG-459: PostgreSQL tablespaces are now supported by the Operator

o K8SPG-479 and K8SPG-492: It is now possible to specify tolerations for the backup restore jobs as well

as for the data move jobs created when the Operator 1.x is upgraded to 2.x; this is useful in

environments with dedicated Kubernetes worker nodes protected by taints

e K8SPG-503 and K8SPG-513: It is now possible to specify resources for the sidecar containers of

database instance Pods

Improvements

e K8SPG-259: Users can now change the default level for log messages for pgBackRest to simplify fixing
backup and restore issues

o K8SPG-542: Documentation now includes HowTo on creating_a disaster recovery cluster using

streaming_replication

e K8SPG-506: The pg-backup objects now have a new backupName status field, which allows users to
obtain the backup name for restore simpler

e K8SPG-514: The new securityContext Custom Resource subsections allow to configure
securityContext for PostgreSQL instances, pgBouncer, and pgBackRest Pods

e K8SPG-518: The kubectl get pg-backup command now shows the latest restorable time to make it
easier to pick a point-in-time recovery target

e K8SPG-519: The new extensions.storage.endpoint Custom Resource option allows specifying a
custom S3 object storage endpoint for installing custom extensions

o K8SPG-549: It is now possible to expose replica nodes through a separate Service, useful if you want to
balance the load and separate reads and writes traffic

e K8SPG-550: The default size for /tmp mount point in PMM container was increased from 1.5G to 2G

o K8SPG-585: The namespace field was added to the Operator and database Helm chart templates

Bugs Fixed

o K8SPG-462: Fixed a bug where backups could not start if a previous backup had the same name

e K8SPG-470: Liveness and Readiness probes timeouts are now configurable through Custom Resource

e K8SPG-559: Fix a bug where the first full backup was incorrectly marked as incremental in the status
field

Page 372

https://jira.percona.com/browse/K8SPG-254
https://jira.percona.com/browse/K8SPG-459
https://jira.percona.com/browse/K8SPG-479
https://jira.percona.com/browse/K8SPG-492
https://jira.percona.com/browse/K8SPG-503
https://jira.percona.com/browse/K8SPG-513
https://jira.percona.com/browse/K8SPG-259
https://jira.percona.com/browse/K8SPG-542
https://jira.percona.com/browse/K8SPG-506
https://jira.percona.com/browse/K8SPG-514
https://jira.percona.com/browse/K8SPG-518
https://jira.percona.com/browse/K8SPG-519
https://jira.percona.com/browse/K8SPG-549
https://jira.percona.com/browse/K8SPG-550
https://jira.percona.com/browse/K8SPG-585
https://jira.percona.com/browse/K8SPG-462
https://jira.percona.com/browse/K8SPG-470
https://jira.percona.com/browse/K8SPG-559

o K8SPG-490: Fixed broken replication that occurred after the network loss of the primary Pod with
PostgreSQL 14 and older versions

o K8SPG-502: Fix a bug where backup jobs were not cleaned up after completion

o K8SPG-510: Fix a bug where pausing the cluster immediately set its state to “paused” instead of
“stopping” while Pods were still running

o K8SPG-531: Fix a bug where scheduled backups did not work for a second database with the same
name in cluster-wide mode

e K8SPG-535: Fix a bug where the Operator crashed when attempting to run a backup with a non-existent
repository

o K8SPG-540: Fix a bug in the pg-db Helm chart readme where the key to set the backup secret was
incorrectly specified (Thanks to Abhay Tiwari for contribution)

o K8SPG-543: Fix a bug where applying a cr.yaml file with an empty spec.proxy field caused the
Operator to crash

o K8SPG-547: Fix dependency issue that made pgbackrest-repo container incompatible with pgBackRest
2.50, resulting in the older 2.48 version being used instead

Deprecation and removal

e The plpythonu extension was removed from the list of built-in PostgreSQL extensions; users who still
need it can enable it for their databases via custom extensions functionality

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.19, 13.15, 14.12, 15.7, and 16.3.
Other options may also work but have not been tested. The Operator 2.4.0 provides connection pooling
based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are officially supported by the Operator 2.4.0:

e Google Kubernetes Engine (GKE)_[4 1.27-1.29

e Amazon Elastic Container Service for Kubernetes (EKS)_[4 1.27 - 1.30

e OpenShift (4 4.12.59-4.15.18
e Minikube [1.33.1

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 373

https://jira.percona.com/browse/K8SPG-490
https://jira.percona.com/browse/K8SPG-502
https://jira.percona.com/browse/K8SPG-510
https://jira.percona.com/browse/K8SPG-531
https://jira.percona.com/browse/K8SPG-535
https://jira.percona.com/browse/K8SPG-540
https://jira.percona.com/browse/K8SPG-543
https://jira.percona.com/browse/K8SPG-547
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.3.1

¢ Date
January 23, 2024
¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

This release provides a number of bug fixes, including fixes for the following vulnerabilities in PostgreSQL,
pgBackRest, and pgBouncer images used by the Operator:

¢ OpenSSH could cause remote code execution by ssh-agent if a user establishes an SSH connection to
a compromised or malicious SSH server and has agent forwarding enabled (CVE-2023-38408 [4). This

vulnerability affects pgBackRest and PostgreSQL images.

e The c-ares library could cause a Denial of Service with 0-byte UDP payload (CVE-2023-32067 [4). This
vulnerability affects pgBouncer image.

Both Operator 1.x (including version 1.5.0) and Operator 2.x (including version 2.3.0) are affected. The
2.x versions upgrade to 2.3.1 is recommended to resolve these issues.

Bugs Fixed

o K8SPG-493: Fix a regression due to which the Operator could run scheduled backup only one time
o K8SPG-494: Fix vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images

o KB8SPG-496: Fix the bug where setting the pause Custom Resource option to true for the cluster with
a backup running would not take effect even after the backup completed

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.17,13.13, 14.10, 15.5, and 16.1.
Other options may also work but have not been tested. The Operator 2.3.1 provides connection pooling
based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.1:

e Google Kubernetes Engine (GKE)_[4 1.24-1.28

Page 374

https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://jira.percona.com/browse/K8SPG-493
https://jira.percona.com/browse/K8SPG-494
https://jira.percona.com/browse/K8SPG-496
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine

e Amazon Elastic Container Service for Kubernetes (EKS)_[4 1.24-1.28

¢ OpenShift (4 4.11.55-4.14.6
e Minikube [4 1.32

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by

Kubernetes itself.

Page 375

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.3.0

¢ Date
December 21, 2023
¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

PostGIS support

Modern businesses heavily rely on location-based data to gain valuable insights and make data-driven
decisions. However, integrating geospatial functionality into the existing database systems has often
posed a challenge for enterprises. PostGIS, an open-source software extension for PostgreSQL, addresses
this difficulty by equipping users with extensive geospatial operations for handling geographic data
efficiently. Percona Operator now supports PostGIS, available through a separate container image. You
can read more about PostGIS and how to use it with the Operator in our documentation.

OpensShift and PostgreSQL 16 support

The Operator is now compatible with the OpenShift platform empowering enterprise customers with

seamless on-premise or cloud deployments on the platform of their choice. Also, PostgreSQL 16 was
added to the range of supported database versions and is used by default starting with this release.
Experimentql support for custom PostgreSQL extensions

One of great features of PostgreSQL is support for Extensions [4, which allow adding new functionality to
the database on a plugin basis. Starting from this release, users can add custom PostgreSQL extensions
dynamically, without the need to rebuild the container image (see this HowTo on how to create and
connect yours).

New features

e K8SPG-311 and K8SPG-389: A new loadBalancerSourceRanges Custom Resource option allows to

customize the range of IP addresses from which the load balancer should be reachable

o K8SPG-375: Experimental support for custom PostgreSQL extensions was added to the Operator

Page 376

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://jira.percona.com/browse/K8SPG-311
https://jira.percona.com/browse/K8SPG-389
https://jira.percona.com/browse/K8SPG-375

e K8SPG-391: The Operator is now compatible with the OpenShift platform

o K8SPG-434: The Operator now supports Percona Distribution for PostgreSQL version 16 and uses it as
default database version

Improvements

e K8SPG-413: The Operator documentation now includes a comptibility matrix for each Operator version,

specifying exact versions of all core components as well as supported versions of the database and
platforms

o K8SPG-332: Creating backups and pausing_the cluster do not interfere with each other: the Operator

either postpones the pausing until the active backup ends, or postpones the scheduled backup on the
paused cluster

o K8SPG-370: Logging_ management is now aligned with other Percona Operators, allowing to use
structured logging and to control log level

o K8SPG-372: The multi-namespace (cluster-wide) mode of the Operator was improved, making it
possible to customize the list of Kubernetes namespaces under the Operator’s control

o K8SPG-400: The documentation now explains how to allow application users to connect to a database
cluster without TLS (for example, for testing or demonstration purposes)

e K8SPG-410: Scheduled backups now create pg-backup object to simplify backup management and
tracking

o K8SPG-416: PostgreSQL custom configuration is now supported in the Helm chart

o K8SPG-422 and K8SPG-447: The user can now see backup type and status in the output of kubectl
get pg-backup and kubectl get pg-restore commands

o K8SPG-458: Affinity configuration examples were added to the default/cr.yaml configuration file

Bugs Fixed

o K8SPG-435: Fix a bug with insufficient size of /tmp filesystem which caused PostgreSQL Pods to be
recreated every few days due to running out of free space on it

o K8SPG-453: Bugin pg_stat_monitor PostgreSQL extensions could hang PostgreSQL

o K8SPG-279: Fix regression which made the Operator to crash after creating a backup if there was no
backups.pgbackrest.manual section in the Custom Resource

e K8SPG-310: Documentation didn’t explain how to apply pgBackRest verifyTLS option which can be
used to explicitly enable or disable TLS verification for it

Page 377

https://jira.percona.com/browse/K8SPG-391
https://jira.percona.com/browse/K8SPG-434
https://jira.percona.com/browse/K8SPG-413
https://jira.percona.com/browse/K8SPG-332
https://jira.percona.com/browse/K8SPG-370
https://jira.percona.com/browse/K8SPG-372
https://jira.percona.com/browse/K8SPG-400
https://jira.percona.com/browse/K8SPG-410
https://jira.percona.com/browse/K8SPG-416
https://jira.percona.com/browse/K8SPG-422
https://jira.percona.com/browse/K8SPG-447
https://jira.percona.com/browse/K8SPG-458
https://jira.percona.com/browse/K8SPG-435
https://jira.percona.com/browse/K8SPG-453
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-310

o K8SPG-432: Fix a bug due to which backup jobs and Pods were not deleted on deleting the backup
object

o K8SPG-442: The Operator didn't allow to append custom items to the PostgreSQL

shared_preload_libraries option

o K8SPG-443: Fix a bug due to which only English locale was installed in the PostgreSQL image, missing
other languages support

o K8SPG-450: Fix a bug which prevented PostgreSQL to initialize the database on Kubernetes working
nodes with enabled huge memory pages if Pod resource limits didn’t allow using them

e K8SPG-401: Fix a bug which caused Operator crash if deployed with no pmm section in the
deploy/cr.yaml configuration file

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.17,13.13, 14.10, 15.5, and 16.1.
Other options may also work but have not been tested. The Operator 2.3.0 provides connection pooling
based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.0:

e Google Kubernetes Engine (GKE) (4 1.24-1.28

e Amazon Elastic Container Service for Kubernetes (EKS)_[4 1.24-1.28

e OpenShift (4 4.11.55-4.14.6
e Minikube [4 1.32

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 378

https://jira.percona.com/browse/K8SPG-432
https://jira.percona.com/browse/K8SPG-442
https://jira.percona.com/browse/K8SPG-443
https://jira.percona.com/browse/K8SPG-450
https://jira.percona.com/browse/K8SPG-401
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.2.0

¢ Date
June 30, 2023

¢ Installation

Installing Percona Operator for PostgreSQL

Percona announces the general availability of Percona Operator for PostgreSQL 2.2.0.

Starting with this release, Percona Operator for PostgreSQL version 2 is out of technical preview and can
be used in production with all the improvements it brings over the version 1 in terms of architecture,
backup and recovery features, and overall flexibility.

We prepared a detailed migration guide which allows existing Operator 1.x users to move their PostgreSQL
clusters to the Operator 2.x. Also, see this blog_post [to find out more about the Operator 2.x features

and benefits.

Improvements

o K8SPG-378: Anew crVersion Custom Resource option was added to indicate the API version this
Custom Resource corresponds to

e K8SPG-359: The new users.secretName option allows to define a custom Secret name for the users
defined in the Custom Resource (thanks to Vishal Anarase for contributing)

e K8SPG-301: Amazon Elastic Container Service for Kubernetes (EKS)_[4 was added to the list of
officially supported platforms

e K8SPG-302: Minikube [is now officially supported by the Operator to enable ease of testing and

developing

o K8SPG-326: Both the Operator and database can be now installed with the Helm package manager

o K8SPG-342: There is now no need in manual restart of PostgreSQL Pods after the monitor user
password changed in Secrets

o K8SPG-345: The new proxy.pgBouncer.exposeSuperusers Custom Resource option makes it
possible for administrative users to connect to PostgreSQL through PgBouncer

o K8SPG-355: The Operator can now be deployed in multi-namespace (“cluster-wide”) mode to track
Custom Resources and manage database clusters in several namespaces

Page 379

https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://jira.percona.com/browse/K8SPG-378
https://jira.percona.com/browse/K8SPG-359
https://jira.percona.com/browse/K8SPG-301
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://jira.percona.com/browse/K8SPG-302
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://jira.percona.com/browse/K8SPG-326
https://jira.percona.com/browse/K8SPG-342
https://jira.percona.com/browse/K8SPG-345
https://jira.percona.com/browse/K8SPG-355

Bugs Fixed

o K8SPG-373: Fix the bug due to which the Operator did not not create Secrets for the pguser user if
PMM was enabled in the Custom Resource

e K8SPG-362: It was impossible to install Custom Resource Definitions for both 1.x and 2.x Operators in
one environment, preventing the migration of a cluster to the newer Operator version

o K8SPG-360: Fix a bug due to which manual password changing or resetting via Secret didn't work
Known limitations

e Query analytics (QAN) will not be available in Percona Monitoring and Management (PMM) due to bugs
PMM-12024 [4 and PMM-11938 [4. The fixes are included in the upcoming PMM 2.38, so QAN can be
used as soon as it is released and both PMM Client and PMM Server are upgraded.

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.14, 13.10, 14.7, and 15.2. Other
options may also work but have not been tested. The Operator 2.2.0 provides connection pooling based
on pgBouncer 1.18.0 and high-availability implementation based on Patroni 3.0.1.

The following platforms were tested and are officially supported by the Operator 2.2.0:

e Google Kubernetes Engine (GKE)_[4 1.23-1.26

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.23-1.27

e Minikube [4 1.30.1 (based on Kubernetes 1.27)
This list only includes the platforms that the Percona Operators are specifically tested on as part of the

release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 380

https://jira.percona.com/browse/K8SPG-373
https://jira.percona.com/browse/K8SPG-362
https://jira.percona.com/browse/K8SPG-360
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-11938
https://jira.percona.com/browse/PMM-11938
https://jira.percona.com/browse/PMM-11938
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.1.0 (Tech
preview)

¢ Date
May 4, 2023
¢ Installation

Installing Percona Operator for PostgreSQL

The Percona Operator built with best practices of configuration and setup of Percona Distribution for
PostgreSQL on Kubernetes (4.

Percona Operator for PostgreSQL helps create and manage highly available, enterprise-ready PostgreSQL
clusters on Kubernetes. It is 100% open source, free from vendor lock-in, usage restrictions and expensive
contracts, and includes enterprise-ready features: backup/restore, high availability, replication, logging,
and more.

The benefits of using Percona Operator for PostgreSQL include saving time on database operations via
automation of Day-1 and Day-2 operations and deployment of consistent and vetted environment on
Kubernetes.

o Note

Version 2.1.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-
ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL clusters in a

Kubernetes-based environment, on-premises or in the cloud.

Release Highlights

» PostgreSQL 15 is now officially supported by the Operator with the new exciting features [it brings to
developers

e UXimprovements related to Custom Resource have been added in this release, including the handy pg,
pg-backup, and pg-restore short names useful to quickly query the cluster state with the kubectl
get command and additional information in the status fields, which now show name, endpoint,
status, and age

Page 381

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/

New Features

o KB8SPG-328: The new delete-pvc finalizer allows to either delete or preserve Persistent Volumes at
Custom Resource deletion

e K8SPG-330: The new delete-ssl finalizer can now be used to automatically delete objects created for
SSL (Secret, certificate, and issuer) in case of cluster deletion

e K8SPG-331: Starting from now, the Operator adds short names to its Custom Resources: pg, pg-
backup, and pg-restore

o K8SPG-282: PostgreSQL 15 is now officially supported by the Operator

Improvements

o K8SPG-262: The Operator now does not attempt to start Percona Monitoring and Management (PMM)
client if the corresponding secret does not contain the pmmserver or pmmserverkey key

o K8SPG-285: To improve the Operator we capture anonymous telemetry and usage data. In this release
we add more data points to it

o K8SPG-295: Additional information was added to the status of the Operator Custom Resource, which

now shows name, endpoint, status, and age fields
o K8SPG-304: The Operator stops using trust authentication method in pg_hba.conf for better security

e K8SPG-325: Custom Resource options previously named paused and shutdown were renamed to
unmanaged and pause for better alignment with other Percona Operators

Bugs Fixed

o K8SPG-272: Fix a bug due to which PMM agent related to the Pod wasn’t deleted from the PMM Server
inventory on Pod termination

e K8SPG-279: Fix a bug which made the Operator to crash after creating a backup if there was no
backups.pgbackrest.manual section in the Custom Resource

o K8SPG-298: Fix a bug due to which the shutdown Custom Resource option didn't work making it
impossible to pause the cluster

e K8SPG-334: Fix a bug which made it possible for the monitoring user to have special characters in the
autogenerated password, making it incompatible with the PMM Client

Page 382

https://jira.percona.com/browse/K8SPG-328
https://jira.percona.com/browse/K8SPG-330
https://jira.percona.com/browse/K8SPG-331
https://jira.percona.com/browse/K8SPG-282
https://jira.percona.com/browse/K8SPG-262
https://jira.percona.com/browse/K8SPG-285
https://jira.percona.com/browse/K8SPG-295
https://jira.percona.com/browse/K8SPG-304
https://jira.percona.com/browse/K8SPG-325
https://jira.percona.com/browse/K8SPG-272
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-298
https://jira.percona.com/browse/K8SPG-334

Supported platforms

The following platforms were tested and are officially supported by the Operator 2.1.0:

e Google Kubernetes Engine (GKE) [4 1.23-1.25

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.23-1.25

This list only includes the platforms that the Percona Operators are specifically tested on as part of the
release process. Other Kubernetes flavors and versions depend on the backward compatibility offered by
Kubernetes itself.

Page 383

https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

Percona Operator for PostgresSQL 2.0.0 (Tech
preview)

e Date
December 30, 2022
¢ Installation

Installing Percona Operator for PostgreSQL

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for

PostgreSQL on Kubernetes [4. The benefits of the Operator are many, but saving time and delivering a

consistent and vetted environment is key.

o Note

Version 2.0.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for

production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-

ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL clusters in a
Kubernetes-based environment, on-premises or in the cloud.

The Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the Postgres Operator developed by

Crunchy Data [4. Please see the main changes in this version below.

Architecture

Operator SDK [is now used to build and package the Operator. It simplifies the development and brings
more contribution friendliness to the code, resulting in better potential for growing the community. Users
now have full control over Custom Resource Definitions that Operator relies on, which simplifies the
deployment and management of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0 Statefulsets
are used, which are the de-facto standard for running stateful workloads in Kubernetes. This change
improves stability of the clusters and removes a lot of complexity from the Operator.

Backups

One of the biggest challenges in version 1.x is backups and restores. There are two main problems that
our user faced:

Page 384

https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/
https://sdk.operatorframework.io/
https://sdk.operatorframework.io/

¢ Not possible to change backup configuration for the existing cluster

o Restoration from backup to the newly deployed cluster required workarounds
In this version both these issues are fixed. In addition to that:

e Run up to 4 pgBackrest repositories

e Bootstrap the cluster from the existing backup through Custom Resource

e Azure Blob Storage support

Operations

Deploying complex topologies in Kubernetes is not possible without affinity and anti-affinity rules. In
version 1.x there were various limitations and issues, whereas this version comes with substantial
improvements that enables users to craft the topology of their choice.

Within the same cluster users can deploy multiple instances. These instances are going to have the same

data, but can have different configuration and resources. This can be useful if you plan to migrate to new
hardware or need to test the new topology.

Each postgreSQL node can have sidecar containers now to provide integration with your existing tools or

expand the capabilities of the cluster.

Try it out now

Excited with what you read above?

e We encourage you to install the Operator following our documentation.

e Feel free to share feedback with us on the forum [4 or raise a bug or feature request in JIRA [4.

e See the source code in our Github repository (4.

Page 385

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://jira.percona.com/projects/K8SPG/issues
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator
https://github.com/percona/percona-postgresql-operator

