PERCONA

Operator for PostgreSQL 2.8.0

(November 13, 2025)

Documentation

Table of Contents

Home

Discover the Operator

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Overview

System requirements

1 Quick install

With kubectl
With Helm
2 Connect to PostgreSQL

3 Insert data

4 Make a backup

5 Monitor the database with PMM

What's next

Installation

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Configuration

Application and system users

Exposing the cluster

Changing_PostgreSQL options

Anti-affinity and tolerations

Labels and annotations

Transport encryption (TLS/SSL)

Telemetry

Configure concurrency for a cluster reconciliation

Management

Back up and restore

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

Disable backups

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming replication

Failover

Scale your cluster

High-availability
Huge pages

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

Upgrade

About upgrades

Upgrade the Operator

Upgrade the database

Upgrade PostgreSQL extensions

Upgrade from version 1 to version 2

Using_data volumes

Using backup and restore

Using_standby
How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Change PostgreSQL primary instance

How to use private registry

Manage PostgreSQL extensions

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Monitor Kubernetes

Use PostGIS extension

Delete the Operator

Retrieve Percona certified images

Troubleshooting

Troubleshoot Operator installation issues

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Manage a database manually

Reinitialize replicas

Reference

Custom Resource options

Backup resource options

Restore options

Secrets options

Percona certified images

Versions compatibility

Copyright and licensing_information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.8.0 (2025-11-13)

Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)
Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Home

Discover the Operator

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Overview

System requirements

1 Quick install

With kubectl
With Helm
2 Connect to PostgreSQL

3 Insert data
4 Make a backup
5 Monitor the database with PMM

What's next

Installation

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

Configuration

Application and system users

Exposing the cluster

Changing PostgreSQL options

Anti-affinity and tolerations

Labels and annotations

Transport encryption (TLS/SSL)

Telemetry

Configure concurrency for a cluster reconciliation

Management

Back up and restore

About backups

Configure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

Disable backups

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming_replication

Failover

Scale your cluster

High-availability
Huge pages

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

Upgrade

About upgrades

Upgrade the Operator

Upgrade the database

Upgrade PostgreSQL extensions

Upgrade from version 1 to version 2

Using data volumes

Using backup and restore

Using_standby
How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Change PostgreSQL primary instance

How to use private registry

Manage PostgreSQL extensions

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Monitor Kubernetes

Use PostGIS extension

Delete the Operator

Retrieve Percona certified images

Troubleshooting

Troubleshoot Operator installation issues

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Manage a database manually

Reinitialize replicas

Reference

Custom Resource options

Backup resource options

Restore options

Secrets options

Percona certified images

Versions compatibility

Copyright and licensing information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.8.0 (2025-11-13)

Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)
Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Percona Operator for PostgreSQL
documentation

The Percona Operator for PostgreSQL [4 automates the creation, modification, or deletion of items

in your Percona Distribution for PostgreSQL environment. The Operator contains the necessary
Kubernetes settings to maintain a consistent PostgreSQL cluster.

Percona Kubernetes Operator is based on best practices for configuration and setup of a Percona
Distribution for PostgreSQL cluster. The benefits of the Operator are many, but saving time and
delivering a consistent and vetted environment is key.

This is the documentation for the latest release, 2.8.0 (Release Notes).

Starting with Percona Kubernetes Operator is easy. Follow our documentation guides, and you'll be
set up in a minute.

¥ Installation guides @ Security and encryption

Want to see it for yourself? Get started Rest assured! Learn more about our
quickly with our step-by-step installation security features designed to protect your
instructions. valuable data.

(Quickstart guides >) (Security measures -)

4 Backup management H, Troubleshooting

Learn what you can do to maintain Our comprehensive resources will help
regular backups of your PostgreSQL you overcome challenges, from everyday
cluster. issues to specific doubts.

(Backup management >) (Diagnostics -)

https://github.com/percona/percona-postgresql-operator

Discover the Operator

Compare various solutions to deploy
PostgreSQL in Kubernetes

There are multiple ways to deploy and manage PostgreSQL in Kubernetes. Here we will focus on
comparing the following open source solutions:

e Crunchy Data PostgreSQL Operator (PGO)_[(4

e CloudNative PG [4 from Enterprise DB

o Stackgres [from OnGres

e Zalando Postgres Operator [4

e Percona Operator for PostgreSQL [

Generic
Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL
Open-source Apache 2.0 AGPL 3 Apache 2.0, Apache 2.0 MIT
license but images are
under
Developer
Program
PostgreSQL 12-16 14-16 13-16 12-16 11-15
versions
Kubernetes Various Various Various Various AWS EKS
conformance versions are versions versions are versions are
tested are tested tested tested
Web-based GUI Percona Admin Ul © () Postgres
Everest Operator Ul

Maintenance

|

https://github.com/CrunchyData/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/zalando/postgres-operator
https://github.com/percona/percona-postgresql-operator/
https://docs.percona.com/everest/index.html
https://stackgres.io/doc/latest/administration/adminui/
https://github.com/zalando/postgres-operator/blob/master/docs/operator-ui.md

PostgreSQL

Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL
Operator
upgrade
Database Automated Automated Manual Manual Manual
upgrade and safe and safe
Compute Horizontal and Horizontal Horizontal Horizontal and Horizontal
scaling vertical and vertical and vertical vertical and vertical
Storage scaling Manual Manual Manual Manual Manual,
automated
for AWS
EBS
PostgreSQL topologies
Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL
Warm standby
Hot standby
Connection
pooling
Delayed replica () () () () ©
Backups
Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)

Scheduled
backups
WAL archiving
PITR
GCS
s3
Azure
Monitoring
Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL
Solution Percona Exposing Prometheus Exposing Sidecars
Monitoring metrics in stack and metrics in
and Prometheus pgMonitor Prometheus
Management format format
and sidecars
Miscellaneous
Feature/Product Percona Stackgres CrunchyData CloudNativePG Zalando
Operator for (EDB)
PostgreSQL
Customize
PostgreSQL
configuration
Sidecar o ()

containers for
customization

Helm

Transport
encryption

Data-at-rest
encryption

Create
users/roles

Through
storage class

Through
storage
class

Through
storage
class

Through
storage class

Through
storage
class

limited

Desigh overview

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open
source PostgreSQL clusters on Kubernetes. The Operator is based on CrunchyData's PostgreSQL

Operator (4.

— &) - . 2)

Kubernetes API Operator
4 c ,\ (‘6 \\
clusters primary
b
(perconapgcluster) PostgreSQL pgbouncer

backup, restore

replica

k
(perconapgbackups, PostgreSQL pgbackrest
perconapgrestores)
m R r . .
Cus::)oefiniﬁzzlsj e Container Suite
N J)
N

—
Storage
Area xXxl
Network
PostgreSQL containers deployed with the Operator include the following components:

e The PostgreSQL [4 database management system, including:

PostgreSQL Additional Supplied Modules [,

pgAudit [4 PostgreSQL auditing extension,

PostgreSQL set_user Extension Module [7,

wal2json output plugin (7,

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json

The pgBackRest [4 Backup & Restore utility,

The pgBouncer [4 connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template [7,

the pg_stat_monitor [4 PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

Each PostgreSQL cluster includes one member available for read/write transactions (PostgreSQL
primary instance, or leader in terms of Patroni) and a number of replicas which can serve read
requests only (standby members of the cluster).

To provide high availability from the Kubernetes side the Operator involves node affinity [4 to run
PostgreSQL Cluster instances on separate worker nodes if possible. If some node fails, the Pod with
it is automatically re-created on another node.

https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

— 3 <

Kubernetes API

(

@,7

Operator

O

DB Pod 1 DB Pod 2 DB Pod N

Percona Distribution for PostgreSQL
Namespace

- J

. "

Storage
Area
Network

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A
PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a
failure occurs, the Container Storage Interface (CSl) should be able to re-mount storage on a
different node.

0-

The Operator functionality extends the Kubernetes API with Custom Resources Definitions [4. These
CRDs provide extensions to the Kubernetes API, and, in the case of the Operator, allow you to
perform actions such as creating a PostgreSQL Cluster, updating PostgreSQL Cluster resource
allocations, adding additional utilities to a PostgreSQL cluster, e.g. pgBouncer [for connection
pooling and more.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

When a new Custom Resource is created or an existing one undergoes some changes or deletion,
the Operator automatically creates/changes/deletes all needed Kubernetes objects with the
appropriate settings to provide a proper Percona PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

e perconapgclusters stores information required to manage a PostgreSQL cluster. This includes
things like the cluster name, what storage and resource classes to use, which version of
PostgreSQL to run, information about how to maintain a high-availability cluster, etc.

e perconapgbackups and perconapgrestores are in charge for making backups and restore
them.

Get help from Percona

Our documentation guides are packed with information, but they can’t cover everything you need to
know about Percona Operator for PostgreSQL. They also won't cover every scenario you might come
across. Don't be afraid to try things out and ask questions when you get stuck.

Percona’s Community Forum

Be a part of a space where you can tap into a wealth of knowledge from other database enthusiasts
and experts who work with Percona’s software every day. While our service is entirely free, keep in
mind that response times can vary depending on the complexity of the question. You are engaging
with people who genuinely love solving database challenges.

We recommend visiting our Community Forum. It's an excellent place for discussions, technical

insights, and support around Percona database software. If you're new and feeling a bit unsure, our
FAQ and Guide for New Users ease you in.

If you have thoughts, feedback, or ideas, the community team would like to hear from you at Any
ideas on how to make the forum better?. We're always excited to connect and improve everyone's

experience.

Percona experts

Percona experts bring years of experience in tackling tough database performance issues and
design challenges.

Talk to a Percona Expert

We understand your challenges when managing complex database environments. That's why we
offer various services to help you simplify your operations and achieve your goals.

Service Description

24/7 Expert Our dedicated team of database experts is available 24/7 to assist you with any database
Support issues. We provide flexible support plans tailored to your specific needs.

Hands-On Our managed services team can take over the day-to-day management of your database
Database infrastructure, freeing up your time to focus on other priorities.

Management

https://forums.percona.com/t/welcome-to-perconas-community-forum/7
https://forums.percona.com/faq
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522

Expert Our experienced consultants provide guidance on database topics like architecture

Consulting design, migration planning, performance optimization, and security best practices.
Comprehensive Our training programs help your team develop skills to manage databases effectively,
Training offering virtual and in-person courses.

We're here to help you every step of the way. Whether you need a quick fix or a long-term partnership,
we're ready to provide your expertise and support.

Quickstart guide

Overview

Ready to get started with the Percona Operator for PostgreSQL? In this section, you will learn some
basic operations, such as:

¢ Install and deploy an Operator

e Connect to PostgreSQL

¢ Insert sample data to the database
¢ Set up and make a manual backup

e Monitor the database health with PMM

Next steps

(Install the Operator ->)

System requirements

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is
cloud native and storage agnostic, working with a wide variety of storage classes, hostPath, and
NFS.

Supported versions
The Operator 2.8.0 is developed, tested and based on:

e PostgreSQL 13.22-1,14.19-1,15.14-1, 16.10-1,17.6-1 as the database. Other versions may also
work but have not been tested.

e pgBouncer 1.24.1-1 for connection pooling
e Patroni version 4.6.0 for high-availability

e PostGIS version 3.3.8

Supported platforms
The following platforms were tested and are officially supported by the Operator 2.8.0:

e Google Kubernetes Engine (GKE) (4 1.31-1.33

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.31-1.34

e OpenShift [4 4.16 - 4.20
e Azure Kubernetes Service (AKS) [4 1.32-1.34

e Minikube [4 1.37.0 with Kubernetes v1.34.0

Other Kubernetes platforms may also work but have not been tested.

Huge pages

We strongly recommend enabling_huge pages on worker nodes for better stability and performance.

Installation guidelines

Choose how you wish to install Percona Operator for PostgreSQL:

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE),

on Amazon Elastic Kubernetes Service (AWS EKS)

on Azure Kubernetes Service (AKS)

in a general Kubernetes-based environment

1 Quick install

Install Percona Distribution for PostgreSQL
using kubectl

A Kubernetes Operator is a special type of controller introduced to simplify complex deployments.
The Operator extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a
Percona Distribution for PostgreSQL cluster in a Kubernetes-based environment on-premises or in

the cloud.

We recommend installing the Operator with the kubectl (4 command line utility. It is the universal
way to interact with Kubernetes. Alternatively, you can install it using the Helm (4 package manager.

(€ Install with kubectl |) (# Install with Helm >)

Prerequisites

To install Percona Distribution for PostgreSQL, you need the following:

1. The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes
distributions. Install not already installed, follow its official installation instructions [4.

2. A Kubernetes environment. You can deploy it on Minikube [for testing purposes or using any
cloud provider of your choice. Check the list of our officially supported platforms.

. See also

e Set up Minikube

¢ (Create and configure the GKE cluster

o Set up Amazon Elastic Kubernetes Service

o Create and configure the AKS cluster

Procedure

Here's a sequence of steps to follow:

https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube

o Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in
Kubernetes by installing the Operator in a custom namespace. For example, let's name it

postgres-operator:

S kubectl create namespace postgres-operator

. Expected output .

namespace/postgres-operator was created

We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.

9 Deploy the Operator using_[4 the following command:

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

. Expected output .

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

https://kubernetes.io/docs/reference/using-api/server-side-apply/

At this point, the Operator Pod is up and running.

e Deploy Percona Distribution for PostgreSQL cluster:

S kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

. Expected output .

perconapgcluster.pgv2.percona.com/cluster1 created

0 Check the Operator and replica set Pods status.
S kubectl get pg -n postgres-operator

The creation process may take some time. When the process is over your cluster obtains the
ready status.

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE

cluster cluster1-pgbouncer.postgres-operator.svc ready 3 3

143m

You have successfully installed and deployed the Operator with default parameters. You can check
them in the Custom Resource options reference.

Next steps

((¥ connect to PostgresqlL >)

Install Percona Distribution for PostgreSQL
using Helm

Helm [4 is the package manager for Kubernetes. A Helm chart [4 is a package that contains all the
necessary resources to deploy an application to a Kubernetes cluster.

You can find Percona Helm charts in percona/percona-helm-charts [4 repository in Github.

Prerequisites

To install and deploy the Operator, you need the following:

1. Helmv3 (4.
2. kubectl [4 command line utility.

3. A Kubernetes environment. You can deploy it locally on Minikube [4 for testing purposes or
using any cloud provider of your choice. Check the list of our officially supported platforms.

. See also

¢ Set up Minikube

¢ Create and configure the GKE cluster

e Set up Amazon Elastic Kubernetes Service

Installation

Here's a sequence of steps to follow:

o Add the Percona’s Helm charts repository and make your Helm client up to date with it:

S helm repo add percona https://percona.github.io/percona-helm-charts/
S helm repo update

Q It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:

S kubectl create namespace <my-namespace>

https://github.com/helm/helm
https://helm.sh/docs/topics/charts/
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://github.com/kubernetes/minikube

e Install the Percona Operator for PostgreSQL.:
$ helm install my-operator percona/pg-operator --namespace <my-namespace>
The my-namespace is the name of your namespace. The my-operator parameter is the name

of a new release object [4 which is created for the Operator when you install its Helm chart (use
any name you like).

e Install Percona Distribution for PostgreSQL.:
S helm install cluster1 percona/pg-db -n <my-namespace>

The cluster1 parameter is the name of a new release object [4 which is created for the
Percona Distribution for PostgreSQL when you install its Helm chart (use any name you like).

e Check the Operator and replica set Pods status.
S kubectl get pg -n <my-namespace>

The creation process is over when both the Operator and replica set Pods report the ready
status:

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE

cluster cluster1-pgbouncer.postgres-operator.svc ready 3 3

143m

You have successfully installed and deployed the Operator with default parameters. You can check
them in the Custom Resource options reference.

You can find in the documentation for the charts which Operator [4 and database [4 parameters can
be customized during installation.

Next steps

https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

C Connect to PostgresSQlL -)

2 Connect to the PostgreSQL cluster

When the installation is done, we can connect to the cluster.

The pgBouncer [4 component of Percona Distribution for PostgreSQL provides the point of entry to
the PostgreSQL cluster. We will use the pgBouncer URI to connect.

The pgBouncer URI is stored in the Secret [4 object, which the Operator generates during the

installation.

To connect to PostgreSQL, do the following:
0 List the Secrets objects
S kubectl get secrets -n <namespace>

The Secrets object we target is named as <cluster_name>-pguser-<cluster_name>. The
<cluster_name> value is the name of your Percona Distribution for PostgreSQL Cluster. The

default variant is:

via kubectl

clusterl1-pguser-cluster]i

#k via Helm

cluster1-pg-db-pguser-cluster1-pg-db

g Retrieve the pgBouncer URI from your secret, decode and pass it as the PGBOUNCER_URI
environment variable. Replace the <secret>, <namespace> placeholders with your Secret

object and namespace accordingly:

S PGBOUNCER_URI=S$(kubectl get secret <secret> --namespace <namespace> -0
jsonpath="'{.data.pgbouncer-uri}' | base64 --decode)

The following example shows how to pass the pgBouncer URI from the default Secret object

cluster1-pguser-clusteri:

S PGBOUNCER_URI=S(kubectl get secret clusterl-pguser-cluster1 --namespace
<namespace> -0 jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

e Create a Pod where you start a container with Percona Distribution for PostgreSQL and connect
to the database. The following command does it, naming the Pod pg-client and connects you

to the cluster1 database:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:16 --restart=Never -- psql SPGBOUNCER_URI

It may take some time to create the Pod and connect to the database. As the result, you should

see the following sample output:

. Expected output .

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

clusteri=>

Congratulations! You have connected to your PostgreSQL cluster.

Next steps

(< Insert testing data >)

3 Insert sample data

The next step after connecting_ to the cluster is to insert some sample data to PostgreSQL.

When you start a PostgreSQL container and connect to the database, a user is created with the
username that matches the name of your cluster. Also, a database and a schema named after the
name of this user are created so that you can create a table right away.

Create a schema (for Operator version earlier than 2.6.0)

In Operator versions earlier than 2.6.0, you must create a new schema to insert the data. This is
because your user cannot access the default schema called public due to PostgreSQL restrictions
(instroduced starting with PostgreSQL 15).

A schema stores database objects like tables, views, indexes and allows organizing them into logical
groups.

Use the following statement to create a schema

CREATE SCHEMA demo;

Create a table
After you created a schema, all tables you create end up in this schema if not specified otherwise.

At this step, we will create a sample table Library as follows:

CREATE TABLE LIBRARY(
ID INTEGER NOT NULL,
NAME TEXT,
SHORT_DESCRIPTION TEXT,
AUTHOR TEXT,
DESCRIPTION TEXT,
CONTENT TEXT,
LAST_UPDATED DATE,
CREATED DATE

. Tip

If the schema has not been automatically set to the one you created, set it manually using the following SQL
statement:

SET schema 'demo';

Replace the demo schema name with your value if you used another name.

Insert the data

PostgreSQL does not have the built-in support to generate random data. However, it provides the
random() function which generates random numbers and generate_series() function which
generates the series of rows and populates them with the numbers incremented by 1 (by default).

Combine these functions with a couple of others to populate the table with the data:

INSERT INTO LIBRARY(id, name, short_description, author,
description, content, last_updated, created)
SELECT id, 'name', md5(random()::text), 'name2’
,md5(random() : :text),md5(random() : :text)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100)
,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100 + 100)
FROM generate_series(1,100) id;

This command does the following:

e Fillsin the columns id, name, author with the values id, name and name2 respectively;

¢ generates the random md5 hash sum as the values for the columns short_description,

description and content;

¢ generates the random number of dates from the current date and time within the last 100 days,
and

e inserts 100 rows of this data

Now your cluster has some datain it.

Next steps

C :simple-amazons3: Make a backup ->)

4 Make a backup

Now your database contains some data, so it's a good time to learn how to manually make a full

backup of your data with the Operator.

. Note

If you are interested to learn more about backups, their types and retention policy, see the Backups section.

Considerations and prerequisites

e In this tutorial we use the AWS S3 [as the backup storage. You need the following S3-related
information:

The name of S3 bucket;

The endpoint - the URL to access the bucket

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinlO [4. Check the
list of supported storages. Find the storage configuration instructions for each

e The Operator uses the pgBackRest [tool to make backups. pgBackRest stores the backups
and archives WAL segments in repositories. The Operator has up to four pgBackRest
repositories named repo1, repo2, repo3 and repo4. In this tutorial we use repo2 for backups.

¢ Also, we will use some files from the Operator repository for setting up backups. So, clone the
percona-postgresql-operator repository:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
S cd percona-postgresql-operator

. Note

It is important to specify the right branch with -b option while cloning the code on this step. Please be
careful.

https://aws.amazon.com/s3/
https://min.io/docs/minio/linux/index.html
https://pgbackrest.org/

Configure backup storage

0 Encode the S3 credentials and the pgBackRest repository name (repo2 in our setup).

A Linux

S cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

" macO0S

S cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

e Create the Secret configuration file and specify the base64-encoded string from the previous
step. The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

apiVersion: vI1
kind: Secret
metadata:
name: clusterl1-pgbackrest-secrets
type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

e Create the Secrets object from this yaml file. Specify your namespace instead of the
<namespace> placeholder:

S kubectl apply -f clusteri-pgbackrest-secrets.yaml -n <namespace>

e Update your deploy/cr.yaml configuration. Specify the Secret file you created in the
backups.pgbackrest.configuration subsection, and put all other S3 related information in
the backups.pgbackrest.repos subsection under the repository name that you intend to use
for backups. This name must match the name you used when you encoded S3 credentials on
step 1.

For example, the S3 storage for the repo2 repository looks as follows:

backups:

pgbackrest:
configuration:
- secret:
name: clusterl-pgbackrest-secrets
repos:
- name: repo2
s3:

bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

e Create or update the cluster. Specify your namespace instead of the <namespace> placeholder:

S kubectl apply -f deploy/cr.yaml

Make a backup

For manual backups, you need a backup configuration file.

0 Edit the example backup configuration file [deploy/backup.yaml (4]
(https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/backup.yaml). Specify your cluster name and the repo name.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backupT
spec:
pgCluster: cluster2
repoName: repol
options:
- --type=full

g Apply the configuration. This instructs the Operator to start a backup.

$ kubectl apply -f deploy/backup.yaml -n <namespace>

e To make a backup takes a while. Track the backup progress:

S kubectl get pg-backup -n <namespace>

. Expected output .

NAME CLUSTER REPO DESTINATION STATUS TYPE COMPLETED AGE
backup1 cluster repo2 s3://pg-operator-testing
Succeeded full 3ml4s 4m46s

Congratulations! You have made the first backup manually. Want to learn more about backups? See
the Backup and restore section for details like types, retention and how to automatically make

backups according to the schedule.

Next steps

C Monitor the database -)

5 Monitor the database

Finally, when we are done with backup, it's time for one more step. In this section you will learn how

to monitor the health of Percona Distribution for PostgreSQL with Percona Monitoring_and
Management (PMM) (4.

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you
provide. For PMM 2, the Operator uses API keys for authentication. For PMM 3, it uses service
account tokens.

We recommend to use the latest PMM 3.

PMM is a client/server application. It includes the PMM Server [4 and the number of PMM Clients [4
running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you
connect to the PMM Server to see database metrics on a number of dashboards. PMM Server and
PMM Client are installed separately.

Considerations

1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you
are using PMM server version 3, use a PMM client image compatible with PMM 3. Check
Percona certified images for the right one.

2. If you specified both authentication methods for PMM server configuration and they have non-
empty values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation [4. Also check the
Automatic migration of API keys [4 page.

Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual
appliance, or in Kubernetes. Please refer to the official PMM documentation [for the installation

instructions.

https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html

Install PMM Client

PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based
environment. To install PMM Client, do the following:

Configure authentication

PMM3

PMM3 uses Grafana service accounts to control access to PMM server components and resources.

To authenticate in PMM server, you need a service account token. Generate a service account and
token [4. Specify the Admin role for the service account.

. Warning

When you create a service account token, you can select its lifetime: it can be either a permanent token that
never expires or the one with the expiration date. PMM server cannot rotate service account tokens after they
expire. So you must take care of reconfiguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server [4. The API key must have the role “Admin”. You need this
key to authorize PMM Client within PMM Server.

a8 From PMM UI

(Generate the PMM APl key [)

From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password,
and hostname in the following command:

§ API_KEY=S$(curl --insecure -X POST -H "Content-Type: application/json" -d
"{"name" :"operator"”, "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

. Warning

The API key is not rotated.

Create a secret

https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Now you must pass the credentials to the Operator. To do so, create a Secret object.

1. Create a Secret configuration file. You can use the deploy/secrets.yaml [secrets file.

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN value in the secrets file:

apiVersion: vi1
kind: Secret
metadata:
name: clusterl1-pmm-secret
type: Opaque
stringData:
PMM_SERVER_TOKEN :

PMM 2

Specify the API key as the PMM_SERVER_KEY value in the secrets file:

apiVersion: vi1
kind: Secret
metadata:
name: clusterl1-pmm-secret
type: Opaque
stringData:
PMM_SERVER_KEY :

2. Create the Secrets object using the deploy/secrets.yaml file.

S kubectl apply -f deploy/secrets.yaml -n postgres-operator

. Expected output

secret/cluster1-pmm-secret created

Deploy a PMM Client

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml

1. Update the pmm section in the deploy/cr.yaml [file.

e Set pmm.enabled=true.

e Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The
PMM Server IP address should be resolvable and reachable from within your cluster.

o Specify the name of the Secret object that you created earlier

pmm :
enabled: true
image: percona/pmm-client:3.4.1
imagePullPolicy: IfNotPresent
secret: cluster1-pmm-secret
serverHost: monitoring-service

2. Update the cluster
S kubectl apply -f deploy/cr.yaml -n postgres-operator

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if
there are errors on the previous steps:

S kubectl get pods -n postgres-operator
S kubectl logs <pod_name> -c pmm-client

Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text
format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If
you want to update the password field, you need to encode the new password into the base64 format
and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

& Linux

S echo -n "password" | base64 --wrap=0
" macO0S
S echo -n "password" | base64

For example, to set the new service account token in the my-cluster-name-secrets object, do the
following:

& Linux

S kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'S(echo -n <new-token> | base64 --wrap=0)'}}’

" macO0sS

S kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'$(echo -n <new-token> | base64)'}}’

Check the metrics

Let’'s see how the collected data is visualized in PMM.

o Log in to PMM server.

9 Click &Y PostgreSQL from the left-hand navigation menu. You land on the Instances Overview
page.

e Click G} PostgreSQL - Other dashboards to see the list of available dashboards that allow you
to drill down to the metrics you are interested in.

Next steps

C What's next >)

What's next?

Congratulations! You have completed all the steps in the Get started guide.
You have the following options to move forward with the Operator:

e Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

e Control Pods assignment on specific Kubernetes Nodes by setting up affinity / anti-affinity

o Ready to adopt the Operator for production use and need to delete the testing deployment? Use
this guide to do it

¢ You can also try operating the Operator and database clusters via the web interface with Percona
Everest - an open-source web-based database provisioning tool based on Percona Operators. See
Get started with Percona Everest on how to start using it

https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html

Installation

Install Percona Distribution for PostgreSQL
on Minikube

Installing the Percona Operator for PostgreSQL on Minikube [is the easiest way to try it locally
without a cloud provider.

Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide
hypervisor, such as VirtualBox, KYM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to
test Kubernetes application locally prior to deploying it on a cloud.

This document describes how to deploy the Operator and Percona Distribution for PostgreSQL on
Minikube.

Set up Minikube

o Install Minikube [4, using a way recommended for your system. This includes the installation of

the following three components:

kubectl tool,
a hypervisor, if it is not already installed,

actual minikube package

9 After the installation, initialize and start the Kubernetes cluster. The parameters we pass for the
following command increase the virtual machine limits for the CPU cores, memory, and disk, to
ensure stable work of the Operator:

S minikube start --memory=5120 --cpus=4 --disk-size=30g
This command downloads needed virtualized images, then initializes and runs the cluster.

e After Minikube is successfully started, you can optionally run the Kubernetes dashboard, which
visually represents the state of your cluster. Executing minikube dashboard starts the
dashboard and opens it in your default web browser.

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/

Deploy the Percona Operator for PostgreSQL

o Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in
Kubernetes by installing the Operator in a custom namespace. For example, let's name it

postgres-operator:

S kubectl create namespace postgres-operator

. Expected output .

namespace/postgres-operator was created

We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.

9 Deploy the Operator using_[4 the following command:

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/

. Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

As the result you have the Operator Pod up and running.

e Deploy Percona Distribution for PostgreSQL.:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

. Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

. Note

This deploys the default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml (5
and Custom Resource Options for the configuration options. You can clone the repository with all manifests
and source code by executing the following command:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-operator
After editing the needed options, apply your modified deploy/cr.yaml file as follows:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

e The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

S kubectl get pg -n postgres-operator

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

Verify the Percona Distribution for PostgreSQL cluster
operation

When creation process is over, the output of the kubectl get pg command shows the cluster
status as ready. You can try to connect to the cluster.

During the installation, the Operator has generated several secrets [, including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

o Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1.

https://kubernetes.io/docs/concepts/configuration/secret/
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

e Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}"

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will

do this, naming the new Pod pg-client:

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

a Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 userto a cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusteri-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 clusteril

. Sample output .

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Delete the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

If you no longer need the Kubernetes cluster in Minikube, the following are the steps to remove it.

o Stop the Minikube cluster:

S minikube stop

9 Delete the cluster
S minikube delete

This command deletes the virtual machines, and removes all associated files.

Install Percona Distribution for PostgreSQL
cluster using Everest

Percona Everest [4 is an open source cloud-native database platform that helps developers deploy
code faster, scale deployments rapidly, and reduce database administration overhead while regaining
control over their data, database configuration, and DBaaS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes
clusters. Percona Everest provides APl and Web GUI to launch databases with just a few clicks and
scale them, do routine maintenance tasks, such as software updates, patch management, backups,

and monitoring.

You can try it in action by Installing Percona Everest [4 and managing_your first cluster [4.

https://docs.percona.com/everest/
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/use/cluster-management.html

Install Percona Distribution for PostgreSQL
on Google Kubernetes Engine (GKE)

Following steps help you install the Operator and use it to manage Percona Distribution for
PostgreSQL with the Google Kubernetes Engine. The document assumes some experience with
Google Kubernetes Engine (GKE). For more information on GKE, see the Kubernetes Engine
Quickstart (4.

Prerequisites

All commands from this installation guide can be run either in the Google Cloud shell or in your local
shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

1. gcloud [4. This tool is part of the Google Cloud SDK. To install it, select your operating system
on the official Google Cloud SDK documentation page [4 and then follow the instructions.

2. kubectl (4. This is the Kubernetes command-line tool you will use to manage and deploy
applications. To install the tool, run the following command:

$ gcloud auth login
S gcloud components install kubectl

Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell [4 orin
your local shell (if you have installed Google Cloud SDK locally on the previous step). The following

command creates a cluster named cluster-1:

$ gcloud container clusters create cluster-1 --project <project ID> --zone
us-centrall-a --cluster-version 1.33 --machine-type nl1-standard-4 --num-

nodes=3

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

. Note

You must edit the above command and other command-line statements to replace the <project ID>
placeholder with your project ID (see available projects with gcloud projects list command). You may also
be required to edit the zone location, which is set to us-centrall in the above example. Other parameters
specify that we are creating a cluster with 3 nodes and with machine type of 4 vCPUs.

You may wait a few minutes for the cluster to be generated.

. When the process is over, you can see it listed in the Google Cloud console .

Select Kubernetes Engine - Clusters in the left menu panel:

0O e cluster1 europe-west3-b 3 12 45 GB —
/" Edit
< Connect
W Delete

Now you should configure the command-line access to your newly created cluster to make kubectl
be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above
image. You will see the connect statement which configures the command-line access. After you
have edited the statement, you may run the command in your local shell:

$ gcloud container clusters get-credentials cluster-1 --zone us-centrall-a --
project <project name>

Finally, use your Cloud Identity and Access Management (Cloud IAM)_[4 to control access to the

cluster. The following command will give you the ability to create Roles and RoleBindings:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole
cluster-admin --user $(gcloud config get-value core/account)

. Expected output .

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

https://cloud.google.com/iam

Install the Operator and deploy your PostgreSQL cluster

o First of all, use the following git clone command to download the correct branch of the
percona-postgresql-operator repository:

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator

S cd percona-postgresql-operator

g Create the Kubernetes namespace for your cluster if needed (for example, let's name it
postgres-operator):

S kubectl create namespace postgres-operator

. Expected output .

namespace/postgres-operator was created

. Note

To use different namespace, specify other name instead of postgres-operator inthe above command,
and modify the -n postgres-operator parameter with it in the following steps. You can also omit this
parameter completely to deploy everything in the default namespace.

e Deploy the Operator using_[4 the following command:

$ kubectl apply --server-side -f deploy/bundle.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/

. Expected output .

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

As the result you will have the Operator Pod up and running.

0 Deploy Percona Distribution for PostgreSQL.:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

. Expected output .

perconapgcluster.pgv2.percona.com/cluster1 created

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

S kubectl get pg -n postgres-operator

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m
. You can also track the creation process in Google Cloud console via the Object Browser .

When the creation process is finished, it will look as follows:

Name Status Type Pods Namespace Cluster
cluster1-backup-7hsq @ oK Job oM pg-opertor cluster1
cluster1-instance1-mntz @ oK Stateful Set 17 pg-opertor cluster1
cluster1-pgbouncer @ oK Deployment 7 pg-opertor cluster1
cluster1-repo-host @ oK Stateful Set 17 pg-opertor cluster1
cluster1-repo1-full @ oK Cron Job 0/0 pg-opertor cluster1
percona-postgresql-operator @ oK Deployment 11 pg-opertor cluster1

Verifying the cluster operation

When creation process is over, kubectl get pg -n <namespace> command will show you the
cluster status as ready, and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [4, including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The

default variant will be cluster1-pguser-cluster1?.

e Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}"

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will

do this, naming the new Pod pg-client:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

0 Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 userto a cluster1 database via the PostgreSQL

interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusteri-
pgbouncer .postgres-operator.svc -p 5432 -U cluster1 cluster

. Sample output .

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

Also, there are several ways that you can delete your Kubernetes cluster in GKE.

You can clean up the cluster with the gcloud command as follows:

$ gcloud container clusters delete <cluster name> --zone us-centrall-a --
project <project ID>

The return statement requests your confirmation of the deletion. Type y to confirm.

. Also, you can delete your cluster via the Google Cloud console

Just click the Delete popup menu item in the clusters list:

0Oe cluster1 europe-west3-b 3 12

45 GB

/" Edit
< Connect
@ Delete

The cluster deletion may take time.

. Warning

After deleting the cluster, all data stored in it will be lost!

Install Percona Distribution for PostgreSQL
on Amazon Elastic Kubernetes Service (EKS)

This guide shows you how to deploy Percona Operator for PostgreSQL on Amazon Elastic
Kubernetes Service (EKS). The document assumes some experience with the platform. For more
information on the EKS, see the Amazon EKS official documentation (4.

Prerequisites
Software installation

The following tools are used in this guide and therefore should be preinstalled:

1. AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can
install it following the official installation instructions for your system [4.

2. eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on
GitHub 4.

3. kubectl to manage and deploy applications on Kubernetes. Install it following_the official

installation instructions (4.

Also, you need to configure AWS CLI with your credentials according to the official guide [4.

Creating the EKS cluster

o To create your cluster, you will need the following data:
name of your EKS cluster,
AWS region in which you wish to deploy your cluster,
the amount of nodes you would like tho have,

the desired ratio between on-demand [4 and spot [4 instances in the total number of
nodes.

https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

. Note

spot [instances are not recommended for production environment, but may be useful e.g. for testing
purposes.

After you have settled all the needed details, create your EKS cluster following_ the official cluster

creation instructions (4.

9 After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver [4 on
your cluster. See the official documentation [4 on adding it as an Amazon EKS add-on.

. Note

CSl driver is needed for the Operator to work properly, and is not included by default starting from the
Amazon EKS version 1.22. Therefore servers with existing EKS cluster based on the version 1.22 or earlier
need to install CSI driver before updating the EKS cluster to 1.23 or above.

Install the Operator and Percona Distribution for
PostgreSQL

The following steps are needed to deploy the Operator and Percona Distribution for PostgreSQL in
your Kubernetes environment:

0 Create the Kubernetes namespace for your cluster if needed (for example, let's name it

postgres-operator):

S kubectl create namespace postgres-operator

. Expected output .

namespace/postgres-operator was created

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html

. Note

To use different namespace, specify other name instead of postgres-operator in the above command,
and modify the -n postgres-operator parameter with it in the following two steps. You can also omit
this parameter completely to deploy everything in the default namespace.

Q Deploy the Operator using_[4 the following command:

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

. Expected output .

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

As the result you will have the Operator Pod up and running.

e The operator has been started, and you can deploy your Percona Distribution for PostgreSQL
cluster

S kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/

. Expected output .

perconapgcluster.pgv2.percona.com/cluster1 created

. Note

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml [4 and
Custom Resource Options for the configuration options. You can clone the repository with all manifests and
source code by executing the following command:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-operator
After editing the needed options, apply your modified deploy/cr.yaml file as follows:

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

S kubectl get pg

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

Verifying the cluster operation

When creation process is over, kubectl get pg command will show you the cluster status as
ready, and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [4, including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

https://kubernetes.io/docs/concepts/configuration/secret/
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml

o Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The

default variant will be cluster1-pguser-clusteri.

g Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

e Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 userto a cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusteri-
pgbouncer .postgres-operator.svc -p 5432 -U cluster1 cluster1

. Sample output .

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Removing the cluster

If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

To delete your Kubernetes cluster in EKS, you will need the following data:
e name of your EKS cluster,

e AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of
<region> and <cluster name> placeholders):

S eksctl delete cluster --region=<region> --name="<cluster name>"

The cluster deletion may take time.

. Warning

After deleting the cluster, all data stored in it will be lost!

Install Install Percona Distribution for
PostgreSQL on Azure Kubernetes Service
(AKS)

This guide shows you how to deploy Percona Operator for PostgreSQL on Microsoft Azure
Kubernetes Service (AKS). The document assumes some experience with the platform. For more
information on the AKS, see the Microsoft AKS official documentation [4.

Prerequisites

The following tools are used in this guide and therefore should be preinstalled:

1. Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You
can install it following the official installation instructions for your system [4.

2. kubectl to manage and deploy applications on Kubernetes. Install it following_the official

installation instructions (4.

Also, you need to sign in with Azure CLI using your credentials according to the official guide [4.

Create and configure the AKS cluster

To create your Kubernetes cluster, you will need the following data:

e name of your AKS cluster,

e an Azure resource group [4, in which resources of your cluster will be deployed and managed.

¢ the amount of nodes you would like tho have.

You can create your cluster via command line using az aks create command. The following
command will create a 3-node cluster named cluster1 within some already existing (4 resource

group named my-resource-group:

S az aks create --resource-group my-resource-group --name clusterl --enable-
managed-identity --node-count 3 --node-vm-size Standard_B4ms --node-osdisk-
size 30 --network-plugin kubenet --generate-ssh-keys --outbound-type
loadbalancer

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group

Other parameters in the above example specify that we are creating a cluster with machine type of
Standard_B4ms [4 and OS disk size reduced to 30 GiB. You can see detailed information about
cluster creation options in the AKS official documentation (4.

You may wait a few minutes for the cluster to be generated.

Now you should configure the command-line access to your newly created cluster to make kubectl
be able to use it.

az aks get-credentials --resource-group my-resource-group --name cluster

Install the Operator and deploy your PostgreSQL cluster

1. Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in
Kubernetes by installing the Operator in a custom namespace. For example, let's name it

postgres-operator:

S kubectl create namespace postgres-operator

. Expected output .

namespace/postgres-operator was created

We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.

2. Deploy the Operatorusing_[4 the following command:
S kubectl apply --server-side -f

https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

https://azureprice.net/vm/Standard_B4ms
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://kubernetes.io/docs/reference/using-api/server-side-apply/

. Expected output .

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied

deployment.apps/percona-postgresql-operator serverside-applied

At this point, the Operator Pod is up and running.

3. The operator has been started, and you can deploy Percona Distribution for PostgreSQL.:

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

. Expected output .

perconapgcluster.pgv2.percona.com/cluster1 created

. Note

This deploys default Percona Distribution for PostgreSQL configuration. Please see deploy/cr.yaml [4 and
Custom Resource Options for the configuration options. You can clone the repository with all manifests and

source code by executing the following command:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-operator

After editing the needed options, apply your modified deploy/cr.yaml file as follows:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml

S kubectl get pg

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

Verifying the cluster operation

It may take ten minutes to get the cluster started. When kubectl get pg command finally shows
you the cluster status as ready, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [4, including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

o Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The

default variant will be cluster1-pguser-clusteri.

e Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}"

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

o Run a container with psqgl tool and connect its console output to your terminal. The following
command will connect you as a cluster1 userto a cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psqgl -h clusteri-
pgbouncer .postgres-operator.svc -p 5432 -U cluster1 cluster

. Sample output .

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Removing the AKS cluster

To delete your cluster, you will need the following data:

¢ name of your AKS cluster,

e AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete command as follows (with real names

instead of <resource group> and <cluster name> placeholders):

$ az aks delete --name <cluster name> --resource-group <resource group> --yes
--no-wait

It may take ten minutes to get the cluster actually deleted after executing this command.

. Warning

After deleting the cluster, all data stored in it will be lost!

Install Percona Distribution for PostgreSQL
on OpenShift

Percona Operator for PostgreSQL is a Red Hat Certified Operator [4. This means that Percona

Operator is portable across hybrid clouds and fully supports the Red Hat OpenShift lifecycle.
Installing Percona Distribution for PostgreSQL on OpenShift includes two steps:

¢ Installing the Percona Operator for PostgreSQL,

¢ Install Percona Distribution for PostgreSQL using the Operator.

Install the Operator

You can install Percona Operator for PostgreSQL on OpenShift using the web interface (the Operator
Lifecycle Manager [4), or using the command line interface.

Install the Operator via the Operator Lifecycle Manager (OLM)

Operator Lifecycle Manager (OLM) is a part of the Operator Framework [4 that allows you to install,

update, and manage the Operators lifecycle on the OpenShift platform.

Following steps will allow you to deploy the Operator and PostgreSQL cluster on your OLM
installation:

1. Login to the OLM and click the needed Operator on the OperatorHub page:

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://github.com/operator-framework

RedHat

OpenShift

02 Administrator

Home

Operators

Workloads

Networking

Storage

Builds

Compute

User Management

Administration

Project:dima-pxc ¥

OperatorHub

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow ot

Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace . You canin

developers. After installation, the Operator capabilities will appear in the Developer Catalog providing a self- service experience.

I Al ltems All ltems

Al/ Machine Learning
Q. percona operator for postgresq|
Application Runtime

Big Data
Cloud Provider
Datab Certified
abase %
Developer Tools
Devel Tool Percona Operator for
evelopment Tools
P PostgreSQL
Drivers and plugins provided by Percona
Integration & Delivery Percona Operator for
Logging & Tracing PostgreSQL manages the
Modernization & Migration lifecycle of Percona PostgreSQL..
Monitoring

Then click “Continue”, and “Install”.

Community

o

Percona Operator for
PostgreSQL

provided by Percona

Percona Operator for
PostgreSQL manages the

lifecycle of Percona PostgreSQL..

Marketplace

2

Percona Operator for
PostgreSQL

provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL..

2. A new page will allow you to choose the Operator version and the Namespace / OpenShift
project you would like to install the Operator into.

Create Project

An OpensShift project is an alternative representation of a Kubernetes namespace.

Learn more about working with projects

Name* @

postgres-operator

Display name

Description

. Note

If you are going to install the Operator in multi-namespace (cluster-wide) mode, please choose values with -
cw suffix for the update channel and version, and select the “All namespaces on the cluster” radio button for
the installation mode instead of choosing a specific Namespace:

RedHat
OpenShift

OperatorHub > Operator Installation

Install Operator o

Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel * @

stable

Version *

2.6.0-cw

Installation mode *

@ All namespaces on the cluster (default)
Operator will be available in all Namespaces.

O A specific namespace on the cluster
Operator will be available in a single Namespace only.

Click “Install” button to actually install the Operator.

3. When the installation finishes, you can deploy PostgreSQL cluster. In the “Operator Details” you
will see Provided APIs (Custom Resources, available for installation). Click “Create instance” for

the PerconaPGCluster Custom Resource.

Installed Operators > Operator details

Percona Operator for PostgreSQL
2.4.0 provided by Percona

Details YAML Subscription Events Allinstances Percona PGCluster Percona PGBackup Percona PGRestore

Provided APls

(€19 PerconaPGCluster (4€]5) Percona PGBackup (=3 Percona PGRestore
PerconaPGCluster is the CRD that PerconaPGBackup is the CRD that PerconaPGRestore is the CRD that
defines a Percona PG Cluster defines a Percona PostgreSQL Backup defines a Percona PostgreSQL Restore
@® Create instance @® Create instance @ Create instance

(9 Postgres Cluster

PostgresCluster is the Schema for the
postgresclusters API

@ Create instance

You will be able to edit manifest to set needed Custom Resource options, and then click “Create”
button to deploy your database cluster.

Install the Operator via the command-line interface
1. First of all, clone the percona-postgresql-operator repository:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
S cd percona-postgresql-operator

. Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

2. The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from
the deploy/crd.yaml file. Custom Resource Definition extends the standard set of resources
which OpenShift “knows” about with the new items (in our case ones which are the core of the
Operator). Apply. it (4 as follows:

S oc apply --server-side -f deploy/crd.yaml

https://kubernetes.io/docs/reference/using-api/server-side-apply/

This step should be done only once; it does not need to be repeated with any other Operator
deployments.

3. Create the OpenShift namespace for your cluster if needed (for example, let's name it
postgres-operator):

$ oc create namespace postgres-operator

. Note

To use different namespace, specify other name instead of postgres-operator inthe above command,
and modify the -n postgres-operator parameter with it in the following two steps. You can also omit this
parameter completely to deploy everything in the default namespace.

4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with
the deploy/rbac.yaml file. Role-based access is based on defined roles and the available
actions which correspond to each role. The role and actions are defined for Kubernetes

resources in the yaml file. Further details about users and roles can be found in specific
OpenShift documentation [4)

S oc apply -f deploy/rbac.yaml -n postgres-operator

. Note

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
OpenShift Engine can grant user needed privileges with the following command:

$ oc create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --
user=$8(gcloud config get-value core/account)

5. If you are going to use the operator with anyuid [4 security context constraint please execute the
following command:

S sed -i '/disable_auto_failover: "false"/a \ \ \ \ disable_fsgroup:
"false"' deploy/operator.yaml

6. Start the Operator within OpenShift:

S oc apply -f deploy/operator.yaml -n postgres-operator

https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html

Optionally, you can add PostgreSQL Users secrets and TLS certificates to OpenShift. If you don't,
the Operator will create the needed users and certificates automatically, when you create the
database cluster. You can see documentation on Users and TLS certificates if still want to create

them yourself.

. Note

You can simplify the Operator installation by applying a single deploy/bundle.yaml file instead of running
commands from the steps 2 and 4:

S oc apply -f deploy/bundle.yaml

This will automatically create Custom Resource Definition, set up role-based access control and install the
Operator as one single action.

7. After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any
time with the following command:

S oc apply -f deploy/cr.yaml -n postgres-operator

Creation process will take some time. The process is over when both Operator and replica set
Pods have reached their Running status:

S oc get pg -n postgres-operator

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE

cluster cluster1-pgbouncer.postgres-operator.svc ready 3 3

143m

Verifying the cluster operation

When creation process is over, oc get pg command will show you the cluster status as ready,
and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [4, including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

o Use oc get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The

default variant will be cluster1-pguser-clusteri.

e Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S oc get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> -
-template="'{{.data.password | base64decode}}{{"\n"}}'

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client:

S oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.6-1 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

e Run a container with psgl tool and connect its console output to your terminal. The following
command will connect you as a cluster1 userto a cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psqgl -h clusteri-
pgbouncer .postgres-operator.svc -p 5432 -U cluster1 cluster

. Sample output .

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Install Percona Distribution for PostgreSQL
on Kubernetes

Following steps will allow you to install the Operator and use it to manage Percona Distribution for
PostgreSQL in a Kubernetes-based environment.

0 First of all, clone the percona-postgresql-operator repository:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
S cd percona-postgresql-operator

. Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

e The Custom Resource Definition for Percona Distribution for PostgreSQL should be created
from the deploy/crd.yaml file. Custom Resource Definition extends the standard set of
resources which Kubernetes “knows” about with the new items (in our case ones which are the

core of the Operator). Apply.it (4 as follows:
S kubectl apply --server-side -f deploy/crd.yaml

This step should be done only once; it does not need to be repeated with any other Operator

deployments.

e Create the Kubernetes namespace for your cluster if needed (for example, let's name it

postgres-operator):

S kubectl create namespace postgres-operator

. Note

To use a different namespace, specify another name instead of postgres-operator inthe above
command, and modify the -n postgres-operator parameter with it in the following two steps. You can
also omit this parameter completely to deploy everything in the default namespace.

https://kubernetes.io/docs/reference/using-api/server-side-apply/

o The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured
with the deploy/rbac.yaml file. Role-based access is based on defined roles and the available
actions which correspond to each role. The role and actions are defined for Kubernetes
resources in the yaml file. Further details about users and roles can be found in Kubernetes
documentation [4.

S kubectl apply -f deploy/rbac.yaml -n postgres-operator

. Note

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command:

S kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-
admin --user=$(gcloud config get-value core/account)

e Start the Operator within Kubernetes:
S kubectl apply -f deploy/operator.yaml -n postgres-operator

Optionally, you can add PostgreSQL Users secrets and TLS certificates to Kubernetes. If you
don't, the Operator will create the needed users and certificates automatically, when you create
the database cluster. You can see documentation on Users and TLS certificates if still want to
create them yourself.

G After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any
time with the following command:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

S kubectl get pg -n postgres-operator

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

Verifying the cluster operation

When creation process is over, the output of the kubectl get pg command shows the cluster
status as ready. You can now try to connect to the cluster.

During the installation, the Operator has generated several secrets [4, including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The

default variant will be cluster1-pguser-clusteri.

e Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresqgl:17.6-1 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

e Run a container with psqgl tool and connect its console output to your terminal. The following
command will connect you as a cluster1 userto a cluster1 database via the PostgreSQL
interactive terminal.

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusteri-
pgbouncer .postgres-operator.svc -p 5432 -U cluster1 cluster

. Sample output .

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Deleting the cluster

If you need to delete the cluster (for example, to clean up the testing deployment before adopting it

for production use), check this HowTo.

Configuration

Users

The Percona Operator for PostgreSQL includes built-in functionality to simplify management of users
and databases within your PostgreSQL cluster. By default, the Operator creates a single unprivileged
user and the database that matches the cluster name.

However, many production workloads require more granular user access, separate databases for
different applications, or restricted privileges for security and compliance. With the Operator, you can
define custom users and manage their access to your database cluster resources:

This document explains how you can customize user and database management for your specific
use case.

Understanding default user management

When you create a PostgreSQL cluster with the Operator and do not specify any additional users or
databases, the Operator does the following:

1. Creates a database that matches the name of your PostgreSQL cluster.

2. Creates a schema for that database that matches the name of your PostgreSQL cluster.

3. Creates an unprivileged PostgreSQL user with the name of the cluster. This user has access to
the database created in the previous step.

4. Creates a Secret with the login credentials and connection details for the PostgreSQL user from
the previous step which is in relation to the database. The Secret is named <clusterName>-
pguser-<userName> and contains the following information:

user : The name of the user account.

e password: The password for the user account.
o dbname: The name of the database that the user has access to by default.

e host: The name of the host of the database. This references the Service of the primary
PostgreSQL instance.

e port: The port that the database is listening on.

e uri: A PostgreSQL connection URI that provides all the information for logging into the
PostgreSQL database via pgBouncer

e jdbc-uri: A PostgreSQL JDBC connection URI that provides all the information for logging
into the PostgreSQL database via the JDBC driver.

As an example, with the default PostgreSQL cluster name cluster1, the Operator creates the
following:

e A database named cluster1.

e A schemanamed cluster1 for the database cluster1

e A PostgreSQL user named cluster?.

e A Secret named clusteri1-pguser-cluster1 that contains the user credentials and connection
information.

Custom users and databases

You can add and manage custom users and databases using the spec.users section in the
Custom Resource. You can do this:
¢ at the cluster creation time

e atruntime.

Considerations
Here's what you need to know:
Adding custom users and databases:

¢ If you define custom users in spec.users during cluster creation, the Operator does not create
any default users or databases (except for the postgres database). If you want additional
databases, you must specify them explicitly.

e For each user added in spec.users, the Operator creates a Secret named <clusterName>-
pguser-<userName> with that user’s credentials. You can override this Secret name using the

spec.users.secretName option.

¢ If you do not specify any databases for a custom user, the resulting Secret will not include
dbname or uri fields. This means the user will not have access to any database until one is
assigned later.

¢ If youinclude at least one database in spec.users.databases for the user, the Secret will
include connection credentials for the first database in the list (dbname and uri).

e You can add a special postgres user as one of the custom users. This user is granted access to
the postgres database, but its privileges cannot be changed.

e By default, the top-level autoCreateUserSchema optionis setto true. This means each user

will have automatically-created schemas in all databases listed for this user under

users.databases.

e By default, users without superuser privileges do not have access to the public schema. To
allow a non-superuser to create and update tables in the public schema, set the
grantPublicSchemaAccess optionto true. This gives the user permission to create and update
tables in the public schema of every database they own.

» Your custom superusers automatically have access to the public schema for their assigned
databases.

o |f multiple users are granted access to the public schema in the same database, each can only
access tables they themselves have created. If you want one user to access tables created by
another user, the table owner must explicitly grant privileges via PostgreSQL.

Behavior when removing or modifying users and databases:
¢ The Operator does not automatically drop users if you remove them from the Custom Resource,

to prevent accidental data loss.

o Similarly, the Operator does not automatically drop databases when you remove them from the
Custom Resource. (See how to actually drop a database here.)

» Role attributes (such as SUPERUSER) are not automatically removed if you delete them from the
Custom Resource. You must specify the opposite attribute (e.g., NOSUPERUSER) to explicitly
revoke privileges.

Creating a new user

Change PerconaPGCluster Custom Resource by editing your YAML manifest in the
deploy/cr.yaml configuration file:

spec:
users:
- name: perconapg

After you apply such changes with the usual kubectl apply -f deploy/cr.yaml command, the
Operator will create the new user as follows:

¢ The credentials of this user are populated in the <clusterName>-pguser-perconapg secret.
There are no connection credentials.

e The useris unprivileged.

The following example shows how to create a new pgtest database and let perconapg user
access it. The appropriate Custom Resource fragment will look as follows:

spec:

users:
- name: perconapg
databases:
- pgtest

If you inspect the <clusterName>-pguser-perconapg Secret after applying the changes, you will
see dbname and uri options populated there, and the database pgtest is created in PostgreSQL
as well.

Managing user passwords
Operator-generated passwords

The Operator generates a random password for each PostgreSQL user it creates. PostgreSQL allows
almost any character in its passwords and the Operator generates passwords in ASCII format by
default.

Your application may have stricter requirements to password creation. For example, if you need
passwords without special characters, set the spec.users.password.type field for that user to

AlphaNumeric.

To have the Operator generate a new password, remove the existing password field from the user
Secret.

For example, to generate a new password for the user cluster1 in the PostgreSQL cluster
cluster1 running in the postgres-operator namespace, use the following kubectl patch
command:

kubectl patch secret -n postgres-operator clusterl-pguser-clusterl -p
"{"data":{"password":""}}"

Replace the namespace and the secret name with your values to reuse this command.

Custom passwords

https://en.wikipedia.org/wiki/ASCII

You may want a complete control over user passwords by setting a specific password for a
PostgreSQL user instead of letting Percona Operator for PostgreSQL generate one for you. To do
that, create a user Secret and specify the password within.

When you create a user Secret, the way you name it is important:

¢ If you specify a Secret name using the default naming convention that the Operator expects
(<clusterName>-pguser-<userName>), the Operator will detect and use it automatically.

¢ If you use a custom name for your Secret, you must explicitly reference that Secret in the Custom
Resource to let the Operator know about it.

The Operator looks for two fields in the Secret:

e password: the plaintext password.

e verifier:ahashed representation of the password using SCRAM-SHA-256 .

When the verifier changes, the Operator updates the password inside the PostgreSQL cluster.
This approach ensures the password is securely passed into the database.

You can set a custom password in these ways:

¢ You can provide a plaintext password in the password field and omit the verifier. The Operator
will detect this and automatically generate a SCRAM verifier for your password.

¢ You can supply both the password and the verifier yourself. If both are present, the Operator
will use them as-is and skip the generation step. Once the Secret contains both values, the
Operator will make sure the credentials are correctly applied to PostgreSQL.

Here's how to set a custom password within a Secret with a custom name:
1. Export your namespace as an environment variable
export NAMESPACE=postgres-operator

2. Create a Secrets object. For example, cat-credentials:

kubectl apply -n SNAMESPACE -f - <<EOF
apiVersion: vi
kind: Secret
metadata:
name: cat-credentials
type: Opaque
data:
password: $(echo -n 'mySuperStrongp@ssword' | base64)
EOF

. Sample output

secret/cat-credentials created

3. Add a user and reference the Secret for them in the Custom Resource:

via cr.yaml

users:
- name: cat
databases:
- zo0o
secretName: "cat-credentials”
grantPublicSchemaAccess: true

Apply the configuration:

kubectl apply -f deploy/cr.yaml -n SNAMESPACE

via kubectl patch

To update a running cluster, use the kubectl patch command:

kubectl patch pg cluster1 -n SNAMESPACE --type=merge --patch '{

"spec": {
"users": |
{
"name": "cat",
"databases": ["zo00"],
"secretName": "cat-credentials”,
"grantPublicSchemaAccess": true
}
]
}
y

4. After you update the cluster, the Operator updates the Secret with the login credentials and
connection information. View the Secret object to verify this with this command:

kubectl get secret cat-credentials -o yaml -n SNAMESPACE

5. Verify that the user is created by connecting to the database as your custom user.

Password rotation

If you want to rotate a user’s password, just remove the old password in the corresponding Secret:
the Operator will immediately generate a new password and save it to the appropriate Secret. You
can remove the old password with the kubectl patch secret command:

kubectl patch secret <clusterName>-pguser-<userName> -p '{"data":
{llpasswordll:ll II}}I

In the same way you can update a password with your custom one for the user. Do it as follows:

kubectl patch secret <clusterName>-pguser-<userName> -p '{"stringData":
{"password" :"<custom_password>", "verifier":""}}'

Adjusting privileges

You can set role privileges by using the standard role attributes [4 that PostgreSQL provides and

adding them to the spec.users.options subsection in the Custom Resource.
Grant privileges

The following example will make the perconapg a superuser. You can add the following to the spec
in your deploy/cr.yaml:

spec:

users:
- name: perconapg
databases:
- pgtest

options: "SUPERUSER"

Apply changes with the usual kubectl apply -f deploy/cr.yaml command.

If you want to add multiple privileges, you can use a space-separated list as follows:

spec:

users:
- name: perconapg
databases:
- pgtest

options: "CREATEDB CREATEROLE"

Revoke privileges

To revoke the superuser privilege afterwards, apply the following configuration:

https://www.postgresql.org/docs/current/role-attributes.html

spec:

users:
- name: perconapg
databases:

- pgtest
options: "NOSUPERUSER"

postgres User

By default, the Operator does not create the postgres user. You can create it by applying the
following change to your Custom Resource:

spec:
users:
- name: postgres

This will create a Secret named <clusterName>-pguser-postgres that contains the credentials of
the postgres user. The Operator creates a user postgres who can access the postgres
database.

Deleting users and databases

The Operator does not delete users and databases automatically. After you remove the user from the
Custom Resource, it will continue to exist in your cluster. To remove a user and all of its objects, as a
superuser you will need to run DROP OWNED in each database the user has objects in, and DROP

ROLE in your PostgreSQL cluster.

DROP OWNED BY perconapg;
DROP ROLE perconapg;

For databases, you should run the DROP DATABASE command as a superuser:

DROP DATABASE pgtest;

Superuser and pgBouncer

For security reasons we do not allow superusers to connect to cluster through pgBouncer by default.
As a superuser, you can connect through the primary service. Read more about this service in
exposure documentation.

Otherwise you can use the proxy.pgBouncer.exposeSuperusers Custom Resource option to enable

superusers connection via pgBouncer.

Exposing cluster

The Operator provides entry points for accessing the database by client applications. The database
cluster is exposed with regular Kubernetes Service objects [4 configured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters

deployed with the Operator.

PgBouncer

We recommend exposing the cluster through PgBouncer, which is enabled by default.

Client Application

i
£F:)
pgBouncer (DB proxy)

DB Pod 1 DB Pod 2 DB Pod 3

WI‘ ite

- J

You can disable pgBouncer by setting proxy.pgBouncer.replicas to 0.

The following example deploys two pgBouncer nodes exposed through a LoadBalancer Service

object:

proxy:
pgBouncer :
replicas: 2
image: docker.io/percona/percona-pgbouncer:1.24.1-1
expose:
type: LoadBalancer

https://kubernetes.io/docs/concepts/services-networking/service/

The Service will be called <clusterName>-pgbouncer:

$ kubectl get service

. Expected output .

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

clusteri1-pgbouncer LoadBalancer 10.88.8.48 34.133.38.186 5432:30601/TCP 20m

You can connect to the database using the External IP of the load balancer and port 5432 .

If your application runs inside the Kubernetes cluster as well, you might want to use the Cluster IP

Service type in proxy.pgBouncer.expose.type, which is the default. In this case to connect to the
database use the internal domain name - cluster1-pgbouncer.

<namespace>.svc.cluster.local.

Exposing the cluster without pgBouncer

You can connect to the cluster without a proxy.

Client Application

Replica

Replica

For that use <clusterName>-ha Service object:

S kubectl get service

. Expected output .

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteri-ha ClusterIP 10.88.8.121 <none> 5432 /TCP 115s
cluster1-replicas ClusterIP 10.88.8.115 <none> 5432/TCP 2ml16s

The cluster1-ha service points to the active primary. In case of failover to the replica node, will
change the endpoint automatically. Also, you can use clusteri1-replicas service to make read
requests to PostgreSQL replica instances.

To change the Service type, use expose.type in the Custom Resource manifest. For example, the
following manifest will expose this service through a load balancer:

spec:

expose:
type: LoadBalancer

Changing PostgreSQL options

Despite the Operator’s ability to configure PostgreSQL and the large number of Custom Resource
options, there may be situations where you need to pass specific options directly to your cluster’s

PostgreSQL instances. For this purpose, you can use the PostgreSQL dynamic configuration method
(4 provided by Patroni. You can pass PostgreSQL options to Patroni through the Operator Custom
Resource, updating it with deploy/cr.yaml configuration file).

Custom PostgreSQL configuration options should be included into the
patroni.dynamicConfiguration.postgresql.parameters subsection as follows:

patroni:
dynamicConfiguration:
postgresql:
parameters:

max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

Please note that configuration changes will be automatically applied to the running instances as
soon as you apply Custom Resource changes in a usual way, running the kubectl apply -f
deploy/cr.yaml command.

You can apply custom configuration in this way for both new and existing clusters.

Normally, options should be applied to PostgreSQL instances dynamically without restart, except the

options with the postmaster context [4. Changing options which have context=postmaster will
cause Patroni to initiate restart of all PostgreSQL instances, one by one. You can check the context
of a specific option using the SELECT name, context FROM pg_settings; query to to see if the
change should cause a restart or not.

. Note

The Operator passes options to Patroni without validation, so there is a theoretical possibility of the cluster
malfunction caused by wrongly configured PostgreSQL instances. Also, this configuration method is used for
PostgreSQL options only and cannot be applied to change other Patroni dynamic configuration options (4. It

means that options in the parameters subsection under patroni.dynamicConfiguration.postgresql will
be applied, and everything else in patroni.dynamicConfiguration.postgresql will be ignored.

https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html

Using host-based authentication (pg_hba)

PostgreSQL Host-Based Authentication (pg_hba) allows controlling access to the PostgreSQL
database based on the IP address or the host name of the connecting host. You can configure
pg_hba through the Custom Resource patroni.dynamicConfiguration.postgresql.pg_hba
subsection as follows:

patroni:
dynamicConfiguration:
postgresql:
pg_hba:
- host all all 0.0.0.0/0 md5

As you may guess, this example allows all hosts to connect to any database with MD5 password-
based authentication

Obviously, you can connect both dynamicConfiguration.postgresql.parameters and
dynamicConfiguration.postgresql.pg_hba subsections:

patroni:
dynamicConfiguration:
postgresql:

parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

pg_hba:

- local all all trust

- host all all 0.0.0.0/0 md5

- host all all ::1/128 md5

- host all mytest 123.123.123.123/32 reject

The changes will be applied after you update Custom Resource in a usual way:

S kubectl apply -f deploy/cr.yaml

Binding Percona Distribution for PostgreSQL
components to specific
Kubernetes/OpensShift Nodes

The operator does good job automatically assigning new Pods to nodes with sufficient resources to
achieve balanced distribution across the cluster. Still there are situations when it is worth to ensure
that pods will land on specific nodes: for example, to get speed advantages of the SSD equipped
machine, or to reduce network costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml [4 file (such as proxy.pgBouncer) contain keys which
can be used to do this, depending on what is the best for a particular situation.

Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node
which already has Pods with specific labels, or has specific labels itself (so called “Node affinity”).
Particularly, Pod anti-affinity is good to reduce costs making sure several Pods with intensive data
exchange will occupy the same availability zone or even the same node - or, on the contrary, to make
them land on different nodes or even different availability zones for the high availability and
balancing purposes. Node affinity is useful to assign PostgreSQL instances to specific Kubernetes
Nodes (ones with specific hardware, zone, etc.).

Pod anti-affinity is controlled by the affinity.podAntiAffinity subsection, which can be putinto
proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml
configuration file.

podAntiAffinity allows you to use standard Kubernetes affinity constraints of any complexity:

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
podAffinityTerm:
labelSelector:
matchLabels:
postgres-operator.crunchydata.com/cluster: keycloakdb
postgres-operator.crunchydata.com/role: pgbouncer
topologyKey: kubernetes.io/hostname

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

You can see the explanation of these affinity options in Kubernetes documentation (4.

Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based
on regions, zones, nodes, and other topology specifics. This can be useful for both high availability
and resource efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection,
which can be put into proxy.pgBouncer and backups.pgbackrest.repoHost sections of the
deploy/cr.yaml configuration file as follows:

topologySpreadConstraints:
- maxSkew: 1
topologyKey: my-node-label
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
postgres-operator.crunchydata.com/instance-set: instancel

You can see the explanation of these affinity options in Kubernetes documentation (4.

Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is
expressed as a key with and operator, which is either exists or equal (the latter variant also
requires a value the key is equal to). Moreover, toleration should have a specified effect, which
may be a self-explanatory NoSchedule, less strict PreferNoSchedule, or NoExecute. The last
variant means that if a taint with NoExecute is assigned to node, then any Pod not tolerating this
taint will be removed from the node, immediately or after the tolerationSeconds interval, like in
the following example.

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations
subsections in the deploy/cr.yaml configuration file as follows:

tolerations:
- effect: NoSchedule
key: role
operator: Equal
value: connection-poolers

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

The Kubernetes Taints and Tolerations [4 contains more examples on this topic.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Labels and annotations

Labels [4 and annotations [4 are used to attach additional metadata information to Kubernetes

resources.

Labels and annotations are rather similar but differ in purpose.

Labels are used by Kubernetes to identify and select objects. They enable filtering and grouping,
allowing users to apply selectors for operations like deployments or scaling.

Annotations are assigning additional non-identifying information that doesn’t affect how Kubernetes

processes resources. They store descriptive information like deployment history, monitoring

configurations or external integrations.

The following diagram illustrates this difference:

Custom Resource

v

Operator

v

Kubernetes resources

Labels

-

v

Selection

Both Labels and Annotations are assigned to the following objects managed by Percona Operator for

PostgreSQL:

N

v

BN

v

Annotations

-

v

L

A4

Grouping

External tools

Documentation

e Custom Resource Definitions

e Custom Resources

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

¢ Deployments
e Services

o StatefulSets
e PVCs

e Pods

¢ ConfigMaps and Secrets

When to use labels and annotations

Use Labels when:

e The information is used for object selection

e The data is used for grouping or filtering

e The information is used by Kubernetes controllers

e The data is used for operational purposes

Use Annotations when:

e The information is for external tools

e The information is used for debugging

e The data is used for monitoring configuration

Labels and annotations used by Percona Operator for

PostgreSQL
Labels
Name Objects Description Example
values
pgv2.percona.com/ver CustomResourceDefinition Specifies the version of the 2.8.0
sion Percona Operator for
PostgreSQL.
app.kubernetes.io/in Services, StatefulSets, Identifies a specific instance cluster

stance

Deployments

of the application

app.kubernetes.io/ma

naged-by

app.kubernetes.io/co

mponent

app.kubernetes.io/pa
rt-of

app.kubernetes.io/na

me

postgres-
operator.crunchydata

.com/cluster

postgres-
operator.crunchydata

.com/instance

postgres-
operator.crunchydata

.com/instance-set

postgres-
operator.crunchydata

.com/name

postgres-
operator.crunchydata

.com/patroni

postgres-
operator.crunchydata

.com/role

postgres-
operator.crunchydata

.com/cluster-

Services, StatefulSets

Services, StatefulSets

Services, StatefulSets

Services, StatefulSets,
Deployments, etc.

StatefulSets,
Deployments, Services,
PVCs

Services, StatefulSets,
Deployments

Pods, StatefulSets

pgBackRest resources
(Jobs, CronJobs,
Deployments, PVCs, etc.)

Pods, StatefulSets

Pods, PVCs, Services

Secrets

Indicates the controller
managing the object

Specifies the component
within the application

Indicates the higher-level
application the object
belongs to

Specifies the name of the
application

Specifies the name of the
application

Identifies a specific instance
of the application

Describes the set of
instances (such as a group
of pods) within the
PostgreSQL cluster.

Used to specify the name of
a pgBackRest repository.

Indicates Patroni-related
resources.

The role that Patroni sets on
the Pod that is currently the
leader

Identifies a secret containing
a cluster certificate

percona-
postgresql-
operator

postgres,
pgbouncer,
pgbackrest

percona-
postgresql
percona-

postgresql

cluster1

cluster1

postgres-tls

certificate

postgres-
operator.crunchydata

.com/data

postgres-
operator.crunchydata

.com/move-job

postgres-
operator.crunchydata
.com/move-

pgbackrest-repo-dir

postgres-
operator.crunchydata

.com/move-pgdata-dir

postgres-
operator.crunchydata

.com/move-pgwal-dir

postgres-
operator.crunchydata

.com/pgbackrest

postgres-
operator.crunchydata
.com/pgbackrest-
backup

postgres-
operator.crunchydata
.com/pgbackrest-

config

postgres-
operator.crunchydata
.com/pgbackrest-
dedicated

postgres-

operator.crunchydata

Pods, PVCs

Jobs

Jobs

Jobs

Jobs

pgBackRest resources

Backup Jobs

ConfigMaps, Secrets

ConfigMaps

Deployments, Pods

Identifies Pods and Volumes
that store Postgres data

Identifies a directory move
Job.

Identifies a Job moving a
pgBackRest repo directory.

Identifies a Job moving a
pgData directory.

Identifies a Job moving a
pg_wal directory.

Indicates a resource that is
for pgBackRest.

Indicates a resource that is
for a pgBackRest backup.

Indicates a
ConfigMap/Secret for
pgBackRest.

Indicates a ConfigMap that
is for a dedicated
pgBackRest repo host.

Indicates a Deployment or a
Pod for a pgBackRest repo.

The name of
the

.com/pgbackrest-repo

postgres-
operator.crunchydata
.com/pgbackrest-

volume

postgres-
operator.crunchydata
.com/pgbackrest-

cronjob

postgres-
operator.crunchydata
.com/pgbackrest-
restore

postgres-
operator.crunchydata
.com/pgbackrest-

restore-config

postgres-
operator.crunchydata
.com/crunchy-

postgres-exporter

postgres-
operator.crunchydata

.com/pguser

postgres-
operator.crunchydata
.com/startup-
instance

postgres-
operator.crunchydata

.com/cbc-pgrole

postgres-

operator.crunchydata

PVCs

CronJobs

Jobs, Pods

ConfigMaps, Secrets

Pods

Secrets, Users

Pods, Jobs

Secrets

pgAdmin resources

repository
you define in
CR

Indicates a PVC for a
pgBackRest repo volume.

Indicates a resource is a
pgBackRest CronJob.

Indicates a Job/Pod for a
pgBackRest restore.

Indicates a configuration
resource (e.g. a ConfigMap
or Secret) for pgBackRest
restore.

Added to Pods running the
exporter container for
Prometheus discovery.

Identifies the PostgreSQL Username

user an object is for/about.

Indicates the startup
instance associated with a
resource.

Identifies a CBC PostgreSQL
role secret.

Indicates a resource for a
standalone pgAdmin

.com/pgadmin

instance.

Annotations

Name Objects Description Example
Values

postgres- Custom Resource Initiates a failover, switchover

operator.

crunchyda

ta.com/tr

igger-

switchove

r

postgres- Restore, PVC Added to restore jobs, pvcs, and timestamp

operator. VolumeSnapshots that are involved in the volume

crunchyda snapshot creation process. The annotation holds

ta.com/pg a RFC3339 formatted timestamp that

backrest- corresponds to the completion time of the

backup- associated backup job.

job-

completio

n

postgres- Custom Resource Specifies the hash value associated with a repo

operator. configuration as needed to detect configuration

crunchyda changes that invalidate running Jobs (and

ta.com/pg therefore must be recreated)

backrest-

hash

postgres- Custom Resource Indicates whether to use an IPv6 wildcard 0.0.0.0

operator. address for the pgBackRest “tls-server-address”.

crunchyda Set the value “IPv6” to use an IPv6 addresses. If

ta.com/pg the annotation is not present of has a value other

backrest- than IPv6, it defaults to IPv4 (0.0.0.0).

ip-

version

postgres- Pods Specifies which collectors to enable for the database,

operator. exporter. The value “None” disables all table

crunchyda postgres_exporter defaults. Disabling the

ta.com/po
stgres-

exporter-
collector

S

postgres-
operator.
crunchyda
ta.com/ad
opt-
bridge-

cluster

postgres-
operator.
crunchyda
ta.com/au
toCreateU

serSchema

postgres-
operator.
crunchyda
ta.com/au
thorizeBa
ckupRemov
al

postgres-
operator.
crunchyda
ta.com/ov
erride-

config

pgv2.perc
ona.com/m
onitor-
user-
secret-
hash

CrunchyBridgeCluster
Custom Resource

Custom Resource

Custom Resource

ConfigMaps

Custom Resource

defaults may cause errors in dashboards.

Allows users to “adopt” or take control over an
existing Bridge Cluster with a
CrunchyBridgeCluster Custom Resource.
Essentially, if a CrunchyBridgeCluster Custom
Resource does not have a status.ID, but the name
matches the name of an existing bridge cluster,
the user must add this annotation to the Custom
Resource to allow it to take control of the Bridge
Cluster. The Value assigned to the annotation
must be the ID of existing cluster.

Controls if the Operator should create schemas
for the users defined in spec.users for all of the
databases listed for that user

Allows removal of PVC-based backups when
changing from a cluster with backups to a cluster
without backups. Backups stored on the cloud
storage are intact

Used to override default configuration from a
ConfigMap.

Hash of the monitor user secret, used to detect
changes and trigger updates.

existing
cluster ID

true

true

custom-

config

b6ela2c3.

pgv2.perc Custom Resource Indicates a backup that is currently running for true
ona.com/b the cluster.

ackup-in-

progress

pgv2.perc Custom Resource Marks that the cluster was bootstrapped from a 2024-07-
ona.com/c restore. 01T12:34:
luster- 5627
bootstrap

-restore

pgv2.perc Pods, StatefulSets The Patroni version running in the Pod or 4.6.0
ona.com/p StatefulSet.

atroni-

version

pgv2.perc Pods, StatefulSets Custom Patroni version specified by the user. 3.3.0-
ona.com/c Deprecated and ignored starting with version percona
ustom- 2.8.0

patroni-

version

kubectl.k Pods Defines a default container used when the -c

ubernetes flag is not passed when executing to a Pod.

.io/defau

1t-

container

Setting labels and annotations in the Custom Resource

You can define both Labels and Annotations as key-value pairs in the metadata section of a YAML
manifest for a specific resource.

Set labels and annotations for Pods

For PostgreSQL, pgBouncer and pgBackRest Pods, use
instances.metadata.annotations/instances.metadata.labels,
proxy.pgbouncer.metadata.annotations/proxy.pgbouncer.metadata.labels, or
backups.pgbackrest.metadata.annotations/backups.pgbackrest.metadata.labels keys as
follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster

spec:
instances:
- name: instancel
replicas: 3
metadata:
annotations:
my-annotation: valuel

labels:
my-label: value2

Set labels and annotations for Services

For PostgreSQL and pgBouncer Services, use expose.annotations/expose.labels or

proxy.pgbouncer.expose.annotations/proxy.pgbouncer.expose.labels keys as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster

spec:
expose:
annotations:
my-annotation: valuel

labels:
my-label: value2

Set global labels and annotations

You can also use the top-level spec metadata.annotations and metadata.labels options to set
annotations and labels at a global level, for all resources created by the Operator:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster

spec:
metadata:
annotations:
my-global-annotation: valuel

labels:
my-global-label: value2

Settings labels and annotations for the Operator Pod

You can assign labels and/or annotations to the Operator itself by editing the deploy/operator.yaml|

configuration file (4 before applying_it during the installation. This way you add labels and

annotations to the Pod where the Operator is running

apiVersion: apps/vi
kind: Deployment

spec:
template:
metadata:
labels:
app.kubernetes.io/component: operator
app.kubernetes.io/instance: percona-postgresql-operator
app.kubernetes.io/name: percona-postgresql-operator

app.kubernetes.io/part-of: percona-postgresql-operator
pgv2.percona.com/control-plane: postgres-operator

Querying labels and annotations

To check which labels are attached to a specific object, use the additional --show-1labels option of
the kubectl get command.

For example, to see the Operator version associated with a Custom Resource Definition, use the
following command:

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml

kubectl get crd perconapgclusters.pgv2.percona.com --show-labels

. Sample output .

“*{.text .no-copy} NAME CREATED AT LABELS

perconapgclusters.pgv2.percona.com 2025-07-01T13:13:36Z pgv2.percona.com/version=v2.8.0

To check annotations associated with an object, use the following command:
kubectl get <resource> <resource-name> -o jsonpath='{.metadata.annotations}'
For example, this command lists annotations assigned to a cluster1-pgbouncer Service:

kubectl get service clusterl-instancel-xvbt-0 -o
jsonpath="'{.metadata.annotations}"’

. Sample output .

{

"cloud.google.com/neg": "{\"ingress\":true}"

}

Special annotations

Metadata can be used as an additional way to influence the Operator behavior by setting special

annotations.

Customizing Patroni version (for the Operator version 2.6.0 - 2.7.0)

. Note

This behavior is deprecated and the annotation is ignored starting with version 2.8.0.

Starting from the Operator 2.6.0, Percona distribution for PostgreSQL comes with Patroni 4.x, which
introduces breaking changes compared to previously used 3.x versions. To maintain backward
compatibility, the Operator needs to detect the Patroni version used in the image. For this, it runs a
temporary Pod named cluster_name-patroni-version-check with the following default
resources:

Resources:
Requests:
memory: 32Mi
cpu: 50m
Limits:
memory: 64Mi
cpu: 100m

You can disable this auto-detection feature by manually setting the Patroni version via the following
annotation in the metadata part of the Custom Resource (it should contain “4” for Patroni 4.x or “3”
for Patroni 3.x):

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
name: cluster
annotations:
pgv2.percona.com/custom-patroni-version: "4"

Transport layer security (TLS)

The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for
the following types of communication:

¢ Internal - communication between PostgreSQL instances in the cluster

¢ External - communication between the client application and the cluster
The internal certificate is also used as an authorization method for PostgreSQL Replica instances.
TLS security can be configured in following ways:

¢ the Operator can generate long-term certificates automatically at cluster creation time,

e you can generate certificates manually.

. Note

Additionally, you can force your database cluster to use only encrypted channels for both internal and external
communications. This effect is achieved by setting the t1sOnly Custom Resource optionto true.

Allow the Operator to generate certificates automatically

The Operator is able to generate long-term certificates automatically and turn on encryption at
cluster creation time, if there are no certificate secrets available. Just deploy your cluster as usual,
with the kubectl apply -f deploy/cr.yaml command, and certificates will be generated.

. Note

With the Operator versions before 2.5.0, autogenerated certificates for all database clusters were based on the
same generated root CA. Starting from 2.5.0, the Operator creates root CA on per-cluster basis.

Check connectivity to the cluster

You can check TLS communication with use of the psql, the standard interactive terminal-based
frontend to PostgreSQL. The following command will spawn a new pg-client container, which
includes the needed command and can be used for the check (use your real cluster name instead of
the <cluster-name> placeholder):

$ cat <<EOF | kubectl apply -f -
apiVersion: apps/vi
kind: Deployment
metadata:
name: pg-client
spec:
replicas: 1
selector:
matchLabels:
name: pg-client
template:
metadata:
labels:
name: pg-client
spec:
containers:
- name: pg-client
image: percona/percona-distribution-postgresql:17.5-2
imagePullPolicy: Always
command :
- sleep
args:
- "100500"
volumeMounts:
- name: ca
mountPath: "/tmp/tls"
volumes:
- name: root
secret:
secretName: <cluster_name>-cert-ca
items:
- key: root.crt
path: root.crt
mode: 0777
EOF

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal
to check connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user

login and password):

S kubectl exec -it deployment/pg-client -- bash -il

[postgres@pg-client /]S PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt
psql postgres://<postgresql-user>:<postgresql-password>@<cluster-name>-
pgbouncer.<namespace>.svc.cluster.local

Now you should see the prompt of PostgreSQL interactive terminal:

$ psql (17.6-1)
Type "help" for help.
clusteri1=>

Generate certificates manually

You can customize TLS for the Operator by providing your own TLS certificates. To do this, you must
create two Kubernetes Secret objects before deploying your cluster:

¢ One for external communication, later referenced by the spec.customTLSSecret field in the
deploy/cr.yaml

e One for internal communication (used for replication authentication), referenced by the
spec.customReplicationTLSSecret field in the deploy/cr.yaml.

Each Secret must contain the following fields:

e tls.crt (the TLS certificate)
e tls.key (the TLS private key)

e ca.crt (the Certificate Authority certificate)

Note that you cannot use only one custom set of certificates. If you provide a custom TLS Secret,
you must also provide a custom replication TLS Secret, and both must contain the same ca.crt.

Provide pre-existing custom certificates

For example, you have files named ca.crt, my_tls.key, and my_tls.crt. Run the following
command to create a custom TLS Secret named cluster1-tls:

S kubectl create secret generic -n postgres-operator cluster1-tls \
--from-file=ca.crt=ca.crt \
--from-file=tls.key=my_tls.key \
--from-file=tls.crt=my_tls.crt

In the same way, create the custom TLS replication Secret, for example replicationi-tls.
Next, reference your Secrets in the deploy/cr.yaml Custom Resource manifest as follows:

e add a Secret created for the external use to the secrets.customTLSSecret.name field

e add a Secret created for internal communications to the

secrets.customReplicationTLSSecret.name field

Here's the sample configuration:

spec:
secrets:
customTLSSecret:
name: cluster1-tls

customReplicationTLSSecret:
name: replicationl-tls

Now you can create a cluster with your custom certificates:

S kubectl apply -f deploy/cr.yaml

Provide a pre-existing custom root CA certificate to the Operator

You can also provide a custom root CA certificate to the Operator. In this case the Operator will not
generate one itself, but will use the user-provided CA certificate. This can be useful if you would like
to have several database clusters with certificates generated by the Operator based on the same
root CA.

To make the Operator use a custom root certificate, create a separate secret with this certificate and
specify this secret in the Custom Resource options before you deploy a cluster.

For example, if you have files named my_tls.key and my_tls.crt stored on your local machine,
you could run the following command to create a Secret named clusteri1-ca-cert inthe

postgres-operator namespace:

S kubectl create secret generic -n postgres-operator clusteri-ca-cert \
--from-file=tls.crt=my_tls.crt \
--from-file=tls.key=my_tls.key

You also need to specify details about this secret in your deploy/cr.yaml manifest:

secrets:
customRootCATLSSecret:
name: clusteril-ca-cert
items:
- key: "tls.crt"
path: "root.crt"
- key: "tls.key"
path: "root.key"

Now, you can create the cluster with the kubectl apply -f deploy/cr.yaml command. The
Operator should use the root CA certificate you had provided.

A Warning
This approach allows using root CA certificate auto-generated by the Operator for some other clusters, but it

needs caution. If the cluster with auto-generated certificate has delete-ssl finalizer enabled, the certificate will
be deleted at the cluster deletion event even if it was manually provided to some other cluster.

Generate custom certificates for the Operator yourself
Understand certificate requirements

To find out the certificates specifics needed for the Operator, view the certificates generated by the
Operator automatically. For example, if you have a cluster deployed in some staging environment.

Here's how to do it:
1. Check the secrets created by the Operator:

$ kubectl get secrets

. Expected output
cluster1-cluster-ca-cert Opaque 2 143m
cluster1-cluster-cert Opaque 3 143m
cluster1-instancel-frdm-certs Opaque 6 143m
cluster1-instancel-qcgk-certs Opaque 6 143m
cluster1-instancel-wqg55-certs Opaque 6 143m
cluster1-pgbackrest Opaque 5 143m
cluster1-pgbouncer Opaque 6 143m
cluster1-pguser-clusteri Opaque 12 143m
cluster1-replication-cert Opaque 3 143m

The Secrets of interest are cluster1-cluster-cert for external communication and

cluster1-replication-cert for internal communication.

2. You can examine the auto-generated CA certificate (ca.crt) as follows:

S kubectl get secret/clusterl-cluster-cert -o jsonpath='{.data.ca\.crt}'

base64 --decode | openssl x509 -text -noout

. Expected output

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
ec:f3:d6:f5:35:5c:97:0c:66:cc:90:ed:e6:4b:0a:07
Signature Algorithm: ecdsa-with-SHA384
Issuer: CN = postgres-operator-ca
Validity
Not Before: Dec 24 13:58:21 2023 GMT
Not After : Dec 21 14:58:21 20833 GMT
Subject: CN = postgres-operator-ca
Subject Public Key Info:

3. You can check the auto-generated TLS certificate (tls.crt) in a similar way:

External communication

S kubectl get secret/clusterl-cluster-cert -o jsonpath='{.data.tls\.crt}'

| base64 --decode | openssl x509 -text -noout

. Expected output

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
43:ac:81:65:4e:c6:1b:15:db:ca:36:c4:16:96:79:1b
Signature Algorithm: ecdsa-with-SHA384
Issuer: CN=postgres-operator-ca
Validity
Not Before: Jul 22 08:15:42 2025 GMT
Not After : Jul 22 09:15:42 2026 GMT
Subject: CN=clusteri1-primary.default.svc.cluster.local.
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:cd:06:b5:27:67:64:2b:a3:9e:84:e6:31:81:7f:
3f:a9:ae:c9:da:bd:b8:76:3e:f0:09:bd:b8:eb:03:
88:c2:d3:4b:2a:1f:e9:5b:97:cf:4e:7b:b3:12:2b:
47:ee:ab6:24:fb:29:ae:01:74:e2:4c:5c:3e:f9:8d:
cb:ff:0a:62:8d
ASN1 OID: prime256v1
NIST CURVE: P-256
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Authority Key Identifier:
59:98:FE:88:1B:54:A0:7D:DD:20:A0:F6:29:08:65:C7:18:38:7C:92
X509v3 Subject Alternative Name:
DNS:cluster1-primary.default.svc.cluster.local., DNS:clusteri-
primary.default.svc, DNS:clusterl-primary.default, DNS:clusteri-primary,
DNS:clusterl-replicas.default.svc.cluster.local., DNS:clusteri-
replicas.default.svc, DNS:clusteri-replicas.default, DNS:clusteri1-replicas
Signature Algorithm: ecdsa-with-SHA384

Internal communication

S kubectl get secret/clusterl-replication-cert -o
jsonpath="{.data.tls\.crt}' | base64 --decode | openssl x509 -text

-nhoout

. Expected output .

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
31:1b:1e:ca:06:€6:98:4d:7e:de:6d:1b:68:d8:53:0e
Signature Algorithm: ecdsa-with-SHA384
Issuer: CN=postgres-operator-ca
Validity
Not Before: Jul 22 08:15:42 2025 GMT
Not After : Jul 22 09:15:42 2026 GMT
Subject: CN=_crunchyrepl
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:b1:f7:9d:cd:33:0d:a5:19:a3:f2:fd:f6:b3:cd:
el:a5:e4:19:11:ec:18:db:fe:9c:a8:7e:eb:d2:27:
59:d1:ef:3b:09:24:58:21:6a:54:60:30:1c:be:bb:
7a:39:¢c5:91:6f:01:ee:d1:0b:23:86:0c:16:cf:fc:
7d:7e:39:cb:0e
ASN1 OID: prime256v1
NIST CURVE: P-256
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Authority Key Identifier:
59:98:FE:88:1B:54:A0:7D:DD:20:A0:F6:29:08:05:C7:18:38:7C:92
X509v3 Subject Alternative Name:
DNS:_crunchyrepl
Signature Algorithm: ecdsa-with-SHA384

Both secrets share the same ca.crt certificate but have different tls.crt certificates. The
tls.crt inthe Secret for external communications should have a Common Name (CN) setting that
matches the primary Service name (CN = clusteri1-primary.default.svc.cluster.local. in
the above example). Similarly, the tls.crt inthe Secret for internal communications should have a
Common Name (CN) setting that matches the preset replication user: CN=_crunchyrepl.

Generate certificates

One of the options to create certificates yourself is to use CloudFlare PKI and TLS toolkit (4.

You must generate certificates twice: one set is for external communications, and another set is for
internal ones!

https://cfssl.org/

Let's say that your cluster name is cluster1 and the desired namespace is postgres-operator.
The commands to generate certificates may look as follows:

1. Set cluster context

S export CLUSTER_NAME=clusterT
S export NAMESPACE=postgres-operator

2. Generate the root CA certificate:

S cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
{
"CN": "*",
"key": {
"algo": "ecdsa",
"size": 384
}
}
EOF

. Expected output .

2025/07/22 18:44:00 [INFO] generating a new CA key and certificate from CSR
2025/07/22 18:44:00 [INFO] generate received request

2025/07/22 18:44:00 [INFO] received CSR

2025/07/22 18:44:00 [INFO] generating key: ecdsa-384

2025/07/22 18:44:00 [INFO] encoded CSR

2025/07/22 18:44:00 [INFO] signed certificate with serial number
558041563526770695468617559855840603242491856749

You should have the following files:
e ca-key.pem — CA private key
e ca.pem — CA certificate

3. Define the CA signing policy for certificates signed by the CA.

S cat <<EOF > ca-config.json

{
"signing": {
"default": {
"expiry": "87600h",
"usages": ["digital signature", "key encipherment", "content
commitment"]
}
}
}
EOF

Explanation of the values:

e expiry - sets the lifetime for the certificates

e usages specifies what the certificate is valid for:
e digital signature: for signing data
e key encipherment : for secure key exchange
e content commitment:ensures data integrity

e Generate the custom TLS certificates for external communication and sign them using the
previously created CA certificate. These certificates have the Common Name (CN) cluster1-

primary.postgres-operator.svc.cluster.local

S cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-

config.json - | cfssljson -bare server
{
"hosts": |
"localhost",

"${CLUSTER_NAME }-primary",
"${CLUSTER_NAME }-primary .${NAMESPACE}",
"S{CLUSTER_NAME }-primary.S${NAMESPACE}.svc.cluster.local",
"S{CLUSTER_NAME}-primary.S{NAMESPACE}.svc",
"S{CLUSTER_NAME}-replicas.S{NAMESPACE}.svc.cluster.local",
"S{CLUSTER_NAME}-replicas.S$S{NAMESPACE}.svc",
"${CLUSTER_NAME }-replicas.${NAMESPACE}",
"S{CLUSTER_NAME}-tls-replicas"
1.,
"CN": "S{CLUSTER_NAME}-primary.S{NAMESPACE}.svc.cluster.local",

"key": {
"algo": "ecdsa",
"size": 384
}
}
EOF

You should have the following files as defined by the -bare server part of the command:
e server.pem - the signed certificate
e server-key.pem -the private key

¢ Generate the custom TLS certificates for internal communication and sign them using the
previously created CA certificate. These certificates have the Common Name (CN)

_crunchyrepl.

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-

config.json - | cfssljson -bare replication
{
"CN": "_crunchyrepl”,
"key": {
"algo": "ecdsa",
"size": 384
}
}
EOF

You should have the following files as defined by the -bare server part of the command:
e replication.pem -the signed certificate

e replication-key.pem -the private key

You can find more on generating certificates this way in official Kubernetes documentation [4.

Refer to the Provide pre-existing custom certificates section for the steps to create Secrets and

configure the Operator. Replace the values with your files.

Check your certificates for expiration

S kubectl get secrets

1. First, check the necessary secrets names (cluster1-cluster-cert and clusteri-
replication-cert by default):

You will have the following response:

NAME TYPE DATA AGE
clusterl-cluster-cert Opaque 3 11m
clusterl-replication-cert Opaque 3 T1m

2. Now use the following command to find out the certificates validity dates, substituting Secrets
names if necessary:

$ {
kubectl get secret/clusterl-replication-cert -o
jsonpath="'{.data.tls\.crt}' | base64 --decode | openssl x509 -noout -dates
kubectl get secret/clusterl-cluster-cert -o jsonpath='{.data.ca\.crt}' |
base64 --decode | openssl x509 -noout -dates

}

The resulting output will be self-explanatory:

notBefore=Jun 28 10:20:19 2023 GMT
notAfter=Jun 27 11:20:19 2024 GMT
notBefore=Jun 28 10:20:18 2023 GMT
notAfter=Jun 25 11:20:18 2033 GMT

Update certificates

https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/

The Operator automatically updates the automatically-generated certificates to ensure your
applications continue operation without communication issues. However, the Operator doesn't
update custom certificates. It is your responsibility to timely update them.

Update custom certificates

You can update only custom certificates for external and / or internal communication and keep the
same root CA certificate.

You can update the contents of your existing Secrets referenced in the spec.customTLSSecret
and/or spec.customReplicationTLSSecret fields in deploy/cr.yaml without changing their
names. In this case, the Operator detects the updated certificate data and applies the changes to the
running cluster without restarting it. Such update is called hot reload.

This example shows how you can do it. Let’s say you have the following certificates and Secrets:

e server.pem / server-key.pem and the clusteri1-cert Secret for external communication,

e replica.pem / replica-key.pem and clusteri-replication-cert Secret forinternal
communication

e ca.pem / ca-key.penm is the existing CA root certificate that you keep

Your cluster is deployed in the postgres-operator namespace.
1. Set the context for the cluster:
S export NAMESPACE=postgres-operator

2. Create a YAML manifest for the clusteri1-cert Secret. Run the following command to
generate a YAML manifest (adjust file paths if needed):

S kubectl create secret generic clusterl-cert \
--from-file=tls.crt=server.pem \
--from-file=tls.key=server-key.pem \
--from-file=ca.crt=ca.pem \

-n "SNAMESPACE" \
--dry-run=client -o yaml > clusteri1-cert.yaml

3. Create a YAML manifest for the cluster1-replication-cert Secret. Run the following
command to generate a YAML manifest (adjust file paths if needed):

S kubectl create secret generic clusterl-replication-cert \
--from-file=tls.crt=replica.pem \
--from-file=tls.key=replica-key.pem \
--from-file=ca.crt=ca.pem \

-n "SNAMESPACE" \
--dry-run=client -o yaml > clusteri-replication-cert.yaml

4. Apply the manifests to update the Secrets:

S kubectl apply -f clusteri-cert.yaml -f clusteri-replication-cert.yaml -n
" SNAMESPACE "

If you create new Secrets with new names and values, update the spec.customTLSSecret and
spec.customReplicationTLSSecret fields in the deploy/cr.yaml. When you apply the new
configuration,this causes the Operator to restart the cluster.

Update a custom root CA certificate
Here's what you need to know if you wish to update a custom root CA certificate:
¢ If you change a root CA certificate, you must also change your custom TLS certificates for

external and internal communications as these must be signed with the same root CA.

e The new root CA and associated certs must be stored in new Secrets (not overwriting existing
ones). This ensures rollback capability in case of misconfiguration or validation issues.

¢ You must pause the cluster before applying changes. This prevents the Operator from restarting

or reconfiguring Pods mid-update.
To update a custom root CA certificate, do the following:

1. Generate a new root CA certificate and key. For example, you have them in files named new-

ca.pem and new-ca-key.pem.

2. Generate all dependent certificates for external and internal communication and sign them using
the new root CA certificate. Check the Generate certificates manually section for the steps. For

example, you end up with the following certificates:
e server.pem and server-key.pem for external communication
e replication.pem and replication-key.pem for internal communication

3. Create a new Secret object for the new root CA certificate and define the new CA certificate and
key within. Let's name it cluster1-ca-cert-new.

S kubectl create secret generic -n postgres-operator clusterl-ca-cert-new
\

--from-file=ca.crt=new-ca.pem \
--from-file=ca.key=new-ca-key.pem

4. Create new Secrets for external and internal communications, named cluster1-tls and
cluster1-replication-tls respectively

S kubectl create secret generic -n postgres-operator cluster1-tls \
--from-file=ca.crt=ca.pem \
--from-file=tls.key=server-key.pem \
--from-file=tls.crt=server.pem

S kubectl create secret generic -n postgres-operator clusteril-replication-
tls \

--from-file=ca.crt=ca.pem \
--from-file=tls.key=replication-key.pem \
--from-file=tls.crt=replication.pem

5. Pause the cluster to prevent the Operator to restart the Pods mid-update.

S kubectl patch pg cluster1 \
--type merge \
--patch '{"spec": {"pause": true}}' \
--namespace postgres-operator

6. Specify details about new custom certificates in the deploy/cr.yaml. Since thisis a
provisioned cluster, apply the patch as follows:

S kubectl patch pg cluster1 \
--type merge \
--patch '{
"spec": {
"secrets": {
"customRootCATLSSecret": {

"name" : "clusterl-ca-cert-new",
"items": |
{
"key": "ca.crt",
"path": "root.crt"
H
{

"key": "ca.key",
"path": "root.key"

}
]
H
"customTLSSecret": {
"name": "clusterl1-tls"
H
"customReplicationTLSSecret": {
“name": "clusteril-replication-tls"
}
}
}
oA

--namespace postgres-operator
7. Unpause the cluster to resume the Operator control:

S kubectl patch pg cluster1 \
--type merge \
--patch '{"spec": {"pause": false}}' \
--namespace postgres-operator

Keep certificates after deleting the cluster

In case of cluster deletion, objects, created for SSL (Secret, certificate, and issuer) are not deleted by
default.

If the user wants the cleanup of objects created for SSL, there is a finalizers.percona.com/delete-ssl|

Custom Resource option, which can be set in deploy/cr.yaml: if this finalizer is set, the Operator
will delete Secret, certificate and issuer after the cluster deletion event.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-ssl

Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to
Percona, which helps us to determine where to focus the development and what is the uptake for
each release of Operator.

The following information is gathered:

o D of the Custom Resource (the metadata.uid field)
e Kubernetes version

o Platform (is it Kubernetes or Openshift)

¢ |s PMM enabled, and the PMM Version

e Operator version

e PostgreSQL version

e PgBackRest version

e Was the Operator deployed with Helm

¢ Are sidecar containers used

e Are backups used

We do not gather anything that identify a system, but the following thing should be mentioned:
Custom Resource ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects
to it at scheduled times to obtain fresh information about version numbers and valid image paths
needed for the upgrade.

The landing page for this service, check.percona.com [4, explains what this service is.

You can disable telemetry with a special option when installing the Operator:

o if you install the Operator with helm, use the following installation command:

S helm install my-db percona/pg-db --version 2.8.0 --namespace my-namespace -
-set disable_telemetry="true"

¢ if you don't use helm for installation, you have to edit the operator.yaml before applying it with
the kubectl apply -f deploy/operator.yaml command. Openthe operator.yaml file with
your text editor, find the DISABLE_TELEMETRY environment variable and setitto "true"

https://check.percona.com/

- name: DISABLE_TELEMETRY
value: "true"

Configure concurrency for a cluster
reconciliation

Reconciliation is the process by which the Operator continuously compares the desired state with
the actual state of the cluster. The desired state is defined in a Kubernetes custom resource, like
PostgresCluster.

If the actual state does not match the desired state, the Operator takes actions to bring the system
into alignment—such as creating, updating, or deleting Kubernetes resources (Pods, Services,
ConfigMaps, etc.) or performing database-specific operations like scaling, backups, or failover.

Reconciliation is triggered by a variety of events, including:

e Changes to the cluster configuration
e Changes to the cluster state
¢ Changes to the cluster resources

By default, the Operator has one reconciliation worker. This means that if you deploy or update 2
clusters at the same time, the Operator will reconcile them sequentially.

The PGO_WORKERS environment variable in the percona-postgresql-operator deployment
controls the number of concurrent workers that can reconcile resources in PostgresSQL clusters in
parallel.

Thus, to extend the previous example, if you set the number of reconciliation workers to 2, the
Operator will reconcile both clusters in parallel. This also helps you with benchmarking the Operator
performance.

The general recommendation is to set the number of concurrent workers equal to the number of
PostgreSQL clusters. When the number of workers is greater, the excessive workers will remain idle.

Set the number of reconciliation workers
1. Check the index of the PGO_WORKERS environment variable using the following command:

S kubectl get deployment percona-postgresql-operator -o
jsonpath="{.spec.template.spec.containers[0].env[?
(@.name=="PGO_WORKERS")] .value}'

. Sample output

"name" : "WATCH_NAMESPACE",
"valueFrom": {

"fieldRef": {
"apiVersion": "v1",
"fieldPath": "metadata.namespace”
}
}
)P
{

"name"” : "PGO_NAMESPACE",
"valueFrom": {

"fieldRef": {
"apiVersion": "v1",
"fieldPath": "metadata.namespace"

}

}

L

{
"name" : "LOG_STRUCTURED",
"value": "false"

H

{
"name" : "LOG_LEVEL",
"value": "INFO"

L

{
"name" : "DISABLE_TELEMETRY",
"value": "false"

L

{
“name" : "PGO_WORKERS",
"value": "2"

}

The index is zero-based, thus PGO_WORKERS has index 5.

2. List deployments to find the right one:

S kubectl get deployment

. Sample output

NAME READY UP-TO-DATE AVAILABLE AGE
cluster1-pgbouncer 3/3 3 3 3h49m
percona-postgresql-operator 0/1 1 0 3h50m

3. To set a new value, run the following command to patch the deployment:

S kubectl patch deployment percona-postgresql-operator \
--type="json' \

-p="[{"op": "replace", "path": "/spec/template/spec/containers/@/env/5",
"value": {"name": "PGO_WORKERS", "value": "2"}}]'

The command does the following:

¢ Patches the deployment to update the PGO_WORKERS environment variable

e Sets the valueto 2

The value can be set to any number greater than 0.

Verify the change

To verify that the change has been applied, run the following command:
S kubectl get deployment percona-postgresql-operator -o
jsonpath=

"{.spec.template.spec.containers[@].env[?
(@.name=="PGO_WORKERS")] .value}'

The output should be 2.

Management

Back up and restore

About backups

In this section you will learn how to set up and manage backups of your data using the Operator.
You can make backups in two ways:

e On-demand. You can do them manually at any moment.

e Schedule backups. Configure backups and their schedule in the deploy/cr.yaml [4 file. The

Operator makes them automatically according to the schedule.

What you need to know

Backup repositories
To make backups, the Operator uses the open source pgBackRest [4 backup and restore utility.

When the Operator creates a new PostgreSQL cluster, it also creates a special pgBackRest repository
to facilitate the usage of the pgBackRest features. You can notice an additional repo-host Pod
after the cluster creation.

A pgBackRest repository consists of the following Kubernetes objects:

e A Deployment,

o A Secret that contains information specific to the PostgreSQL cluster (e.g. SSH keys, AWS S3
keys, etc.),

¢ A Pod with a number of supporting scripts,

e A Service.

Inthe /deploy/cr.yml file, pgBackRest repositories are listed in the backups.pgbackrest.repos
subsection. You can have up to 4 repositories as repo1, repo2, repo3, and repo4.

Backup types

You can make the following types of backups:

o full: A full backup of all the contents of the PostgreSQL cluster,
e differential: A backup of only the files that have changed since the last full backup,

e incremental: Default. A backup of only the files that have changed since the last full or

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/

differential backup.

Backup storage

You have the following options to store PostgreSQL backups:

¢ Cloud storage:

e Amazon S3, or any S3-compatible storage,

e Google Cloud Storage,

e Azure Blob Storage

o A Persistent Volume attached to the pgBackRest Pod.

Next steps

Ready to move forward? Configure backup storage

Configure backup storage

Configure backup storage for your backup repositories in the backups.pgbackrest.repos section
of the deploy/cr.yaml configuration file.

Follow the instructions relevant to the cloud storage or Persistent Volume you are using for backups.

3 S3-compatible backup storage

To use Amazon S3 [or any S3-compatible storage [4 for backups, you need to have the following
S3-related information:

e The name of S3 bucket;
e The region - the location of the bucket

o S3 credentials such as S3 key and secret to access the storage. These are stored in an encoded
form in Kubernetes Secrets [4 along with other sensitive information.

e For S3-compatible storage other than native Amazon S3, you will also need to specify the
endpoint - the actual URI to access the bucket - and the URI style (see below).

. Note

The pgBackRest tool does backups based on write-ahead logs (WAL) archiving. If you are using an S3 storage in
a region located far away from the region of your PostgreSQL cluster deployment, it could lead to the delay and
impossibility to create a new replica/join delayed replica if the primary restarts. A new WAL file is archived in 60
seconds at the backup start by default [, causing both full and incremental backups fail in case of long delay.

To prevent issues with PostgreSQL archiving and have faster restores, it's recommended to use the same S3
region for both the Operator and backup options. Additionally, you can replicate the S3 bucket to another region
with tools like Amazon S3 Cross Region Replication [4.

Configuration steps

“ Encode the S3 credentials and the pgBackRest repository name that you will use for backups. In
this example, we use AWS S3 key and S3 key secret and repo2.

https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html

g})Unux

S cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

" macO0S

S cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

g Create the Secret configuration file and specify the base64-encoded string from the previous
step. The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

apiVersion: v1
kind: Secret
metadata:
name: clusterl-pgbackrest-secrets
type: Opaque
data:
s3.conf: <base64-encoded-configuration-contents>

. Note

This Secret can store credentials for several repositories presented as separate data keys.

e Create the Secrets object from this YAML file. Replace the <namespace> placeholder with your
value:

S kubectl apply -f clusterl-pgbackrest-secrets.yaml -n <namespace>

e Update your deploy/cr.yaml configuration. Specify the Secret file you created in the
backups.pgbackrest.configuration subsection, and put all other S3 related information in
the backups.pgbackrest.repos subsection under the repository name that you intend to use

for backups. This name must match the name you used when you encoded S3 credentials on
step 1.

Provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path option (prefix it's name with
the repository name, for example repo1-path). Also, if your S3-compatible storage requires
additional repository options [4 for the pgBackRest tool, you can specify these parameters in
the same backups.pgbackrest.global subsection with standard pgBackRest option names,
also prefixed with the repository name.

aws Amazon S3 storage

For example, the S3 storage for the repo2 repository looks as follows:

backups:

pgbackrest:
configuration:
- secret:
name: clusterl-pgbackrest-secrets
global:

repo2-path: /pgbackrest/postgres-operator/clusteri1/repo2
repos:
- name: repo2

s3:

bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
region: "<YOUR_AWS_S3_REGION>"

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global
https://pgbackrest.org/configuration.html#section-repository

Using AWS EC2 instances for backups makes it possible to automate access to AWS S3 buckets .
based on |AM roles for Service Accounts with no need to specify the S3 credentials explicitly.

To use this feature, add annotation to the spec part of the Custom Resource and also add pgBackRest
custom configuration option to the backups subsection as follows:

spec:
crVersion: 2.8.0
metadata:
annotations:
eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-s3-
bucket
backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.8.0-ppg16-pgbackrest

global:
repo2-s3-key-type: web-id

:simple-amazons3: S3-compatible storage

For example, the S3-compatible storage for the repo2 repository looks as follows:

backups:

pgbackrest:
configuration:
- secret:
name: clusterl-pgbackrest-secrets
global:

repo2-path: /pgbackrest/postgres-operator/clusteri1/repo2
repo2-storage-verify-tls=y
repo2-s3-uri-style: path
repos:
- name: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

The repo2-storage-verify-tls option in the above example enables TLS verification for
pgBackRest (when set to y or simply omitted) or disables it, when setto n.

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html

The repo2-s3-uri-style option should be set to path_[4 if you use S3-compatible storage
(otherwise you might see “host not found error” in your backup job logs), and is not needed for
Amazon S3.

e Create or update the cluster. Replace the <namespace> placeholder with your value:

S kubectl apply -f deploy/cr.yaml -n <namespace>

& Google Cloud Storage

To use Google Cloud Storage (GCS)_[4 as an object store for backups, you need the following

information:

e aproper GCS bucket name. Pass the bucket name to pgBackRest viathe gcs.bucket key in the
backups.pgbackrest.repos subsection of deploy/cr.yaml.

e your service account key for the Operator to access the storage.

Configuration steps

o Create your service account key following the official Google Cloud instructions [4.

Q Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin - Service Accounts in
the left menu panel, then click your account and open the KEYS tab):

& my-service-account

DETAILS PERMISSIONS KEYS METRICS LOGS

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the
Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

ADDKEY ~

Click the ADD KEY button, choose Create new key and choose JSON as a key type. These actions
will result in downloading a file in JSON format with your new private key and related
information (for example, gcs-key.json).

https://cloud.google.com/storage
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://cloud.google.com/iam/docs/creating-managing-service-account-keys

e Create the Kubernetes Secret [4. The Secret consists of base64-encoded versions of two files:
the gcs-key. json file with the Google service account key you have just downloaded, and the
special gcs.conf configuration file.

Create the gcs.conf configuration file. The file contents depends on the repository name
for backups in the deploy/cr.yaml file. In case of the repo3 repository, it looks as
follows:

[global]
repo3-gcs-key=/etc/pgbackrest/conf.d/gcs-key. json

Encode both gcs-key.json and gcs.conf files.

gﬁ;Unux

base64 --wrap=0 <filename>
.' MacOS

base64 -i <filename>

Create the Kubernetes Secret configuration file and specify your cluster name and the
base64-encoded contents of the files from previous steps. The following is the example of
the clusteri1-pgbackrest-secrets.yaml Secret file:

apiVersion: v

kind: Secret

metadata:
name: clusterl1-pgbackrest-secrets

type: Opaque

data:
gcs-key.json: <base64-encoded-json-file-contents>
gcs.conf: <base64-encoded-conf-file-contents>

© Info This Secret can store credentials for several repositories presented as separate data

keys.

0 Create the Secrets object from the Secret configuration file. Replace the <namespace>
placeholder with your value:

https://kubernetes.io/docs/concepts/configuration/secret/

S kubectl apply -f clusteri-pgbackrest-secrets.yaml -n <namespace>

e Update your deploy/cr.yaml configuration. Specify your GCS credentials Secret in the
backups.pgbackrest.configuration subsection, and put GCS bucket name into the bucket
option in the backups.pgbackrest.repos subsection. The repository name must be the same
as the name you specified when you created the gcs.conf file.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path option (prefix it's name with
the repository name, for example repo3-path).

For example, GCS storage configuration for the repo3 repository would look as follows:

backups:

pgbackrest:
configuration:
- secret:
name: clusterl1-pgbackrest-secrets
global:

repo3-path: /pgbackrest/postgres-operator/clusteri1/repo3
repos:
- name: repo3

gcs:
bucket: "<YOUR_GCS_BUCKET_NAME>"

6 Create or update the cluster. Replace the <namespace> placeholder with your value:

$ kubectl apply -f deploy/cr.yaml -n <namespace>

/A Azure Blob Storage (tech preview)

To use Microsoft Azure Blob Storage [4 for storing backups, you need the following:

e a proper Azure container name.

https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global

o Azure Storage credentials. These are stored in an encoded form in the Kubernetes Secret [4.

Configuration steps

o Encode the Azure Storage credentials and the pgBackRest repo name that you will use for
backups with base64. In this example, we are using repo4.

A Linux

S cat <<EOF | base64 --wrap=0

[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

" macO0S

S cat <<EOF | base64

[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT _NAME>
repod4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

e Create the Secret configuration file and specify the base64-encoded string from the previous
step. The following is the example of the cluster1-pgbackrest-secrets.yaml Secret file:

apiVersion: vi1
kind: Secret
metadata:
name: clusterl-pgbackrest-secrets
type: Opaque
data:
azure.conf: <base64-encoded-configuration-contents>

. Note

This Secret can store credentials for several repositories presented as separate data keys.

e Create the Secrets object from this yaml file. Replace the <namespace> placeholder with your
value:

https://kubernetes.io/docs/concepts/configuration/secret/

S kubectl apply -f clusteri-pgbackrest-secrets.yaml -n <namespace>

0 Update your deploy/cr.yaml configuration. Specify the Secret file you have created in the
previous step in the backups.pgbackrest.configuration subsection. Put Azure container
name in the backups.pgbackrest.repos subsection under the repository name that you
intend to use for backups. This name must match the name you used when you encoded Azure
credentials on step 1.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path option (prefix it's name with
the repository name, for example repo4-path).

For example, the Azure storage for the repo4 repository looks as follows.

backups:

pgbackrest:
configuration:
- secret:
name: clusterl-pgbackrest-secrets
global:

repod4-path: /pgbackrest/postgres-operator/clusteri1/repo4
repos:
- name: repo4

azure:
container: "<YOUR_AZURE_CONTAINER>"

e Create or update the cluster. Replace the <namespace> placeholder with your value:

S kubectl apply -f deploy/cr.yaml -n <namespace>

@ Persistent Volume

Percona Operator for PostgreSQL uses Kubernetes Persistent Volumes to store Postgres data. You
can also use them to store backups. A Persistent volume is created at the same time when the
Operator creates PostgreSQL cluster for you. You can find the Persistent Volume configuration in the

backups.pgbackrest.repos section of the cr.yaml file under the repo1 name:

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global

backups:
pgbackrest:

global:
repol-path: /pgbackrest/postgres-operator/clusteri1/repol

repos:

- name: repol
volume:
volumeClaimSpec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 1Gi

This configuration is sufficient to make a backup.

Next steps

e Make an on-demand backup

e Make a scheduled backup

Make scheduled backups

Backups schedule is defined on the per-repository basis in the backups.pgbackrest.repos

subsection of the deploy/cr.yaml file.

You can supply each repository with a schedules.<backup type> key equal to an actual schedule

that you specify in crontab format.

o Before you start, make sure you have configured a backup storage.

e Configure backup schedule in the deploy/cr.yaml file. The schedule is specified in crontab
format as explained in Custom Resource options. The repository name must be the same as the
one you defined in the backup storage configuration. The following example shows the schedule

for repo1 repository:

backups:

pgbackrest:
repos:
- name: repol
schedules:

full: "9 @6 * * 6"
differential: "6 1 * * 1-6"

1. Update the cluster:

S kubectl apply -f deploy/cr.yaml

Next steps

Restore from a backup

Useful links

Backup retention

Making on-demand backups

To make an on-demand backup manually, you need a backup configuration file. You can use the
example of the backup configuration file deploy/backup.yaml [4:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1
spec:
pgCluster: clusterT
repoName: repol
options:
- --type=full

Here's a sequence of steps to follow:

0 Before you start, make sure you have configured a backup storage.

9 In the deploy/backup.yaml configuration file, specify the cluster name and the repository

name to be used for backups. The repository name must be the same as the one you defined in

the backup storage configuration. It must also match the repository name specified in the

backups.pgbackrest.manual subsection of the deploy/cr.yaml file.

e If needed, you can add any pgBackRest command line options [4.

0 Make a backup with the following command (modify the -n postgres-operator parameter if

your database cluster resides in a different namespace):

S kubectl apply -f deploy/backup.yaml -n postgres-operator

. Expected output

perconapgbackup.pgv2.percona.com/backup1 created

e Making a backup takes time. Use the kubectl get pg-backup command to track the backup

progress. When finished, backup should obtain the Succeeded status:

S kubectl get pg-backup backupl -n postgres-operator

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/backup.yaml
https://pgbackrest.org/configuration.html

. Expected output

NAME CLUSTER REPO DESTINATION
backup1 cluster repol

STATUS
Succeeded

TYPE
incr

COMPLETED
3m38s

AGE
3m53s

O
To list available backups, run:

S kubectl get pg-backup -n postgres-operator

Next steps

Restore from a backup

Useful links

Backup retention

Restore the cluster from a previously saved
backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-
in-time-recovery. There are two ways to restore a cluster:

e restore to a new cluster using the dataSource.postgresCluster subsection,

e restore in-place to an existing cluster (note that this is destructive).

Restore to a new PostgreSQL cluster

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL
cluster that can run alongside an existing one. There are several scenarios where using this
technique is helpful:

¢ Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of
putting this is creating a clone.
¢ Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either an active one, or a former cluster whose pgBackRest
repository still exists, edit the dataSource.postgresCluster subsection options in the Custom

Resource manifest of the new cluster (the one you are going to create). The content of this
subsection should copy the backups keys of the original cluster - ones needed to carry on the
restore:

e dataSource.postgresCluster.clusterName should contain the source cluster name,

e dataSource.postgresCluster.clusterNamespace should contain the namespace of the
source cluster (it is needed if the new cluster will be created in a different namespace, and you
will need the Operator deployed in multi-namespace/cluster-wide mode to make such cross-

namespace restore),

e dataSource.postgresCluster.options allow you to set the needed pgBackRest command line
options,

e dataSource.postgresCluster.repoName should contain the name of the pgBackRest
repository, while the actual storage configuration keys for this repository should be placed into
dataSource.pgbackrest.repo subsection,

e dataSource.pgbackrest.configuration.secret.name should contain the name of a

Kubernetes Secret with credentials needed to access cloud storage, if any.

The following example bootstraps a new cluster from a backup, which was made on the cluster1
cluster deployed in percona-db-1 namespace. For simplicity, this backup uses repo1 repository
from the Persistent Volume backup storage example, which needs no cloud credentials. The

resulting deploy/cr.yaml manifest for the new cluster should contain the following lines:

dataSource:
postgresCluster:
clusterName: clusteri
repoName: repoT
clusterNamespace: percona-db-1

Creating the new cluster in its namespace (for example, percona-db-2) with such a manifest will
initiate the restoration process:

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

Restore to an existing PostgreSQL cluster

To restore the previously saved backup, use a backup restore configuration file. The example of the
backup configuration file is deploy/restore.yaml [4:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restorel
spec:
pgCluster: clusterT
repoName: repol
options:
- --type=time
- --target="2022-11-30 15:12:11+03"

The following keys are the most important ones:

e pgCluster specifies the name of your cluster,

e repoName specifies the name of one of the 4 pgBackRest repositories, already configured in the
backups.pgbackrest.repos subsection,

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml

e options passes through any pgBackRest command line options [4.

To start the restoration process, run the following command (modify the -n postgres-operator
parameter if your database cluster resides in a different namespace):

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Specifying which backup to restore
When there are multiple backups, the Operator will restore the latest full backup by default.

if you want to restore to some previous backup, not the last one, follow these steps:

1. Find the label of the backup you want to restore. For this, you can list available backups with
kubectl get pg-backup command, and then get detailed information about the backup of
your interest with kubectl describe pg-backup <BACKUP NAME>. The output should look as

follows:
Name : clusteri1-backup-c55w-f858g
Namespace: default
Labels: <none>

Annotations: pgv2.percona.com/pgbackrest-backup-job-name: clusterl-
backup-c55w

pgv2.percona.com/pgbackrest-backup-job-type: replica-create
API Version: pgv2.percona.com/v2

Kind: PerconaPGBackup
Metadata:
Creation Timestamp: 2024-06-28T07:44:08Z
Generate Name: clusteri1-backup-c55w-
Generation: 1
Resource Version: 1199
UID: 92a8193c-6¢cbd-4cdf-82e5-a4623bf7f2d9
Spec:
Pg Cluster: clusteri
Repo Name: repoi
Status:

| Backup Name: 20240628-074416F
| Backup Type: full

The “Backup Name” status field will contain needed backup label.

https://pgbackrest.org/configuration.html

2. Now use a backup restore configuration file with additional --set=<backup_label>

pgBackRest option. For example, the following yaml file will result in restoring to a backup
labeled 20240628-074416F :

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:

name: restorel
spec:

pgCluster: cluster

repoName: repoT

options:

- --type=immediate

- --set=20240628-074416F

3. Start the restoration process, as usual:

S kubectl apply -f deploy/restore.yaml -n postgres-operator

Restore the cluster with point-in-time recovery

Point-in-time recovery functionality allows users to revert the database back to a state before an
unwanted change had occurred.

. Note

For this feature to work, the Operator initiates a full backup immediately after the cluster creation, to use it as a

basis for point-in-time recovery when needed (this backup is not listed in the output of the kubectl get pg-
backup command).

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few
additional spec.options fields in deploy/restore.yaml:

e set --type optionto time,

e set --target to a specific time you would like to restore to. You can use the typical string
formatted as <YYYY-MM-DD HH:MM:DD>, optionally followed by a timezone offset: "2021-04-16
15:13:32+00" (+00 in the above example means UTC),

e optional --set argument followed with a pgBackRest backup ID allows you to choose the
backup which will be the starting point for point-in-time recovery. This option must be specified if
the target is one or more backups away from the current moment. You can look through the
available backups with the pgBackRest info [4 command to find out the proper backup ID.

. pgBackRest backup ID example .

After obtaining the Pod name with kubectl get pods command, you can run pgbackrest --stanza=db
info command on the appropriate Pod as follows:

S kubectl -n postgres-operator exec -it clusteri-instancel-hcgr-8 -c database --
pgbackrest --stanza=db info

Then find ID of the needed backup in the output:

stanza: db
status: ok
cipher: none

db (prior)
wal archive min/max (16): ©00P000BFO000V000BOO0001C/0000002000000036000000C5

full backup: 20240401-173403F
timestamp start/stop: 2024-04-01 17:34:03+00 / 2024-04-01 17:36:57+00
wal start/stop: 000000120000000000000022 / 000ROO120000000000000024
database size: 31MB, database backup size: 31MB
repol: backup set size: 4.1MB, backup size: 4.1MB

incr backup: 20240401-173403F_20240415-2012501
timestamp start/stop: 2024-04-15 20:12:50+00 / 2024-064-15 20:14:19+00
wal start/stop: 00000019000000000000005C / ©OBBOO19000000000000005D
database size: 46.0MB, database backup size: 25.7MB
repol: backup set size: 6.1MB, backup size: 3.8MB
backup reference list: 20240401-173403F

incr backup: 20240401-173403F_20240415-2014301

Now you can put this backup ID to the backup restore configuration file as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restorel
spec:
pgCluster: cluster
repoName: repol
options:
| - --set="20240401-173403F"

https://pgbackrest.org/command.html#command-info

The example may look as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
name: restorel
spec:
pgCluster: clusterT
repoName: repol
options:
- --type=time
- --target="2022-11-30 15:12:11+03"

. Note

Latest succeeded backup available with the kubectl get pg-backup command has a “Latest restorable time”
information field handy when selecting a backup to restore. Tracking latest restorable time is turned on by
default, and you can easily query the backup for this information as follows:

$ kubectl get pg-backup <backup_name> -n postgres-operator -o
jsonpath="{.status.latestRestorableTime}'

After setting these options in the backup restore configuration file, start the restoration process:

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

. Note

Make sure you have a backup that is older than your desired point in time. You obviously can't restore from a time
where you do not have a backup. All relevant write-ahead log files must be successfully pushed before you make
the restore.

Providing pgBackRest with a custom restore command

There may be cases where it is needed to control what files are restored from the backup and apply
fine-grained filtering to them. For such scenarios there is a possibility to overwrite the
restore_command used in PosgreSQL archive recovery [4. You can do it in the

patroni.dynamicConfiguration subsection of the Custom Resource as follows:

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY

patroni:
dynamicConfiguration:
postgresql:
parameters:
restore_command: "pgbackrest --stanza=db archive-get %f \"%p\""

The %f template in the above example is replaced by the name of the file to retrieve from the
archive, and %p is replaced by the copy destination path name on the server. See PostgreSQL official

documentation [4 for more low-level details about this feature.

Fix the cluster if the restore fails

The restore process changes database files, and therefore restoring wrong information or causing
restore fail by misconfiguring can put the database cluster in non-operational state.

For example, adding wrong pgBackRest arguments to PerconaGPRestore custom resource breaks

existing database installation while the restore hangs.

In this case it's possible to remove the restore annotation from the Custom Resource correspondent
to your cluster. Supposing that your cluster cluster1 was deployed in postgres-operator
namespace, you can do it with the following command:

S kubectl annotate -n postgres-operator pg clusterl1 postgres-
operator.crunchydata.com/pgbackrest-restore-

Alternatively, you can temporarily delete the database cluster by removing the Custom Resource

(check the finalizers.percona.com/delete-pvc finalizer is not turned on, otherwise you will not

retain your data!), and recreate the cluster back by running kubectl apply -f deploy/cr.yaml -
n postgres-operator command you have used to deploy the it previously.

One more reason of failed restore to consider is the possibility of a corrupted backup repository or
missing files. In this case, you may need to delete the database cluster by removing the Custom

Resource, find the startup PVC to delete it and recreate again.

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-pvc

Configure backup encryption

Backup encryption is a security best practice that helps protect your organization’s confidential
information and prevents unauthorized access.

The pgBackRest tool used by the Operator allows encrypting backups using AES-256 encryption. The
approach is repository-based: pgBackRest encrypts the whole repository where it stores backups.
Encryption is enabled if a user-supplied encryption key was passed to pgBackRest with the -repo-
cypher-pass option when configuring the backup storage.

Limitation: You cannot change encryption settings after the backups are established. You must

create a new repository to enable encryption or change the encryption key.

This document describes how to configure backup encryption.

Generate the encryption key

You should use a long, random encryption key. You can generate it using OpenSSL as follows:

S openssl rand -base64 48

Configure backup storage

Follow the general backup storage configuration instruction relevant to the backup storage you are
using. The only difference is in encoding your cloud credentials and the pgBackRest repository name
to be used for backups: you also add the encryption key to the configuration file as the repo-
cipher-pass option. The repo name within the option must match the pgBackRest repo name.

The following example shows the configuration for S3-compatible storage and the pgBackRest repo
name repo2 (other cloud storages are configured similarly).

1. Encode the storage configuration file.

gﬁ)Unux

S cat <<EOF | base64 --wrap=0

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>

EOF

" macO0S

S cat <<EOF | base64

[global]

repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>

EOF

2. Create the Secrets configuration file and the Secrets object as described in steps 2-3 of the S3-

compatible backup storage configuration. Follow the instructions relevant to the backup storage
you are using.

3. Update the deploy/cr.yaml configuration. Specify the following information:
e The Secret name you created in the backups.pgbackrest.configuration subsection

o All storage-related information in the backups.pgbackrest.repos subsection under the
repository name that you intend to use for backups. This name must match the name you
used when you encoded S3 credentials on step 1.

e The cipher type in the pgbackrest.global subsection

The following example shows the configuration for the S3-compatible storage and the
pgBackRest repo name repo2:

backups:
pgbackrest:

configuration:
- secret:
name: clusterl-pgbackrest-secrets
repos:
- hame: repo2
s3:
bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
endpoint: "<YOUR_AWS_S3_ENDPOINT>"
region: "<YOUR_AWS_S3_REGION>"

global:
cipher-type: aes-256-cbc

4. Apply the changes. Replace the <namespace> placeholder with your value.

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Make a backup

C Make an on-demand backup) (Make a scheduled backup)

Speed-up backups with pgBackRest
asynchronous archiving

Backing up a database with high write-ahead logs (WAL) generation can be rather slow, because
PostgreSQL archiving process is sequential, without any parallelism or batching. In extreme cases
backup can be even considered unsuccessful by the Operator because of the timeout.

The pgBackRest tool used by the Operator can, if necessary, solve this problem by using the WAL

asynchronous archiving_[4 feature.

You can set up asynchronous archiving in your storage configuration file for pgBackRest. Turn on the
additional archive-async flag, and set the process-max value for archive-push and archive-

get commands. Your storage configuration file may look as follows:

s3.conf

[global]
repo2-s3-key=REPLACE-WITH-AWS-ACCESS-KEY
repo2-s3-key-secret=REPLACE-WITH-AWS-SECRET-KEY
repo2-storage-verify-tls=n
repo2-s3-uri-style=path

archive-async=y

spool-path=/pgdata

[global:archive-get]
process-max=2

[global:archive-push]
process-max=4

No modifications are needed aside of setting these additional parameters. You can find more
information about WAL asynchronous archiving in gpBackRest official documentation [4 and in this

blog post (4.

https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/

Backup retention

The Operator supports setting pgBackRest retention policies for full and differential backups. When
a full backup expires according to the retention policy, pgBackRest cleans up all the files related to

this backup and to the write-ahead log. Thus, the expiration of a full backup with some incremental
backups based on it results in expiring of all these incremental backups.

You can control backup retention by the following pgBackRest options:

e --<repo name>-retention-full number of full backups to retain,

e --<repo name>-retention-diff number of differential backups to retain.

You can also specify retention type for full backups as <repo name>-retention-full-type,
setting it to either count (the number of full backups to keep) or time (the number of days to keep
a backup for).

You can set both backup type and retention policy for each of 4 repositories as follows.

backups:
pgbackrest:

global:
repol-retention-full: "14"
repol-retention-full-type: time

Differential retention can be set in a similar way:

backups:
pgbackrest:

global:
repol-retention-diff: "3"

Delete the unneeded backup

The maximum amount of stored backups is controlled by the retention policies. Older backups are

automatically deleted.

Manual deleting of a previously saved backup requires not more than the backup name. This name
can be taken from the list of available backups returned by the following command:

S kubectl get pg-backup
When the name is known, backup can be deleted as follows:

S kubectl delete pg-backup/<backup-name>

Delete backups on cluster deletion

You can enable percona.com/delete-backups finalizer in the Custom Resource (turned off by

default) to ensure that all backups are removed when the cluster is deleted. If the finalizer is enabled,
the Operator will delete all the backups from all the configured repos on cluster deletion. Besides
removing all the physical backup files, finalizer will also delete all pg-backup objects.

A Warning

This percona.com/delete-backups finalizer is in tech preview state, and it is not yet recommended for
production environments.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-backups

Disable backups

The recommended approach to deploy and run the database is with the disaster recovery strategy in
mind. Therefore, the Operator is designed and running with the backups enabled by default.

There are some specific use cases when you may wish to run a database without enabled backups.
Disabling backups should be a conscious decision based on your data’s value and recoverability.
These are example use cases where it is considered acceptable are when the data is fully
disposable:

o Ephemeral development/testing environments: For clusters that are frequently torn down and
rebuilt from application code or test data scripts.

e CI/CD pipeline jobs: For automated pipeline runs where the cluster’s entire lifecycle is temporary
and tied to a single job.

Key considerations before disabling backups

Before you proceed with disabling backups, here’s what you need to know and carefully assess:

1. Without backups you have no way to restore data. If by mistake you drop a table, that data is lost
as you have no option to recover it.

2. You cannot clone a cluster when you deploy a standby cluster for disaster recovery. This is

because cloning is based on restoring a backup on a new cluster.

3. When you run a cluster without backups, pgBackRest metrics are unavailable.

Start a new cluster with disabled backups

To deploy a new cluster without backups, do the following:
1. Clone the Operator repository to be able to edit resource manifests.

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator

2. Editthe deploy/cr.yaml Custom Resource and set the backups.enabled optionto false

spec:
backups:
enabled: false

3. Apply the Custom Resource to start the cluster creation.

S kubectl apply -f deploy/cr.yaml -n <namespace>

Disable backups for a running cluster

Before you start, read the considerations carefully.

To disable backups for a running cluster, update the deploy/cr.yaml Custom Resource manifest
with the following configuration:

e Setthe backups.enabled optionto false

¢ Add the annotation pgv2.percona.com/authorizeBackupRemoval:"true"

Since it is a running cluster, we will use the kubectl patch command to update its configuration:

$ kubectl patch pg clusterl --type merge \
-p A
"metadata": {
"annotations": {

"pgv2.percona.com/authorizeBackupRemoval": "true"

}
H
"spec": {
"backups": {
"enabled": false
}
}

}' -n <namespace>
A Warning

After you apply this configuration and disable backups, the Operator deletes the repo-host PVC. Thus, all data
that was stored in that PVC will be deleted too. The backups stored on the cloud backup storage remain.

Re-enable backups

To re-enable backups for a running cluster, do the following:

1. Remove the annotation pgv2.percona.com/authorizeBackupRemoval:"true"

S kubectl annotate pg cluster1 pgv2.percona.com/authorizeBackupRemoval-

2. Apply the patch to your running cluster and enable backups:

S kubectl patch pg clusterl --type merge \
-p A
"spec": {
"backups": {
"enabled": true
}
}
b

Deploy a standby cluster for
Disaster Recovery

How to deploy a standby cluster for Disaster
Recovery

Disaster recovery is not optional for businesses operating in the digital age. With the ever-increasing
reliance on data, system outages or data loss can be catastrophic, causing significant business
disruptions and financial losses.

With multi-cloud or multi-regional PostgreSQL deployments, the complexity of managing disaster
recovery only increases. This is where the Percona Operators come in, providing a solution to
streamline disaster recovery for PostgreSQL clusters running on Kubernetes. With the Percona
Operators, businesses can manage multi-cloud or hybrid-cloud PostgreSQL deployments with ease,
ensuring that critical data is always available and secure, no matter what happens.

Operators automate routine tasks and remove toil. For standby, the Percona Operator for PostgreSQL

version 2 provides the following options:

1. pgBackrest repo based standby. The standby cluster will be connected to a pgBackRest cloud
repo, so it will receive WAL files from the repo and apply them to the database.

2. Streaming_replication. The standby cluster will use an authenticated network connection to the

primary cluster to receive WAL records directly.

3. Combination of (1) and (2). The standby cluster is configured for both repo-based standby and
streaming replicaton. It bootstraps from the pgBackRest repo and continues to receive WAL files
as they are pushed to the repo, and can also directly receive them from primary. Using this
approach ensures the cluster will still be up to date with the pgBackRest repo if streaming falls
behind.

Standby cluster deployment based on
pgBackRest

The pgBackRest repo-based standby is the simplest one. The following is the architecture diagram:

~
Operator Operator
Q o F-E 0 O
e pgBackRest pgBackRest e
DB Pods Backup storage DB Pods
cluster1 cluster2 (standby)
_ J _ J

pgBackrest repo based standby

1. This solution describes two Kubernetes clusters in different regions, clouds or running in hybrid
mode (on-premises and cloud). One cluster is Main and the other is Disaster Recovery (DR)

2. Each cluster includes the following components:
a. Percona Operator
b. PostgreSQL cluster
c. pgBackrest
d. pgBouncer

3. pgBackrest on the Main site streams backups and Write Ahead Logs (WALSs) to the object
storage

4. pgBackrest on the DR site takes these backups and streams them to the standby cluster

Deploy disaster recovery for PostgreSQL on Kubernetes

Configure Main site

1. Deploy the Operator using_ your favorite method. Once installed, configure the Custom Resource

manifest, so that pgBackrest starts using the Object Storage of your choice. Skip this step if you
already have it configured.

2. Configure the backups.pgbackrest.repos section by adding the necessary configuration. The
below example is for Google Cloud Storage (GCS):

spec:
backups:
configuration:
- secret:
name: main-pgbackrest-secrets
pgbackrest:
repos:
- name: repol
gcs:
bucket: MY-BUCKET

The main-pgbackrest-secrets value contains the keys for GCS. Read more about the
configuration in the backup and restore tutorial.

3. Once configured, apply the custom resource:

S kubectl apply -f deploy/cr.yaml

. Expected output .

perconapgcluster.pg.percona.com/standby created

The backups should appear in the object storage. By default pgBackrest puts them into the
pgbackrest folder.

Configure DR site

The configuration of the disaster recovery site is similar to that of the Main site, with the only

difference in standby settings.

The following manifest has standby.enabled setto true and points to the repoName where
backups are (GCS in our case):

metadata:
name: standby
spec:

backups:
configuration:
- secret:
name: standby-pgbackrest-secrets
pgbackrest:
repos:
- name: repol
gcs:
bucket: MY-BUCKET
standby:
enabled: true
repoName: repol

Deploy the standby cluster by applying the manifest:

S kubectl apply -f deploy/cr.yaml

. Expected output

perconapgcluster.pg.percona.com/standby created

Standby cluster deployment based on
streaming replication

The following diagram explains how the standby based on streaming replication works:

~

Cluster 1 (Main)

Operator Operator
Q. O

Primary Primary
Replica DB Pod DB Pod Replica
DB Pods DB Pods

Cluster 2 (DR)

- J . J

1. This solution describes two Kubernetes clusters in different regions, clouds, data centers or even

two namespaces, or running in hybrid mode (on-premises and cloud). One cluster is Main site,
and the other is Disaster Recovery site (DR)

2. Each site supposedly includes Percona Operator and for sure includes PostgreSQL cluster.

3. In the DR site the cluster is in Standby mode

4. We set up streaming replication between these two clusters

Deploy disaster recovery for PostgreSQL on Kubernetes

Configure Main site

1. Deploy the Operator using_your favorite method.

2. The Main cluster needs to expose it, so that standby can connect to the primary PostgreSQL
instance. To expose the primary PostgreSQL instance, use the spec.expose section:

spec:
expose:
type: ClusterlIP

Use here a Service type of your choice. For example, ClusterIP is sufficient for two clusters in
different Kubernetes namespaces.

3. Once configured, apply the custom resource:

$ kubectl apply -f deploy/cr.yaml -n main-pg

. Expected output .

perconapgcluster.pg.percona.com/standby created

The service that you should use for connecting to standby is called -ha (main-ha in my case):

main-ha ClusterIP 10.118.227.214 <none> 5432 /TCP
163m

Configure DR site

To get the replication working, the Standby cluster would need to authenticate with the Main one. To
get there, both clusters must have certificates signed by the same certificate authority (CA). Default
replication user _crunchyrepl will be used.

In the simplest case you can copy the certificates from the Main cluster. You need to look out for two
files:

e main-cluster-cert

e main-replication-cert

Copy them to the namespace where DR cluster is going to be running and reference under
spec.secrets (in the following example they were renamed, replacing “main” with “dr”):

spec:
secrets:
customTLSSecret:
name: dr-cluster-cert
customReplicationTLSSecret:
name: dr-replication-cert

If you are generating your own certificates, just remember the following rules:

1. Certificates for both Main and Standby clusters must be signed by the same CA

2. customReplicationTLSSecret must have a Common Name (CN) setting that matches
_crunchyrepl, which is a default replication user.

You can find more about certificates in the TLS doc.

Apart from setting certificates correctly, you should also set standby configuration.

standby:
enabled: true
host: main-ha.main-pg.svc

e standby.enabled controls if it is a standby cluster or not

¢ standby.host must point to the primary node of a Main cluster. In this example itis a main-ha
Service in another namespace.

Deploy the standby cluster by applying the manifest:

S kubectl apply -f dr-cr.yaml -n dr-pg

. Expected output .

perconapgcluster.pg.percona.com/standby created

Once both clusters are up, you can verify that replication is working.

1. Insert some data into Main cluster

2. Connect to the DR cluster

To connect to the DR cluster, use the credentials that you used to connect to Main. This also verifies
that the connection is working. You should see whatever data you have in the Main cluster in the
Disaster Recovery.

Failover

In case of the Main site failure or in other cases, you can promote the standby cluster. The promotion
effectively allows writing to the cluster. This creates a net effect of pushing Write Ahead Logs
(WALSs) to the pgBackrest repository. It might create a split-brain situation where two primary
instances attempt to write to the same repository. To avoid this, make sure the primary cluster is
either deleted or shut down before trying to promote the standby cluster.

Once the primary is down or inactive, promote the standby through changing the corresponding
section:

spec:
standby:
enabled: false

Now you can start writing to the cluster.

Split brain

There might be a case, where your old primary comes up and starts writing to the repository. To
recover from this situation, do the following:

1. Keep only one primary with the latest data running

2. Stop the writes on the other one

3. Take the new full backup from the primary and upload it to the repo

Automate the failover

Automated failover consists of multiple steps and is outside of the Operator’'s scope. There are a few
steps that you can take to reduce the Recovery Time Objective (RTO). To detect the failover we
recommend having the 3" site to monitor both DR and Main sites. In this case you can be sure that
Main really failed and it is not a network split situation.

Another aspect of automation is to switch the traffic for the application from Main to Standby after
promotion. It can be done through various Kubernetes configurations and heavily depends on how
your networking and application are designed. The following options are quite common:

1. Global Load Balancer - various clouds and vendors provide their solutions

2. Multi Cluster Services or MCS - available on most of the public clouds

3. Federation or other multi-cluster solutions

Scale Percona Distribution for PostgreSQL on
Kubernetes

One of the great advantages brought by Kubernetes is the ease of an application scaling. Scaling an
application results in adding resources or Pods and scheduling them to available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to

PostgreSQL nodes; horizontal scaling is about adding more nodes to the cluster. High availability
looks technically similar, because it also involves additional nodes, but the reason is maintaining
liveness of the system in case of server or network failures.

This document focuses on vertical scaling. For deploying high-availability, see High-availability guide.

Vertical scaling

Scale compute

There are multiple components that the Operator deploys and manages: PostgreSQL instances,
pgBouncer connection pooler, pgBackRest and others (See Architecture for the full list of
components.)

You can manage compute resources for a specific component using the corresponding section in
the Custom Resource manifest. We follow the structure for requests and limits [4 that Kubernetes

provides.
The most common resources to specify are CPU and memory (RAM).

You can specify a request for CPU or memory for a component’s Pod. In this case, the Kubernetes
scheduler uses these values to decide on which Kubernetes node to place the Pod, ensuring the
node has at least the requested resources available. The Pod will only be scheduled on a node that
can satisfy all its resource requests.

If you specify a limit for the resources, this is the maximum amount of CPU or memory the container
is allowed to use. If the container tries to use more than the limit, it may be throttled (for CPU) or
terminated (for memory).

You can set both requests and limits inthe resources section of your Custom Resource. For
example:

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

spec:

instances:

- name: instancel
replicas: 3
resources:

requests:
cpu: 1.0
memory: 2Gi
limits:
cpu: 2.0
memory: 4Gi

If you only set 1imits and omit requests, Kubernetes will default the request to the limit value.

Use our reference documentation for the Custom Resource options for more details about other

components.

Scale storage

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the
administrator, and a PersistentVolumeClaim (PVC), a request for storage from a user. In Kubernetes
v1.11 the feature was added to allow a user to increase the size of an existing PVC object
(considered stable since Kubernetes v1.24). The user cannot shrink the size of an existing PVC
object.

Scaling with Volume Expansion capability

Certain volume types support PVCs expansion (exact details about PVCs and the supported volume

types can be found in Kubernetes documentation [%).

You can run the following command to check if your storage supports the expansion capability:

S kubectl describe sc <storage class name> | grep AllowVolumeExpansion

. Expected output .

AllowVolumeExpansion: true

The Operator versions 2.5.0 and higher will automatically expand such storage for you when you
change the appropriate options in the Custom Resource.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims

For example, you can do it by editing and applying the deploy/cr.yaml file:

spec:
instances:

dataVolumeClaimSpec:
resources:
requests:
storage: <NEW STORAGE SIZE>

Apply changes as usual:
S kubectl apply -f cr.yaml

Automated scaling with auto-growable disk

The Operator 2.5.0 and newer is able to detect if the storage usage on the PVC reaches a certain
threshold, and trigger the PVC resize. Such autoscaling needs the upstream “auto-growable disk”
feature turned on when deploying the Operator. This is done via the PGO_FEATURE _GATES
environment variable set in the deploy/operator.yaml manifest (or in the appropriate part of
deploy/bundle.yaml):

subjects:
- kind: ServiceAccount
name: percona-postgresql-operator
namespace: pg-operator
spec:
containers:
- env:

- name: PGO_FEATURE_GATES
value: "AutoGrowVolumes=true"

When the support for auto-growable disks is turned on, the auto grow will be working automatically if
the maximum value available for the Operator to scale up is set in the
spec.instances|].dataVolumeClaimSpec.resources.limits.storage Custom Resource
option:

spec:
instances:

dataVolumeClaimSpec:
resources:
requests:
storage: 1Gi
limits:
storage: 5Gi

High availability

High availability (HA) ensures that your PostgreSQL database remains accessible even in the event
of node or pod failures. With the Percona Operator for PostgreSQL, high availability is achieved by
running multiple PostgreSQL nodes in a cluster, using the Patroni framework for automated failover
and PostgreSQL streaming replication for data consistency.

A PostgreSQL cluster consists of the following members:

¢ A Primary node handles all write operations. The Primary continuously streams changes to its
Standby nodes.

e Read-only (Standby in PostgreSQL terminology) replicas that continuously receive and replay
changes from the Primary node. If the Primary fails, one of the Standbys can be automatically
promoted to become the new Primary.

Data replication
Percona Operator leverages PostgreSQL streaming replication to keep Standby nodes up-to-date.

By default, asynchronous replication is used: the Primary sends changes to Standbys, but does not
wait for confirmation before committing transactions. This offers better performance but presents a
risk of minimal data loss (transactions not yet copied to a Standby could be lost in a failure).

Synchronous replication is also supported. In this replication type the Primary waits for at least one
Standby to acknowledge receipt of data before marking a transaction as committed. This minimizes
the risk of data loss, but can be slightly slower since each transaction must wait for a confirmation.

Minimum and recommended number of nodes for high availability:

The absolute minimum that can technically work for high availability is 2 nodes. But this does not
provide full high availability or protection against split-brain scenarios since the loss of either node
can impact availability and data safety.

The recommended number of nodes for high availability setups is 3 or more PostgreSQL nodes.

Adding nodes to a cluster

There are two ways how to control the number replicas in your HA cluster:

1. Through changing spec.instances.replicas value

2. By adding new entry into spec.instances

Using spec.instances.replicas

For example, you have the following Custom Resource manifest:

spec:
instances:

- name: instancel
replicas: 2

This will provision a cluster with two nodes - one Primary and one Replica. Add the node by changing
the manifest...

spec:
instances:

- name: instancel
| replicas: 3

..and applying the Custom Resource:

kubectl apply -f deploy/cr.yaml

The Operator will provision a new replica node. It will be ready and available once data is
synchronized from Primary.

Using spec.instances

Each instance’s entry has its own set of parameters, like resources, storage configuration, sidecars,
etc. When you add a new entry into instances, this creates replica PostgreSQL nodes, but with a new
set of parameters. This can be useful in various cases:

e Test or migrate to new hardware
¢ Blue-green deployment of a new configuration

e Try out new versions of your sidecar containers

For example, you have the following Custom Resource manifest:

spec:

instances:
- name: instancel
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

Now you have a goal to migrate to new disks, which are coming with the new-ssd storage class.
You can create a new instance entry. This will instruct the Operator to create additional nodes with
the new configuration keeping your existing nodes intact.

spec:

instances:
- name: instance’l
replicas: 2
dataVolumeClaimSpec:
storageClassName: old-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi
- name: instance2
replicas: 2
dataVolumeClaimSpec:
storageClassName: new-ssd
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi

Using Synchronous replication

Synchronous replication offers the ability to confirm that all changes made by a transaction have
been transferred to one or more synchronous standby servers. When requesting synchronous
replication, each commit of a write transaction will wait until confirmation is received that the
commit has been written to the write-ahead log on disk of both the primary and standby server. The
drawbacks of synchronous replication are increased latency and reduced throughput on writes.

You can turn on synchronous replication by customizing the patroni.dynamicConfiguration
Custom Resource option.

¢ Enable synchronous replication by setting synchronous_mode option to on.

e Use synchronous_node_count option to set the number of replicas (PostgreSQL standby
servers) which should operate in syncrhonous mode (the default value is 1).

The result in your deploy/cr.yaml manifest may look as follows:

patroni:
dynamicConfiguration:

synchronous_mode: "on
synchronous_node_count: 2

You will have the desired amount of replicas switched to synchronous replication after applying
changes as usual, with kubectl apply -f deploy/cr.yaml command.

Find more options useful to tune how your database cluster should operate in synchronous mode in
the official Patroni documentation [4.

https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode

Using huge pages with Percona Operator for
PostgreSQL

Overview

Huge Pages (also called large or super pages) are bigger memory blocks that help reduce CPU
overhead. Normally, memory is managed in 4kB chunks, also called “pages”, but when your
PostgreSQL workload grows, the CPU has to juggle a lot of these small pages. By switching to larger
pages like 2MiB or 1GiB, you reduce the number of pages the CPU needs to track, which can improve
efficiency and performance.

For PostgreSQL clusters managed by Percona Operator for PostgreSQL, enabling huge pages is a
recommended optimization, especially for memory-intensive workloads.

Why to use huge pages in PostgreSQL

PostgreSQL uses shared memory extensively for:

¢ Shared buffer pool
o WAL buffers

¢ Dynamic shared memory segments
When huge pages are enabled:

e PostgreSQL can access memory more efficiently.
e The system spends less time managing memory.

o Performance improves, especially under heavy load.

Configure huge pages for Percona Operator for
PostgreSQL

Enable huge pages in your Kubernetes environment

Before configuring your cluster, make sure huge pages are enabled and available on the Kubernetes
nodes. This setup is done outside the Operator and depends on your Kubernetes environment,
whether you use a cloud-based Kubernetes like GKE, EKS, etc or use a bare-metal one.

Consult the Kubernetes environment'’s official documentation for how to enable huge pages there.
For the further setup, you need to keep in mind the following:

o What page sizes are available (e.g., 2MiB vs 1GiB)

e How many pages are preallocated

¢ Will other workloads compete for these pages

¢ Do all nodes that will run PostgreSQL pods have huge pages available

¢ When adding more nodes to your cluster, will they have huge pages available

Request huge pages in your cluster Custom Resource

Once your Kubernetes nodes are ready, you can configure your PostgreSQL cluster to use huge
pages.

1. Set the huge pages resource limits in your deploy/cr.yaml Custom Resource.

This example configuration tells Kubernetes to allocate 16Mi worth of 2MiB huge pages for this
instance. If you're using 1GiB pages, change the key to hugepages-1Gi.

spec:
instances:
- name: instancel
resources:
limits:

hugepages-2Mi: 16Mi
memory: 4Gi

. Important

Kubernetes requires that requests and limits for huge pages match. If you only specify limits,
Kubernetes will assume the same value for requests.

2. Apply the configuration

kubectl apply -f deploy/cr.yaml -n <namespace>

Verify huge pages are reserved

After deploying your cluster with huge pages configured, you can verify that they're being used by
checking inside the database container:

cat /proc/meminfo | grep HugePages

You should see values for HugePages_Total, HugePages_Free, and HugePages_Rsvd, confirming
that huge pages are reserved and in use.

A note on default behavior

To avoid unexpected startup failures, Percona Operator disables huge pages by default (huge_pages
= off). This prevents PostgreSQL from trying to use huge pages when none were requested. Once
you explicitly configure huge pages in your spec, the Operator sets huge_pages = try, allowing
PostgreSQL to use them if available.

If huge pages are enabled on your nodes but not requested by your pods, PostgreSQL might fall back
to minimal memory settings. To avoid this, either:
e Enable huge pages properly in your pod spec.
¢ Schedule pods on nodes without huge pages.
e Ormanually set shared_buffers to a reasonable value:
spec:
config:

parameters:
shared_buffers: 128MB

Using sidecar containers

Sidecar containers are extra containers that run alongside the main container in a Pod. They are
often used for logging, proxying, or monitoring.

The Operator uses a set of “predefined” sidecar containers to manage the cluster operation:

e replica-cert-copy -isresponsible for copying TLS certificates needed for replication between
PostgreSQL instances

e pgbouncer-config - handles configuration management for pgBouncer

e pgbackrest - runs the main backup/restore agent

e pgbackrest-config - handles configuration management for pgBackRest

The Operator allows you to deploy your own sidecar containers to the Pod. You can use this feature
to run debugging tools, some specific monitoring solutions, etc.

. Note

Custom sidecar containers can easily access other components of your cluster [5. Therefore use them with

caution, only when you are sure what you are doing.

Adding a custom sidecar container

You can add sidecar containers to these Pods:

e a PostgreSQL instance Pod

e apgBouncer Pod

To add a sidecar container, use the instances.sidecars or proxy.pgBouncer.sidecars
subsection in the deploy/cr.yaml configuration file. Specify this minimum required information in
this subsection:

¢ the container name

e the container image

e acommand to run

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication

Note that you cannot reuse the name of the predefined containers. For example, PostgreSQL
instance Pods cannot have custom sidecar containers named as database, pgbackrest,
pgbackrest-config, and replica-cert-copy.

Use the kubectl describe pod command to check which names are already in use.

Here is the sample configuration of a sidecar container for a PostgreSQL instance Pod:

spec:
instances:
- name: instancel

sidecars:
- image: busybox:latest
command: ["sleep", "30d"]
args: ["-c", "while true; do echo echo S(date -u) 'test' >> /dev/null;
sleep 5; done"]
name: my-sidecar-1

Find additional options suitable for the sidecars subsection in the Custom Resource options

reference and the Kubernetes Workload API reference [4

Apply your modifications as usual:
S kubectl apply -f deploy/cr.yaml

Running kubectl describe command for the appropriate Pod can bring you the information about

the newly created container:

$ kubectl describe pod clusterl-instanceT

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#container-v1-core

. Expected output .

Name : cluster1-instancel1-n8v4-0
Containers:
testcontainer:

Container ID:
containerd://c2a9dc1057ba308ac25d73e1856d99c04e49fd0942a03501405904510bc15¢cf5b

Image: nginx:latest
Image ID:
docker.io/library/nginx@sha256:dc53c8f25a106f9109190ed5b59bda2d707a3bde@e45857ce9elefaald2
ffochc1
Port: <none>
Host Port: <none>
Command :
sleep
30d
State: Running
Started: Thu, 26 Jun 2025 18:13:05 +0200
Ready: True
Restart Count: ©
Environment: <none>
Mounts:

/tmp from tmp (rw)
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-5157g (ro)

Getting shell access to a sidecar container

You can login to your sidecar container as follows:

S kubectl exec -it clusterl1-instance1n8v4-0 -c testcontainer -- sh
/ #

Pause/resume and standby mode for a
PostgreSQL cluster

Pause and resume

Sometimes you may need to temporarily shut down (pause) your cluster and restart it later, such as
during maintenance.

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to true gracefully
stops the cluster:

.......

pause: true

To start the cluster after it was paused, revert the spec.pause keyto false.
Troubleshooting tip

If you're pausing the cluster when there is a running backup, the Operator won't pause it for you. It
will print a warning about running backups. In this case delete a running backup job and retry.

Put in standby mode

You can also put the cluster into a standby [4 (read-only) mode instead of completely shutting it
down. This is done by a special spec.standby key. Setitto true for read-only state. To resume the
normal cluster operation, set itto false.

T yaml
spec:

standby: false

https://www.postgresql.org/docs/current/warm-standby.html

Monitor with Percona Monitoring and
Management (PMM)

In this section you will learn how to monitor the health of Percona Distribution for PostgreSQL with
Percona Monitoring and Management (PMM)_(7.

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you
provide. For PMM 2, the Operator uses API keys for authentication. For PMM 3, it uses service
account tokens.

We recommend to use the latest PMM 3.

PMM is a client/server application. It includes the PMM Server [4 and the number of PMM Clients [4
running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you
connect to the PMM Server to see database metrics on a number of dashboards. PMM Server and
PMM Client are installed separately.

Considerations

1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you
are using PMM server version 3, use a PMM client image compatible with PMM 3. Check
Percona certified images for the right one.

2. If you specified both authentication methods for PMM server configuration and they have non-
empty values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation [4. Also check the
Automatic migration of API keys [4 page.

Install PMM Server

You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual

appliance, or in Kubernetes. Please refer to the official PMM documentation [for the installation
instructions.

https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html

Install PMM Client

PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based
environment. To install PMM Client, do the following:

Configure authentication

PMM3

PMM3 uses Grafana service accounts to control access to PMM server components and resources.

To authenticate in PMM server, you need a service account token. Generate a service account and
token [4. Specify the Admin role for the service account.

. Warning

When you create a service account token, you can select its lifetime: it can be either a permanent token that
never expires or the one with the expiration date. PMM server cannot rotate service account tokens after they
expire. So you must take care of reconfiguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server [4. The API key must have the role “Admin”. You need this
key to authorize PMM Client within PMM Server.

a8 From PMM UI

(Generate the PMM APl key [)

From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password,
and hostname in the following command:

§ API_KEY=S$(curl --insecure -X POST -H "Content-Type: application/json" -d
"{"name" :"operator"”, "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

. Warning

The API key is not rotated.

Create a secret

https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Now you must pass the credentials to the Operator. To do so, create a Secret object.

1. Create a Secret configuration file. You can use the deploy/secrets.yaml [secrets file.

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN value in the secrets file:

apiVersion: vi1
kind: Secret
metadata:
name: clusterl1-pmm-secret
type: Opaque
stringData:
PMM_SERVER_TOKEN :

PMM 2

Specify the API key as the PMM_SERVER_KEY value in the secrets file:

apiVersion: vi1
kind: Secret
metadata:
name: clusterl1-pmm-secret
type: Opaque
stringData:
PMM_SERVER_KEY :

2. Create the Secrets object using the deploy/secrets.yaml file.

S kubectl apply -f deploy/secrets.yaml -n postgres-operator

. Expected output

secret/cluster1-pmm-secret created

Deploy a PMM Client

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml

1. Update the pmm section in the deploy/cr.yaml [file.

e Set pmm.enabled=true.

e Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The
PMM Server IP address should be resolvable and reachable from within your cluster.

o Specify the name of the Secret object that you created earlier

pmm :
enabled: true
image: percona/pmm-client:3.4.1
imagePullPolicy: IfNotPresent
secret: cluster1-pmm-secret
serverHost: monitoring-service

2. Update the cluster
S kubectl apply -f deploy/cr.yaml -n postgres-operator

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if
there are errors on the previous steps:

S kubectl get pods -n postgres-operator
S kubectl logs <pod_name> -c pmm-client

Update the secrets file

The deploy/secrets.yaml file contains all values for each key/value pair in a convenient plain text
format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If
you want to update the password field, you need to encode the new password into the base64 format
and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

& Linux

S echo -n "password" | base64 --wrap=0
" macO0S
S echo -n "password" | base64

For example, to set the new service account token in the my-cluster-name-secrets object, do the
following:

& Linux

S kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'S(echo -n <new-token> | base64 --wrap=0)'}}’

" macO0sS

S kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'$(echo -n <new-token> | base64)'}}’

Check the metrics

Let’'s see how the collected data is visualized in PMM.

o Log in to PMM server.

9 Click &Y PostgreSQL from the left-hand navigation menu. You land on the Instances Overview
page.

e Click G} PostgreSQL - Other dashboards to see the list of available dashboards that allow you
to drill down to the metrics you are interested in.

Upgrade

Upgrade Percona Operator for PostgreSQL

Starting from the version 2.2.0, you can upgrade Percona Operator for PostgreSQL to newer 2.x
versions.

The upgrade process consists of these steps:

e Upgrade the Custom Resource Definition (CRD) (4

e Upgrade the Operator deployment

o Upgrade the database (Percona Distribution for PostgreSQL)

Update scenarios

You can either upgrade both the Operator and the database, or you can upgrade only the database.
To decide which scenario to choose, read on.

Full upgrade (CRD, Operator, and the database)
When to use this scenario:

e The new Operator version has changes that are required for new features of the database to work
e The Operator has new features or fixes that enhance automation and management.

e Compatibility improvements between the Operator and the database require synchronized
updates.

When going on with this scenario, make sure to test it in a staging or testing environment first.
Upgrading the Operator may cause performance degradation.

Upgrade only the database
When to use this scenario:

e The new version of the database has new features or fixes that are not related to the Operator or
other components of your infrastructure

¢ You have updated the Operator earlier and now want to proceed with the database update.

When choosing this scenario, consider the following:

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

¢ Check that the current Operator version supports the new database version.

¢ Some features may require an Operator upgrade later for full functionality.

Upgrade from the Operator version 1.x to version 2.x

Upgrades from the Operator version 1.x to 2.x are completely different from the upgrades within 2.x
versions due to substantial changes in the architecture.

There are several ways to do such version 1.x to version 2.x upgrade. Choose the method based on
your downtime preference and roll back strategy:

Pros Cons
Data Volumes migration - re-use the volumes that were The simplest - Requires downtime
created by the Operator version 1.x method - Impossible to roll back
Backup and restore - take the backup with the Operator Allows you to Provides significant
version 1.x and restore it to the cluster deployed by the quickly test downtime in case of
Operator version 2.x version 2.x migration
Replication - replicate the data from the Operator version - Quick test of Requires significant
1.x cluster to the standby cluster deployed by the v2 cluster computing resources to run
Operator version 2.x - Minimal two clusters in parallel

downtime

during

upgrade

Upgrading the Operator and CRD

Considerations for Kubernetes Cluster versions and
upgrades

1. Before upgrading the Kubernetes cluster, have a disaster recovery plan in place. Ensure that a
backup is taken prior to the upgrade.

2. Plan your Kubernetes cluster or Operator upgrades with version compatibility in mind.

The Operator is supported and tested on specific Kubernetes versions. Always refer to the
Operator’s release notes to verify the supported Kubernetes platforms.

Note that while the Operator might run on unsupported or untested Kubernetes versions, this is
not recommended. Doing so can cause various issues, and in some cases, the Operator may fail
if deprecated API versions have been removed.

3. During a Kubernetes cluster upgrade, you must also upgrade the kubelet. It is advisable to
drain the nodes hosting the database Pods during the upgrade process.

4. During the kubelet upgrade, nodes transition between Ready and NotReady states. Also, in
some scenarios, older nodes may be replaced entirely with new nodes. Ensure that nodes
hosting database or proxy pods are functioning correctly and remain in a stable state after the
upgrade.

5. Regardless of the upgrade approach, pods will be rescheduled or recycled. Plan your Kubernetes
cluster upgrade accordingly to minimize downtime and service disruption.

Considerations for the Operator upgrades

1. The Operator version has three digits separated by a dot (.) in the format major.minor.patch.
Here's how you can understand the version 2.6.9:

e 2 -major version
e 6 - minor version
e 0 - patch version

You can upgrade the Operator only to the nearest major.minor.patch version. For example, if
the next version is 2.7.1, you can go directly from 2.6.0 to 2.7.1 without any intermediate steps.

To upgrade to a newer version, which differs from the current minor.major version by more
than one, you need to make several incremental upgrades sequentially.

For example, to upgrade the CRD and Operator from the version 2.4. 0 to 2.6.0, first upgrade it
from 2.4.0 to0 2.5.1, and then from 2. 5.1 t0 2.6.0.

2. CRD supports the last 3 minor versions of the Operator. This means it is compatible with the
newest Operator version and the two previous minor versions. If the Operator is older than the
CRD by no more than two versions, you should be able to continue using the old Operator
version. But updating the CRD and Operator is the recommended path.

3. Using newer CRD with older Operator is useful to upgrade multiple single-namespace Operator

deployments in one Kubernetes cluster, where each Operator controls a database cluster in its
own namespace. In this case upgrading Operator deployments will look as follows:

e upgrade the CRD (not 3 minor versions far from the oldest Operator installation in the
Kubernetes cluster) first

e upgrade the Operators in each namespace incrementally to the nearest minor version (e.g.
first 2.4.0 to 2.5.1, then 2.5.1 t0 2.6.0)

Manual upgrade

You can upgrade the Operator and CRD as follows, considering the Operator uses postgres-
operator namespace, and you are upgrading it to the version 2.8.0.

1. Update the CRD for the Operator and the Role-based access control. You must use the server-
side [4 flag when you update the CRD. Otherwise you can encounter a number of errors caused
by applying the CRD client-side: the command may fail, the built-in PostgreSQL extensions can
be lost during such upgrade, etc.

Take the latest versions of the CRD and Role-based access control manifest from the official
repository on GitHub with the following commands:

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/crd.yaml

S kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/rbac.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/

. Note

In case of cluster-wide installation, use deploy/cw-rbac.yaml instead of deploy/rbac.yaml.

2. Next, update the Percona Distribution for PostgreSQL Operator Deployment in Kubernetes by
changing the container image of the Operator Pod to the latest version. Find the image name for
the current Operator release in the list of certified images. Use the following command to update

the Operator to the 2.8.0 version:

S kubectl -n postgres-operator patch deployment percona-postgresql-
operator \

-p'{"spec":{"template” :{"spec" :{"containers":

[{"name" :"operator", "image" :"docker.io/percona/percona-postgresql-
operator:2.8.0}]}}}}'

3. The deployment rollout will be automatically triggered by the applied patch. You can track the
rollout process in real time with the kubectl rollout status command with the name of

your cluster:

$ kubectl rollout status deployments percona-postgresql-operator -n
postgres-operator

. Expected output .

deployment "percona-postgresqgl-operator” successfully rolled out

Upgrade via Helm

If you have installed the Operator using_ Helm, you can upgrade the Operator deployment with the

helm upgrade command.

The helm upgrade command updates only the Operator deployment. The update flow for the
database management system (Percona Distribution for PostgreSQL) is the same for all installation

methods, whether it was installed via Helm or kubectl.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-operator-upgrade-percona-distribution-for-postgresql

1. You must have the compatible version of the Custom Resource Definition (CRD) in all
namespaces that the Operator manages. Starting with version 2.7.0, you can check it using the
following command:

S kubectl get crd perconapgclusters.pgv2.percona.com --show-labels

2. Update the Custom Resource Definition [4 for the Operator, taking it from the official repository
on GitHub.

Refer to the compatibility between CRD and the Operator and how you can update the CRD if it is
too old. Use the following command and replace the version to the required one until you are
safe to update to the latest CRD version.

S kubectl apply --server-side --force-conflicts -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/crd.yaml

If you already have the latest CRD version in one of namespaces, don't re-run intermediate
upgrades for it.

3. Upgrade the Operator deployment

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

With default parameters
To upgrade the Operator installed with default parameters, use the following command:
$ helm upgrade my-operator percona/pg-operator --version 2.8.0

The my-operator parameter in the above example is the name of a release object [4 which

you have chosen for the Operator when installing its Helm chart.

With customized parameters

If you installed the Operator with some customized parameters [, list these options in the
upgrade command.

a. Get the list of used options in YAML format :
S helm get values my-operator -a > my-values.yaml
b. Pass these options to the upgrade command as follows:

S helm upgrade my-operator percona/pg-operator --version 2.8.0 -f my-
values.yaml

During the upgrade, you may see a warning to manually apply the CRD if it has the outdated
version. In this case, refer to step 2 to upgrade the CRD and then step 3 to upgrade the
deployment.

Upgrade via Operator Lifecycle Manager (OLM)

If you have installed the Operator on the OpenShift platform using OLM, you can upgrade the
Operator within it.

1. List installed Operators for your Namespace to see if there are upgradable items.

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart

Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name < Search by name... /
Name Status
Percona Operator for @ Succeeded
%& PostgreSQL @ Upgrade available

240 provided by Percona

2. Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button,
and finally “Approve” to upgrade the Operator.

Upgrade Percona Distribution for PostgreSQL

Considerations

1. Starting from the Operator 2.4.0 you can do a minor upgrade (for example, from 15.5to 15.7, or
from 16.1 to 16.3) and a major upgrade (for example, upgrade from PostgreSQL 15.5 to
PostgreSQL 16.3) of Percona Distribution for PostgreSQL. Before the Operator version 2.4.0, you
could only do a minor upgrade of Percona Distribution for PostgreSQL.

2. Starting with the Operator 2.6.0, PostgreSQL images are based on Red Hat Universal Base Image
(UBI) 9 instead of UBI 8. UBI 9 has a different version of collation library glibc and this
introduces a collation mismatch in PostgreSQL. Collation defines how text is sorted and
compared based on language-specific rules such as case sensitivity, character order and the
like. PostgreSQL stores the collation version used at database creation. When the collation
version changes, this may result in corruption of database objects that use it like text-based
indexes. Therefore, you need to identify and reindex objects affected by the collation mismatch.

3. Upgrading a PostgreSQL cluster may result in downtime, as well as failover caused by updating

the primary instance.

Before you start

1. We recommend to update PMM Server [4 before upgrading PMM Client.

2. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you
are using PMM server version 3, use a PMM client image compatible with PMM 3. See PMM
upgrade documentation [4 for how to migrate from version 2 to version 3.

Minor version upgrade

To make a minor upgrade of Percona Distribution for PostgreSQL (for example, from 17.5.2 to
17.6.1), do the following:

o Check the version of the Operator you have in your Kubernetes environment. If you need to
update it, refer to the Operator upgrade guide

https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-database-upgrading-the-operator-and-crd

e Check the current version of the Custom Resource and what versions of the database and
cluster components are compatible with it. Replace the Operator version with your value in the
following command:

$ curl https://check.percona.com/versions/v1/pg-operator/2.6.0 |jq -r
'.versions[].matrix'

You can also find this information in the Versions compatibility matrix.

e Update the database, the backup and PMM Client image names with a newer version tag. Find
the image names in the list of certified images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven't
done it yet, exclude PMM Client from the list of images to update.

with the kubectl patch pg command.

This example command updates the cluster with the name cluster1 in the namespace
postgres-operator tothe 2.8.0 version:

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

With PMM Client

S kubectl -n postgres-operator patch pg cluster1l --type=merge --patch '{

"spec": {
"“crVersion":"2.8.0",
"image": "docker.io/percona/percona-distribution-postgresql:17.6-1,
"proxy": { "pgBouncer": { "image": "docker.io/percona/percona-
pgbouncer:1.24.1-1" } },
"backups"”: { "pgbackrest": { "image": "docker.io/percona/percona-
pgbackrest:2.56.0-1" } },
"pmm": { "image": "docker.io/percona/pmm-client:3.4.1" }
I3

The following image names in the above example were taken from the list of certified images:

docker.io/percona/percona-distribution-postgresql:17.6-1,
docker.io/percona/percona-pgbouncer:1.24.1-1,
docker.io/percona/percona-pgbackrest:2.56.0-1,

docker.io/percona/pmm-client:3.4.1.

Without PMM Client

S kubectl patch pg clusterl -n postgres-operator --type=merge --patch '{

"spec": {
“crVersion":"2.8.0",
“image": "docker.io/percona/percona-distribution-postgresql:17.6-1",
"proxy": { "pgBouncer": { "image": "docker.io/percona/percona-
pgbouncer:1.24.1-1" } },
"backups": { "pgbackrest": { "image": "docker.io/percona/percona-
pgbackrest:2.56.0-1" } }
I3

The following image names in the above example were taken from the list of certified images:

docker.io/percona/percona-distribution-postgresql:17.6-1,
docker.io/percona/percona-pgbouncer:1.24.1-1,
docker.io/percona/percona-pgbackrest:2.56.0-1,

e After you applied the patch, the deployment rollout will be triggered automatically. The update
process is successfully finished when all Pods have been restarted.

. Expected output .
NAME READY STATUS RESTARTS AGE
cluster1-backup-4vwt-p5d9j 0/1 Completed 0 97m
cluster1-instancel-b5mr-0 4/4 Running 0 99m
cluster1-instancel1-b8p7-0 4/4 Running 0 99m
cluster1-instancel1-w7q2-90 4/4 Running 0 99m
cluster1-pgbouncer-79bbf55c45-62x1k 2/2 Running 0 99m
cluster1-pgbouncer-79bbf55c45-9g4ch 2/2 Running 0 99m
cluster1-pgbouncer-79bbf55c45-9nrmd 2/2 Running 0 99m
cluster1-repo-host-0 2/2 Running 0 99m
percona-postgresql-operator-79cd8586f5-2qzcs 1/1 Running 0 120m

e Scan for indexes that rely on collations other than C or POSIX and whose collations were
provided by the operating system (¢) or dynamic libraries (d). Connect to PostgreSQL and run

the following query:

SELECT DISTINCT
indrelid::regclass: :text,
indexrelid: :regclass: :text,

collname,
pg_get_indexdef(indexrelid)
FROM (
SELECT
indexrelid,
indrelid,
indcollation[i] coll
FROM
pg_index,
generate_subscripts(indcollation, 1) g(i)
) s
JOIN pg_collation ¢ ON coll = c.oid
WHERE

collprovider IN ('d', 'c')
AND collname NOT IN ('C', 'POSIX');

G If you see the list of affected images, find the database names where indexes use a different
collation version:

SELECT * FROM pg_database;

. Sample output .

“*{.text .no-copy} oid | datname | datdba | encoding | datlocprovider | datistemplate | datallowconn |
datconnlimit | datfrozenxid | datminmxid | dattablespace | datcollate | datctype | daticulocale | daticurules |
datcollversion | datacl

+
}.
-

+

+

+

+

+

4. 4. 4.
T T T

4. -+ +. +. -+
T T T T T

5| postgres |10 |6 |c|f|t]|-1]722]1]|1663|en_US.utf-8|en_US.utf-81]]2.28|1 |template1 |10|6]|c|t
[t1]-11722]1]1663|en_US.utf-8 | en_US.utf-8 | | | 2.28 | {=c/postgres,postgres=CTc/postgres} 4 |
template0 |10 6| c|t|f]-1]722]1]1663|en_US.utf-8 | en_US.utf-8 |||
{=c/postgres,postgres=CTc/postgres} 16466 | cluster1 | 106 |c|f|t]|-1]722]1]1663 | en_US.utf-8 |
en_US.utf-8 | | | 2.28 | {=Tc/postgres,postgres=CTc/postgres,cluster1=CTc/postgres} (4 rows)

e Refresh collection metadata and rebuild affected indexes. This command requires the privileges
of a superuser or a database owner:

ALTER DATABASE cluster1 REFRESH COLLATION VERSION;

Maijor version upgrade

Major version upgrade allows you to jump from one database major version to another (for example,
upgrade from PostgreSQL 15.x to PostgreSQL 16.x).

Maijor version upgrades feature is currently a tech preview, and it is not recommended for
production environments.

The upgrade is triggered by applying the YAML file which refers to the special Operator upgrade
image and contains the information about the existing and desired major versions. An example of
this file is present in deploy/upgrade.yaml:

apiVersion: pgv2.percona.com/v2

kind: PerconaPGUpgrade

metadata:
name: cluster1-15-to-16

spec:
postgresClusterName: cluster]
image: docker.io/percona/percona-postgresql-operator:2.8.0-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16
toPostgresImage: docker.io/percona/percona-distribution-postgresql:16.10-1
toPgBouncerImage: docker.io/percona/percona-pgbouncer:1.24.1-1
toPgBackRestImage: docker.io/percona/percona-pgbackrest:2.56.0-1

As you can see, the manifest includes image names for the database cluster components
(PostgreSQL, pgBouncer, and pgBackRest). You can find them in the list of certified images for the

current Operator release. For older versions, please refer to the old releases documentation archive
2).

After you apply the YAML manifest as usual (by running kubectl apply -f
deploy/upgrade.yaml command), the actual upgrade takes place:

1. The Operator pauses the cluster, so the cluster will be unavailable for the duration of the
upgrade,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade:
<PerconaPGUpgrade.Name> annotation,

3. Jobs are created to migrate the data,
4. The cluster starts up after the upgrade finishes.

5. Scan for indexes that rely on collations other than C or POSIX and whose collations were

provided by the operating system (¢) or dynamic libraries (d). Connect to PostgreSQL and run
the following query:

https://docs.percona.com/legacy-documentation/

SELECT DISTINCT
indrelid::regclass: :text,
indexrelid: :regclass: :text,
collname,
pg_get_indexdef (indexrelid)

FROM (

SELECT
indexrelid,
indrelid,
indcollation[i] coll
FROM
pg_index,
generate_subscripts(indcollation, 1) g(i)

) s

JOIN pg_collation ¢ ON coll = c.oid

WHERE
collprovider IN ('d', 'c')

AND collname NOT IN ('C', 'POSIX');

6. If you see the list of affected images, find the database names where indexes use a different
collation version:

SELECT * FROM pg_database;

. Sample output .

“{.text .no-copy} oid | datname | datdba | encoding | datlocprovider | datistemplate | datallowconn |
datconnlimit | datfrozenxid | datminmxid | dattablespace | datcollate | datctype | daticulocale | daticurules |
datcollversion | datacl

4. 4. 4. +. +. -+ +. -+ 4 4. +.
T T T T T T T T T T T

+ -+ 4 +. +.
T T T T T

5| postgres |10 |6 |c|f|t|-1]1722]|1]|1663|en_US.utf-8 | en_US.utf-8]]2.28 |1 |template1|10|6|c|t
[t]-11722]1]1663 | en_US.utf-8 | en_US.utf-8 | | | 2.28 | {=c/postgres,postgres=CTc/postgres} 4 |
template0 |10 |6 |c|t|f|-1]722|1]1663|en_US.utf-8 | en_US.utf-8 |||
{=c/postgres,postgres=CTc/postgres} 16466 | cluster1 | 106 |c|f|t]|-1]722]1]1663 | en_US.utf-8 |
en_US.utf-8 | | | 2.28 | {=Tc/postgres,postgres=CTc/postgres,cluster1=CTc/postgres} (4 rows)

7. Refresh collection metadata and rebuild affected indexes. This command requires the privileges
of a superuser or a database owner:

ALTER DATABASE cluster1 REFRESH COLLATION VERSION;

. Note

If the upgrade fails for some reason, the cluster will stay in paused mode. Resume the cluster manually to check
what went wrong with upgrade (it will start with the old version). You can check the PerconaPGUpgrade resource
with kubectl get perconapgupgrade -o yaml command, and check the logs of the upgraded Pods to debug

the issue.

During the upgrade data are duplicated in the same PVC for each major upgrade, and old version
data are not deleted automatically. Make sure your PVC has enough free space to store data. You
can remove data at your discretion by executing_into containers and running the following

commands (example for PostgreSQL 15):

$ rm -rf /pgdata/pg15
S rm -rf /pgdata/pg15_wal

You can also delete the PerconaPGUpgrade resource (this will clean up the jobs and Pods created

during the upgrade):

$ kubectl delete perconapgupgrade clusterl1-15-to-16

Upgrade PostgreSQL extensions

Upgrade pg_stat_monitor (for Operator earlier than
2.6.0)

pg_stat_monitor is the built-in extension, which is used to provide query analytics for Percona
Monitoring and Management (PMM). If you enabled it in the Custom Resource (deploy/cr.yaml
manifest), you need to manually update it after the database upgrade (this manual step is not
required for the Operator versions 2.6.0 and newer):

1. Find the primary instance of your PostgreSQL cluster. You can do this using Kubernetes Labels
as follows (replace the <namespace> placeholder with your value):

S kubectl get pods -n <namespace> -1 postgres-
operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instancel

. Sample output .

cluster1-instancel-bmdp-0 4/4 Running 0 2m23s
cluster1-instancel1-bmdp replica
cluster1-instancel-fm7w-0 4/4 Running © 2m22s
cluster1-instancel-fm7w replica
cluster1-instancel-ttm9-0 4/4 Running 0 2m22s

cluster1-instancel-ttm9 master

PostgreSQL primary is labeled as master, while other PostgreSQL instances are labeled as

replica.

2. Login to a primary instance (cluster1-instancel-ttm9-0 in the above example) as an

administrative user:

kubectl exec -n <namespace> -ti clusterl-instancel-ttm9-0 -c database --
psql postgres

3. Execute the following SQL statement:

postgres=# alter extension pg_stat_monitor update;

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#custom-extensions-enabling-or-disabling-built-in-extensions

Upgrade custom PostgreSQL extensions

If you have installed custom PostgreSQL extensions, you need to build and package each custom
extension for the new PostgreSQL major version. During the upgrade, the Operator will install

extensions into the upgrade container.

Refer to the Update custom extensions section for step-by-step instructions.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#custom-extensions-adding-custom-extensions

Upgrade from version 1to version 2

Upgrade using data volumes

Prerequisites:
The following conditions should be met for the Volumes-based migration:

¢ You have a version 1.x cluster with spec.keepData: true inthe Custom Resource

¢ You have both Operators deployed and allow them to control resources in the same namespace

¢ OIld and new clusters must be of the same PostgreSQL major version

This migration method has two limitations. First of all, this migration method introduces a downtime.

Also, you can only reverse such migration by restoring the old cluster from the backup. See other
migration methods if you need lower downtime and a roll back plan.

Prepare version 1.x cluster for the migration

a Remove all Replicas from the cluster, keeping only primary running. It is required to assure that
Volume of the primary PVC [4 does not change. The deploy/cr.yaml configuration file should
have it as follows:

pgReplicas:

hotStandby:
size: @

g Apply the Custom Resource in a usual way:

S kubectl apply -f deploy/cr.yaml

e When all Replicas are gone, proceed with removing the cluster. Double check that
spec.keepData is in place, otherwise the Operator will delete the volumes!

S kubectl delete perconapgcluster clusterT

0 Find PVC for the Primary and pgBackRest :

S kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

. Expected output

cluster1-pgbr-repo

NAME

ACCESS MODES STORAGECLASS
clustert

RWO standard-rwo

RWO standard-rwo

VOLUME CAPACITY
AGE

pvc-940cdc23-cd4c-4f62-ac3a-dc69850042b0 1Gi

57m

pvc-afh00490-5a45-45cb-alcb-10af8e48bb13 1Gi

57m

A third PVC used to store write-ahead logs (WAL) may also be present if external WAL volumes

were enabled for the cluster.

e Permissions for pgBackRest repo folders are managed differently in version 1 and version 2.
We need to change the ownership of the backrest folder on the Persistent Volume to avoid

errors during migration. Running a chown command within a container fixes this problem. You
can use the following manifest to execute it:

chown-pod.yaml

apiVersion: vi1
kind: Pod
metadata:

name: chown-pod
spec:

volumes:

- name: backrestrepo

persistentVolumeClaim:
claimName: clusterl1-pgbr-repo

containers:

- name: task-pv-container

image: ubuntu

command :
- chown
- -R

- 26:26

- /backrestrepo/clusteri-backrest-shared-repo

volumeMounts:

- mountPath: "/backrestrepo"
name: backrestrepo

Apply it as follows:

S kubectl apply -f chown-pod.yaml -n pgo

Execute the migration to version 2.x

The old cluster is shut down, and Volumes are ready to be used to provision the new cluster
managed by the Operator version 2.x.

o Install the Operator version 2 (if not done yet). Pick your favorite method from our
documentation.

e Run the following command to show the names of PVC belonging to the old cluster:

S kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

. Expected output .

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

cluster Bound pvc-db9bf618-04d5-4807-948d-e32e81098575 1Gi

RWO standard-rwo 87m

cluster1-pgbr-repo Bound pvc-37d93aa9-bf02-4295-bbbc-c1f834ed6645 1Gi

RWO standard-rwo 87m

e Now edit the Custom Resource manifest (deploy/cr.yaml configuration file) of the version 2.x
cluster: add fields to the dataSource.volumes subsection, pointing to the PVCs of the version
1.x cluster:

dataSource:
volumes:
pgDataVolume:
pvcName: clusteri
directory: clusteri
pgBackRestVolume:
pvcName: cluster1-pgbr-repo
directory: clusterl-backrest-shared-repo

0 Do not forget to set the proper PostgreSQL major version. It must be the same version that was
used in version 1 cluster. You can set the version in the corresponding image sections and
postgresVersion. The following example sets version 14:

spec:
image: percona/percona-postgresql-operator:2.8.0-ppgl4-postgres
postgresVersion: 14
proxy:
pgBouncer:
image: percona/percona-postgresql-operator:2.8.0-ppgl14-pgbouncer
backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.8.0-ppgl4-pgbackrest

e Apply the manifest:

S kubectl apply -f deploy/cr.yaml

The new cluster will be provisioned shortly using the volume of the version 1.x cluster. You should
remove the spec.datasource.volumes section from your manifest.

Upgrade using backup and restore

This method allows you to migrate from the version 1.x to version 2.x cluster by restoring (actually
creating) a new version 2.x PostgreSQL cluster using a backup from the version 1.x cluster.

. Note

To make sure that all transactions are captured in the backup, you need to stop the old cluster. This brings
downtime to the application.

Prepare the backup

o Create the backup on the version 1.x cluster, following the official guide for manual (on-demand)
backups. This involves preparing the manifest in YAML and applying it in the usual way:

S kubectl apply -f deploy/backup/backup.yaml

9 Pause or delete the version 1.x cluster to ensure that you have the latest data.

. Warning

Before deleting the cluster, make sure that the spec.keepBackups Custom Resource option is setto true.
When it's set, local backups will be kept after the cluster deletion, so you can proceed with deleting your

cluster as follows:

$ kubectl delete perconapgcluster clusteri

Restore the backup as a version 2.x cluster

Restore from S3 / Google Cloud Storage for backups repository

https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/pause.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/operator.html#spec-keepbackups

o To restore from the S3 or Google Cloud Storage for backups (GCS) repository, you should first
configure the spec.backups.pgbackrest.repos subsection in your version 2.x cluster
Custom Resource to point to the backup storage system. Just follow the repository
documentation instruction for S3 or GCS. For example, for GCS you can define the repository
similar to the following:

spec:
backups:
pgbackrest:
repos:
- name: repol
gcs:

bucket: MY-BUCKET
region: us-centrall

9 Create and configure any required Secrets or desired custom pgBackrest configuration as
described in the backup documentation for te Operator version 2.x.

e Set the repository path in the backups.pgbackrest.global subsection. By default it is

/backrestrepo/&1lt;clusterName>-backrest-shared-repo:

spec:
backups:
pgbackrest:
global:
repol: /backrestrepo/clusteri-backrest-shared-repo

Q Set the spec.dataSource option to create the version 2.x cluster from the specific repository:

spec:
dataSource:
postgresCluster:
repoName: repol

You can also provide other pgBackRest restore options, e.g. if you wish to restore to a specific
point-in-time (PITR).

e Create the version 2.x cluster:

$ kubectl apply -f cr.yaml

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#backups-storage-configuring-the-s3-compatible-backup-storage
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#backups-storage-use-google-cloud-storage-for-backups

Migrate using Standby

This method allows you to migrate from version 1.x to version 2.x by creating a new version 2.x

PostgreSQL cluster in a “standby” mode, mirroring the version 1.x cluster to it continuously. This
method can provide minimal downtime, but requires additional computing resources to run two

clusters in parallel.

This method only works if the version 1.x cluster uses Amazon S3 or S3-compatible storage [4, or
Google Cloud storage (GCS)_[4 for backups. For more information on standby clusters, please refer
to this article (4.

Migrate to version 2

There is no need to perform any additional configuration on version 1.x cluster, you will only need to
configure the version 2.x one.

o Configure spec.backups.pgbackrest.repos Custom Resource option to point to the backup
storage system. For example, for GCS, the repository would be defined similar to the following:

spec:
backups:
pgbackrest:
repos:
- name: repol
gcs:
bucket: MY-BUCKET
region: us-centrall

9 Create and configure any required secrets or desired custom pgBackrest configuration as
described in the backup documentation for the version 2.x.

e Set the repository path in backups.pgbackrest.global section of the Custom Resource
configuration file. By default it will be /backrestrepo/<clusterName>-backrest-shared-

repo:

spec:
backups:
pgbackrest:
global:
repol: /backrestrepo/clusterl1-backrest-shared-repo

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://www.postgresql.org/docs/current/warm-standby.html

o Enable the standby mode in spec.standby and point to the repository:

spec:
standby:
enabled: true
repoName: repol

e Create the version 2.x cluster:

S kubectl apply -f deploy/cr.yaml

Promote version 2.x cluster
Once the standby cluster is up and running, you can promote it.
0 Delete version 1.x cluster, but ensure that spec.keepBackups is setto true.

S kubectl delete perconapgcluster clusterT

g Promote version 2.x cluster by disabling the standby mode:

spec:
standby:
enabled: false

You can use version 2.x cluster now. Also the 2.x version is now managing the object storage with
backups, so you should not start your old cluster.

Create the replication user

Right after disabling standby, run the following SQL commands as a PostgreSQL superuser. For
example, you can login as the postgres user, or exec into the Pod and use psql:

¢ add the managed replication user

CREATE ROLE _crunchyrepl WITH LOGIN REPLICATION;

« allow for the replication user to execute the functions required as part of “rewinding”

GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO

_crunchyrepl;

GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO
_crunchyrepl;

GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO
_crunchyrepl;

GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint,
bigint, boolean) TO _crunchyrepl;

The above step will be automated in upcoming releases.

How-to

Install Percona Distribution for PostgreSQL
with customized parameters

You can customize the configuration of Percona Distribution for PostgreSQL and install it with

customized parameters.

To check available configuration options, see deploy/cr.yaml [4 and Custom Resource Options.

kubectl

To customize the configuration when installing with kubectl, do the following:
1. Clone the repository with all manifests and source code by executing the following command:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator

2. Edit the required options and apply your modified deploy/cr.yaml file as follows:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

#ik Helm

To install Percona Distribution for PostgreSQL with custom parameters using Helm, use the

following command:
S helm install --set key=value

You can pass any of the Operator's Custom Resource options as a --set key=valuel[, key=value]

argument.

The following example deploys a PostgreSQL 17.6-1 based cluster in the my-namespace
namespace, with enabled Percona Monitoring.and Management (PMM)_[4:

S helm install my-db percona/pg-db --version 2.8.0 --namespace my-namespace \
--set postgresVersion=17.6-1 \
--set pmm.enabled=true

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml
https://docs.percona.com/percona-monitoring-and-management/2/index.html

How to run initialization SQL commands at
cluster creation time

The Operator can execute a custom sequence of PostgreSQL commands when creating the
database cluster. This sequence can include both SQL commands and meta-commands of the
PostgreSQL interactive shell (psql). This feature may be useful to push any customizations to the
cluster: modify user roles, change error handling, set and use variables, etc.

psql interactive terminal will execute [4 these initialization statements when the cluster is created,
after creating_custom users and databases specified in the Custom Resource.

To set SQL initialization sequence you need creating a special ConfigMap [4 with it, and reference
this ConfigMap in the databaseInitSQL subsection of your Custom Resource options.

The following example uses initialization SQL command to add a new role to a PostgreSQL database
cluster:

1. Create YAML manifest for the ConfigMap as follows:
my_init.yaml

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster1-init-sql
namespace: postgres-operator
data:
init.sql: CREATE ROLE someonenew WITH createdb superuser login password
'someonenew' ;

The namespace field should point to the namespace of your database cluster, and the
init.sql key contains the sequence of commands, which will be passed to the psql.

Create the ConfigMap by applying your manifest:
S kubectl apply -f my_init.yaml

2. Update the databaseInitSQL part of the deploy/cr.yaml Custom Resource manifest as
follows:

https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

databaseInitSQL:
key: init.sql
name: cluster1-init-sql

Now, SQL commands will be executed when you create the cluster by apply the manifest:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

The psgl command is executed the standard input and the file flag (psql -f -). If the command
returns @ exit code, SQL will not be run again. When psql returns with an error exit code, the Operator
will continue attempting to execute it as part of its reconcile loop until success. You can fix errors in
the SQL sequence, for example by interactive kubectl edit configmap clusteri-init-sql -n

postgres-namespace command.

. Note

You can use following psqgl meta-command to make sure that any SQL errors would make psql to return the error

code:

\set ON_ERROR_STOP
\echo Any error will lead to exit code 3

Change the PostgreSQL primary instance

The Operator uses PostgreSQL high-availability implementation based on the Patroni template (7.

This means that each PostgreSQL cluster includes one member available for read/write transactions
(PostgreSQL primary instance, or leader in terms of Patroni) and a number of replicas which can
serve read requests only (standby members of the cluster).

You may wish to manually change the primary instance in your PostgreSQL cluster to achieve more
control and meet specific requirements in various scenarios like planned maintenance, testing
failover procedures, load balancing and performance optimization activities. Primary instance is re-

elected during the automatic failover (Patroni’s “leader race” mechanism), but still there are use
cases to control this process manually.

In Percona Operator, the primary instance election can be controlled by the patroni.switchover
section of the Custom Resource manifest. It allows you to enable switchover targeting a specific
PostgreSQL instance as the new primary, or just running a failover if PostgreSQL cluster has entered
a bad state.

This document provides instructions how to change the primary instance manually.

For the following steps, we assume that you have the PostgreSQL cluster up and running. The cluster
nameis clustert.

1. Check the information about the cluster instances. Cluster instances are defined in the

spec.instances Custom Resource section. By default you have one cluster instance named
instancel1 with 3 PostgreSQL instances in it. You can check which cluster instances you have.
Do this using Kubernetes Labels as follows (replace the <namespace> placeholder with your
value):

$ kubectl get pods -n <namespace> -1 postgres-
operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instancel

https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-operator-instances-section

. Sample output .

cluster1-instancel-bmdp-0 4/4 Running 0 2m23s
cluster1-instancel1-bmdp replica
cluster1-instancel-fm7w-0 4/4 Running © 2m22s
cluster1-instancel-fm7w replica
cluster1-instancel-ttm9-0 4/4 Running 0 2m22s

cluster1-instancel1-ttm9 master

PostgreSQL primary is labeled as master, while other PostgreSQL instances are labeled as

replica.

2. Now update the following options in the patroni.switchover subsection of the Custom
Resource:

patroni:
switchover:
enabled: true
targetInstance: <instance-name>

You can do it with kubectl patch command, specifying the name of the instance that you
want to be the new primary. For example, let's set the cluster1-instancel1-bmdp as a new
PostgreSQL primary:

$ kubectl -n <namespace> patch pg cluster1 --type=merge --patch '{
"spec": {
"patroni”: {
"switchover": {
"enabled": true,
"targetInstance": "clusterl-instancel-bmdp"

}
X

3. Trigger the switchover by adding the annotation to your Custom Resource. The recommended
way is to set the annotation with the timestamp, so you know when switchover took place.
Replace the <namespace> placeholder with your value:

S kubectl annotate --overwrite -n <namespace> pg cluster1 postgres-
operator.crunchydata.com/trigger-switchover="$(date)"

The --overwrite flag in the above command allows you to overwrite the annotation if it

already exists (useful if that's not the first switchover you do).

4. Verify that the cluster was annotated (replace the <namespace> placeholder with your value, as

usual):

S kubectl get pg cluster1 -o yaml -n <namespace>

. Sample output

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:

annotations:

{....

bmdp”}}, }

kubectl.kubernetes.io/last-applied-configuration:

"patroni”:{"switchover":{"enabled" :true, "targetInstance"”:"clusteri-instancel-

5. Now, check instances of your cluster once again to make sure the switchover took place:

S kubectl get pods -n <namespace> -1 postgres-
operator.crunchydata.com/cluster=cluster1 \

-L postgres-operator.crunchydata.com/instance \

-L postgres-operator.crunchydata.com/role | grep instancel

. Sample output

cluster1-instancel-bmdp-0
cluster1-instancel-bmdp master
cluster1-instancel1-fm7w-0
cluster1-instancel-fm7w replica
cluster1-instancel-ttm9-0
cluster1-instancel1-ttm9 replica

4/4

4/4

4/4

Running
Running

Running

24m

24m

23m

6. Set patroni.switchover.enabled Custom Resource optionto false once the switchover is

done:

S kubectl -n <namespace> patch pg cluster1l --type=merge --patch '{
"spec": {
"patroni”: {
"switchover": {
"enabled": false

b
}
}
X

Use Docker images from a private registry

Using images from a private Docker registry may be required for privacy, security or other reasons. In
these cases, Percona Operator for PostgreSQL allows the use of a custom registry. The following
example illustrates how this can be done by the example of the Operator deployed in the OpenShift
environment.

Prerequisites
1. First of all login to the OpenShift and create project.

S oc login

Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin

Password:

Login successful.

S oc new-project pg

Now using project "pg" on server "https://192.168.1.100:8443".

2. There are two things you will need to configure your custom registry access:

e the token for your user,

e your registry IP address.

The token can be found with the following command:

S oc whoami -t
AD0O8CqCDappWR4hxjfDgwijEHei31yXAvWg61Jg210s

And the following one tells you the registry IP address:

$ kubectl get services/docker-registry -n default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
docker-registry ClusterIP 172.30.162.173 <none> 5000/TCP 1d

3. Use the user token and the registry IP address to login to the registry:

S docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s
172.360.162.173:5000

. Expected output .

Login Succeeded

4. Use the Docker commands to pull the needed image by its SHA digest:

S docker pull docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46
f26bf0

. Expected output .

Trying to pull repository docker.io/perconalab/percona-postgresql-operator ...
sha256:991d60490659e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling
from docker.io/perconalab/percona-server-mongodb

Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab08554993748fde1e67b2f46f26bf0
Status: Image is up to date for docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab8554993748fde1e67b2f46f26bf0

You can find correct names and SHA digests in the current list of the Operator-related images
officially certified by Percona.

5. The following method can push an image to the custom registry for the example OpenShift pg
project:

S docker tag \

docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2146
f26bfo \

172.30.162.173:5000/psmdb/percona-postgresql-operator:17.6-1
$ docker push 172.30.162.173:5000/pg/percona-postgresql-operator:17.6-1

6. Verify the image is available in the OpenShift registry with the following command:

S oc get is

. Expected output .

NAME DOCKER REPO
TAGS UPDATED
percona-postgresql-operator docker-registry.default.svc:5000/pg/percona-

postgresql-operator 17.6-1 2 hours ago

7. When the custom registry image is available, edit the the image: optionin
deploy/operator.yaml configuration file with a Docker Repo + Tag string (it should look like
docker-registry.default.svc:5000/pg/percona-postgresql-operator:17.6-1)

. Note

If the registry requires authentication, you can specify the imagePullSecrets option for all images.

8. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml
file.

9. Now follow the standard Percona Operator for PostgreSQL installation instruction.

Manage PostgreSQL extensions

One of the specific PostgreSQL features is the ability to provide it with additional functionality via
Extensions [4. Percona Distribution for PostgreSQL comes with a number of extensions [4. These

extensions are available for the database cluster managed by the Operator as well.

Built-in extensions

You can enable or disable built-in extensions in the extensions.builtin section of your
deploy/cr.yaml file. Set an option to true to enable an extension, or to false to disableit. To
see which extensions are enabled by default, check the deploy/cr.yam! [4 Custom Resource

manifest.

extensions:

builtin:
pg_stat_monitor: true
pg_audit: true
pgvector: false
pg_repack: false

Apply changes after editing with kubectl apply -f deploy/cr.yaml command. This causes the
Operator to restart the Pods of your cluster.

Add custom extensions

The needed extension may not be in the list of extensions supplied with Percona Distribution for
PostgreSQL, or it's a custom extension developed by the end-user. To add such a custom extension
is not straightforward in a containerized database in a Kubernetes environment. It requires building a
custom PostgreSQL image.

Starting with version 2.3, the Operator provides an alternative way to extend Percona Distribution for
PostgreSQL by downloading pre-packaged extensions from and external storage on the fly.

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://docs.percona.com/postgresql/latest/extensions.html
https://github.com/percona/percona-postgresql-operator/blob/v2.8.0/deploy/cr.yaml

A Advanced configuration

Custom extensions configuration is an advanced feature that requires careful consideration. Adding custom
extensions may violate the immutability of Pod images, which can lead to unexpected behavior and maintenance
challenges. Use this feature only if you are certain what you are doing and understand the implications. Or reach
out to our experts for assistance with adding custom extensions into your infrastructure.

Here's how it works:

1. You build and package a custom extension. The package must have a strict structure. See
Packaging requirements for details.

2. You upload the extension to a cloud storage.

3. Inthe extensions section of the Custom Resource, specify the storage configuration and the
extension information.

4. The Operator downloads the extension and installs it.

5. In PostgreSQL, you create the extension for every database where you want to use it.
Understanding which files are required for a given extension may not be easy. To figure this out, you
can spin up a Docker container or a virtual machine, install Percona Distribution for PostgreSQL and

developer tools there, then build and install the extension from source. Then copy all the installed
files to the archive.

Check the Example configuration for the steps that can help you in building and adding your own

custom extension.

Packaging requirements

Custom extensions require specific packaging for the Operator to use them. The package must be a
.tar.gz archive that follows this naming format:

${EXTENSION}-pg${PG_MAJOR}-${EXTENSION_VERSION}

The archive must be created with usr at the root and must include all the required files in the correct
directory structure:
1. The control file and any shared library must be in the LIBDIR directory

2. All required SQL script files must be in the SHAREDIR/extension directory. At least one SQL
script is required.

The SHAREDIR corresponds to /usr/pgsql-S$S{PG_MAJOR}/share and LIBDIR to /usr/pgsql-
${PG_MAJOR}/1ib.

For example, the directory for pg_cron extension should look as follows:

$ tree ~/pg_cron-1.6.7/
/home/user/pg_cron-1.6.7/
L— usr
L— pgsql-17
I— 1ib
| L— pg_cron.so
L— share
L— extension
— pg_cron--1.8--1.1.sql
pg_cron--1.0.sql
pg_cron--1.1--1.2.sql
pg_cron--1.2--1.3.sql
pg_cron--1.3--1.4.sql
pg_cron--1.4--1.4-1.sql
pg_cron--1.4-1--1.5.sql
pg_cron--1.5--1.6.sql
pg_cron.control

[TTTTTTT

The resulting .tar archive has the name pg_cron-pg17-1.6.7.tar.gz.

Example configuration

The following is an example workflow showing how to build and package the pg_cron extension.
This example is intended to illustrate the general process and give you an idea of the required steps.
However, the exact workflow and specifics may differ for your custom extension. Always review your
extension’s build and packaging requirements and adapt accordingly.

Considerations

1. You must build your extension on a host with the same operating system and architecture as
the one used for Percona Distribution for PostgreSQL images to prevent library incompatibility.
Otherwise, your extension may not load or may not function correctly.

To check the operating system, do the following:

a. Connect to one of the database Pods:

kubectl exec -it cluster1-instancel-xrcf-0 -n <namespace> -c database -
- bash

b. List the installed packages:

rpm -qagrep percona

. Sample output

percona-release-1.0-32.noarch
percona-postgresql17-1ibs-17.6-1.e19.x86_64
percona-postgresql17-17.6-1.e19.x86_64
percona-postgresql-client-common-2860-1.el19.noarch
percona-telemetry-agent-1.0.5-1.e19.x86_64
percona-pg-telemetry17-1.1.3-1.e19.x86_64
percona-postgresqli17-server-17.6-1.e19.x86_64
percona-pgbackrest-2.56.0-1.e19.x86_64
percona-pg_stat_monitor17-2.2.6-1.e19.x86_64
percona-pgaudit17-17.1-1.el19.x86_64
percona-pgvector_17-0.8.0-3.e19.x86_64
percona-wal2json17-2.6-1.e19.x86_64
percona-postgresql17-contrib-17.6-1.e19.x86_64
percona-postgresql-common-280-1.el9.noarch
percona-pg_repack17-1.5.2-2.e19.x86_64
percona-pgaudit17_set_user-4.1.06-3.e19.x86_64
percona-patroni-4.0.6-1.e19.x86_64

c. Check the operating system version:

cat /etc/redhat-release

. Sample output

Red Hat Enterprise Linux release 9.6 (Plow)

2. Your extension must be compatible with PostgreSQL version you are running. To check the
version, run the following command:

kubectl -n <namespace> get pg cluster1 -o go-template='{{.spec.image}}’

. Sample output

docker.io/perconalab/percona-postgresql-operator:main-ppgl17-postgres

3. In this example configuration, we use a Docker container to build the pg_cron extension.
However, you can use any environment that matches the distribution’s operating system, such as
a virtual machine or a Kubernetes Pod, not just Docker.

4. We assume you have deployed a Percona Distribution for PostgreSQL cluster in Kubernetes. If
not, use the Quickstart guide to deploy it.

Prepare your build environment

Run the following commands as the root user or with sudo privileges.

1. Start a Docker container and establish a shell session inside. In this example we use a Red Hat
Universal Base Image 9 on x86_64 architecture.

docker run -it --name pg redhat/ubi9:latest /bin/bash

2. Install basic tools:

dnf install git make 'dnf-command(config-manager)'

1. Install additional PostgreSQL packages:

o Add the Extra Packages for Enterprise Linux by installing the epel-release package:

dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-
9.noarch.rpm

o Add the codeready builder repository that contains additional packages for use by developers:

dnf config-manager --add-repo
https://dl.rockylinux.org/pub/rocky/9/CRB/x86_64/0s/

e Import GPG keys

rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-9
e Install perl-IPC-Run to run and interact with child processes:

dnf install perl-IPC-Run -y

2. Install build tools:

dnf groupinstall "Development tools"

Troubleshooting tip: If development tools fail to install, add BaseOS and AppStream repos:

dnf config-manager --add-repo

https://dl.rockylinux.org/pub/rocky/9/Base0S/aarch64/os/
dnf config-manager --add-repo

https://dl.rockylinux.org/pub/rocky/9/AppStream/aarch64/os/
dnf clean all && dnf makecache

Then retry the installation.
3. Install PostgreSQL developer packages from Percona repositories:

¢ Install percona-release repository management tool:
dnf install https://repo.percona.com/yum/percona-release-latest.noarch.rpm
e Enable PostgreSQL repository:
percona-release setup ppgl17
e Disable the potsgresql module supplied with the operating system:
dnf -qy module disable postgresql
e Install PostgreSQL developer packages:

dnf install percona-postgresql17-devel percona-postgresql17-1libs percona-
postgresql17

Build the extension
1. Download the extension source:
git clone https://github.com/citusdata/pg_cron.git

2. Navigate to the cloned extension and switch to the desired version. In this example we use
version 1.6.7:

cd pg_cron
git checkout v1.6.7

1. Ensure pg_config is in your path:

export PATH=/usr/pgsql-17/bin:SPATH
2. Build and install the extension

make && sudo PATH=SPATH make install

As the result you should see the binaries in the following paths: /usr/pgsql-
17/share/extension/pg_cron and /usr/pgsql-17/1ib/.

Package the extension
1. Create a .tar archive of the extension:

tar -czvf pg_cron-pgl17-1.6.7.tar.gz \
/usr/pgsql-17/1ib/pg_cron.so \
/usr/pgsql-17/share/extension/pg_cron¥*

2. Check that the package structure follows the requirements.

3. Copy the archive to the local machine. Run this command on the local machine:

docker cp pg:/pg_cron-pgl17-1.6.7.tar.gz ./

Upload a custom extension to the cloud storage

After packaging the extension, upload it to a cloud storage. In our example we use AWS S3 storage.
You can upload the extension via the Amazon web interface or using the aws command line tool as

shown below:

1. Export the AWS S3 access credentials as the environment variables:

export AWS_ACCESS_KEY_ID=<your-access-key-id-here>
export AWS_SECRET_ACCESS_KEY=<your-secret-key-here>

2. Upload the extension to your storage. Use your value for the bucket and specify your path to the
archive:

aws s3 cp path/to/pg_cron-pg17-1.6.7.tar.gz s3://my-bucket

Create a Secret with the storage credentials

After the upload is complete, place the access credentials for the cloud storage in a Secret.

1. Create a Secrets file with the credentials that the Operator needs to access extensions stored on
Amazon S3:

e The metadata.name key is the name you will use to refer to your Kubernetes Secret.

e The data.AWS_ACCESS_KEY_ID and data.AWS_SECRET_ACCESS_KEY keys contain base64-
encoded credentials used to access the storage.

To encode credentials, use this command:

in Linux

For GNU/Linux:

$ echo -n 'plain-text-string' | base64 --wrap=0

in macOS

For Apple macOS:

S echo -n 'plain-text-string' | base64

Here's the example Secrets file extensions-secret.yaml:

extensions-secret.yaml

apiVersion: vi

kind: Secret

metadata:
name: clusterl-extensions-secret

type: Opaque

data:
AWS_ACCESS_KEY_ID: <base64 encoded secret>
AWS_SECRET_ACCESS_KEY: <base64 encoded secret>

2. Create the Secrets object from this file:

kubectl apply -f extensions-secret.yaml -n <namespace>

Configure the Operator to load and install the custom extension

Specify both the storage and extension details in the Custom Resource so the Operator can
download and install it.

1. Inthe extensions.storage subsection of the Custom Resource, specify the following
information:

o storage details such as the bucket where your extension resides, region and endpoint to
access the storage

o the Secret name with the storage credentials that you created before.

extensions:
storage:
type: s3
bucket: pg-extensions
region: eu-central-1
endpoint: s3.eu-central-1.amazonaws.com

secret:
name: clusterl-extensions-secret

2. Inthe extensions.custom subsection, specify the extension name and version:

extensions:
custom:
- name: pg_cron
version: 1.6.1

3. Some extensions (such as pg_cron in our example) may require additional shared memory. If
this is the case, you need to configure PostgreSQL to preload it at startup:

““yaml ... patroni: dynamicConfiguration: postgresql: parameters: shared_preload_libraries:
pg_cron ...

4. Apply the configuration:
S kubectl apply -f deploy/cr.yaml -n <namespace>
This causes the Operator to restart the Pods of your cluster.

Enable custom extension in PostgreSQL

The installed extension is not enabled by default. You need to explicitly enable it in PostgreSQL for all
databases where you want to use it.

Here's how to do it:
1. Connect to the primary Pod:

S kubectl exec -it clusteri1-instancel1-69r8-0 -c database -n <namespace> --
bash

2. Connect to the required database in PostgreSQL and create the extension for this database
using the CREATE EXTENSION statement:

CREATE EXTENSION pg_cron;

Update custom extensions

To update your custom extension inside the Operator, do the following:

1. Prepare the *.tar archive of the extension’s new version. See the Packaging requirements

section for the archive’s structure and naming format

2. Reference the new version of the extension in the Custom Resource. For example, you update
pg_cron extension to version 1.6.8. Then your configuration looks like this:

extensions:
custom:
- name: pg_cron
version: 1.6.8

3. Apply the configuration for the changes to come into place:

S kubectl apply -f deploy/cr.yaml -n <namespace>

Percona Operator for PostgreSQL single-
namespace and multi-namespace
deployment

There are two design patterns that you can choose from when deploying Percona Operator for
PostgreSQL and PostgreSQL clusters in Kubernetes:

o Namespace-scope - one Operator per Kubernetes namespace,

e Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to configure Percona Operator for PostgreSQL for each scenario.

Namespace-scope

By default, Percona Operator for PostgreSQL functions in a specific Kubernetes namespace. You can
create one during the installation (like it is shown in the installation instructions) or just use the

default namespace. This approach allows several Operators to co-exist in one Kubernetes-based
environment, being separated in different namespaces:

BN

Kubernetes API
4 I 4 I)
Operator Operator
-1 0 0-0|/0 -0
DB Pod 1 DB Pod 2 DB Pod N DB Pod 1 DB Pod N
percona-db-1 Namespace percona-db-2 Namespace
. VRN J

-

b1 ! :
Q 020 - O

Normally this is a recommended approach, as isolation minimizes impact in case of various failure

scenarios. This is the default configuration of our Operator.

Let's say you will use a Kubernetes Namespace called percona-db-1.
1. Clone percona-postgresql-operator repository:

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

2. Create your percona-db-1 Namespace (if it doesn’t yet exist) as follows:
S kubectl create namespace percona-db-1

3. Deploy the Operator using_[4 the following command:

https://kubernetes.io/docs/reference/using-api/server-side-apply/

S kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-1
4. Once Operator is up and running, deploy the database cluster itself:

S kubectl apply -f deploy/cr.yaml -n percona-db-1

You can deploy multiple clusters in this namespace.

Add more namespaces
What if there is a need to deploy clusters in another namespace? The solution for namespace-scope
deployment is to have more than one Operator. We will use the percona-db-2 namespace as an
example.
1. Create your percona-db-2 namespace (if it doesn’t yet exist) as follows:
S kubectl create namespace percona-db-2
2. Deploy the Operator:
S kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-2

3. Once Operator is up and running deploy the database cluster itself:

S kubectl apply -f deploy/cr.yaml -n percona-db-2

. Note

Cluster names may be the same in different namespaces.

Install the Operator cluster-wide

Sometimes it is more convenient to have one Operator watching for Percona Distribution for
PostgreSQL custom resources in several namespaces.

We recommend running Percona Operator for PostgreSQL in a traditional way, limited to a specific
namespace, to limit the blast radius. But it is possible to run it in so-called cluster-wide mode, one
Operator watching several namespaces, if needed:

4)
—» <+“—> Percona Operator for PostgreSQL
K API
ubernetes Operator Namespace (pg-operator)
. V,
(N\ [N\ [)
_> e e - e - e -
DB Pod 1 DB Pod 2 DB Pod DB Pod
Percona-db-1 Percona-db-2 percona-db-3
Namespace Namespace Namespace
" . J U pace) . J
— -

b1 ! :
Q 0 +-0Q0 - O

To use the Operator in such cluster-wide mode, you should install it with a different set of
configuration YAML files, which are available in the deploy folder and have filenames with a special

cw- prefix: e.g. deploy/cw-bundle.yaml.

While using this cluster-wide versions of configuration files, you should set the following information

there:

e subjects.namespace option should contain the namespace which will host the Operator,

e WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-
separated list of the namespaces to be watched by the Operator, and the namespace in which the
Operator resides. If this key is set to a blank string, the Operator will watch only the namespace it
runs in, which would be the same as single-namespace deployment.

. Note

Installing the Operator cluster-wide on OpenShift via the the Operator Lifecycle Manager (OLM) requires making
different selections in the OLM web-based Ul instead of patching YAML files.

The following simple example shows how to install Operator cluster-wide on Kubernetes.
1. Clone percona-postgresql-operator repository:

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
S cd percona-postgresql-operator

2. Let's say you will use pg-operator namespace for the Operator, and percona-db-1
namespace for the cluster. Create these namespaces, if needed:

S kubectl create namespace pg-operator
S kubectl create namespace percona-db-1

3. Edit the deploy/cw-bundle.yaml configuration file to make sure it contains proper namespace
name for the Operator:

subjects:
- kind: ServiceAccount
name: percona-postgresql-operator
namespace: pg-operator
spec:
containers:
- env:

- name: WATCH_NAMESPACE
value: "pg-operator,percona-db-1"

4. Apply the deploy/cw-bundle.yaml file with the following command:
S kubectl apply --server-side -f deploy/cw-bundle.yaml -n pg-operator

Right now the operator deployed in cluster-wide mode will monitor all namespaces in the cluster,
either already existing or newly created ones.

5. Deploy the cluster in the namespace of your choice:

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

Verifying the cluster operation

When creation process is over, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets [, including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

0 Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The

default variant will be cluster1-pguser-cluster1.

Q Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

S kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

e Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client:

S kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresqgl:17.6-1 --restart=Never -- bash -il

Executing it may require some time to deploy the corresponding Pod.

0 Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 userto a cluster1 database via the PostgreSQL
interactive terminal.

[postgres@pg-client /]S PGPASSWORD='pguser_password' psql -h clusteri-
pgbouncer .postgres-operator.svc -p 5432 -U cluster1 clusteri

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

. Sample output

psql (17.6-1)

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)

Type "help" for help.

pgdb=>

Using PostgreSQL tablespaces with Percona
Operator for PostgreSQL

Tablespaces allow DBAs to store a database on multiple file systems within the same server and to
control where (on which file systems) specific parts of the database are stored. You can think about
it as if you were giving names to your disk mounts and then using those names as additional
parameters when creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory, and
Percona Operator for PostgreSQL is a good option to bring this to your Kubernetes environment
when needed.

Possible use cases

The most obvious use case for tablespaces is performance optimization. You place appropriate
parts of the database on fast but expensive storage and engage slower but cheaper storage for
lesser-used database objects. The classic example would be using an SSD for heavily-used indexes
and using a large slow HDD for archive data.

Of course, the Operator already provides you with traditional Kubernetes approaches to achieve this

on a per-Pod basis (Tolerations, etc.). But if you would like to go deeper and make such
differentiation at the level of your database objects (tables and indexes), tablespaces are exactly
what you would need for that.

Another well-known use case for tablespaces is quickly adding a new partition to the database
cluster when you run out of space on the initially used one and cannot extend it (which may look less
typical for cloud storage). Finally, you may need tablespaces when migrating your existing
architecture to the cloud.

Each tablespace created by Percona Operator for PostgreSQL corresponds to a separate Persistent
Volume, mounted in a container to the /tablespaces directory.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

— 3 <

Area

Tablespace Storages
for DB Pod N

Creating a new tablespace

Providing a new tablespace for your database in Kubernetes involves two parts:

1. Configure the new tablespace storage with the Operator,

2. Create database objects in this tablespace with PostgreSQL.

Kubernetes API
4 I)
Operator
-0 0 - O
DB Pod 1 DB Pod 2 DB Pod N
Percona Operator for PostgreSQL
Namespace
_ J
L » CsSli

The first part is done in the traditional way of Percona Operators, by modifying Custom Resource via
the deploy/cr.yaml configuration file. It has a special spec.tablespaceStorages section for

tablespaces.

The example already present in deploy/cr.yaml shows how to create tablespace storage 1Gb in
size (you can see official Kubernetes documentation on Persistent Volumes for details):

spec:
instances:

tablespaceVolumes:
- name: user
dataVolumeClaimSpec:
accessModes:
- 'ReadWriteOnce’
resources:
requests:
storage: 1Gi

After you apply this by running the kubectl apply -f deploy/cr.yaml command, the new
/tablespaces/user/ mountpoint will appear for your database. Please take into account that if
you add your new tablespace to the already existing PostgreSQL cluster, it may take time for the
Operator to create Persistent Volume Claims and get Persistent Volumes actually mounted.

Now you should actually create your tablespace on this volume with the CREATE TABLESPACE
<tablespace name> LOCATION <mount point> command, and then create objects in it (of course,
your user should have appropriate CREATE privileges to make it possible):

CREATE TABLESPACE user121
LOCATION '/tablespaces/user/data';

Now when the tablespace is created you can append TABLESPACE <tablespace_name> to your
CREATE SQL statements to implicitly create tables, indexes, or even entire databases in specific
tablespace.

Let's create an example table in the already mentioned user121 tablespace:

CREATE TABLE products (
product_sku character(10),
quantity int,
manufactured_date timestamptz)

TABLESPACE useri121;

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

It is also possible to set a default tablespace with the SET default_tablespace =
<tablespace_name>; statement. It will affect all further CREATE TABLE and CREATE INDEX
commands without an explicit tablespace specifier, until you unset it with an empty string.

As you can see, Percona Operator for PostgreSQL simplifies tablespace creation by carrying on all
necessary modifications with Persistent Volumes and Pods. The same would not be true for the
deletion of an already existing tablespace, which is not automated, neither by the Operator nor by
PostgreSQL.

Deleting an existing tablespace

Deleting an existing tablespace from your database in Kubernetes also involves two parts:

¢ Delete related database objects and tablespace with PostgreSQL,

e Delete tablespace storage in Kubernetes.

To make tablespace deletion with PostgreSQL possible, you should make this tablespace empty (it is
impossible to drop a tablespace until all objects in all databases using this tablespace have been
removed). Tablespaces are listed in the pg_tablespace table, and you can use it to find out which
objects are stored in a specific tablespace. The example command for the lake tablespace will look
as follows:

SELECT relname FROM pg_class WHERE reltablespace=(SELECT oid FROM
pg_tablespace WHERE spcname='useri121');

When your tablespace is empty, you can log in to the PostgreSQL Primary instance as a superuser,
and then execute the DROP TABLESPACE <tablespace_name>; command.

Now, when the PostgreSQL part is finished, you can remove the tablespace entry from the
tablespaceStorages section (don't forget to run the kubectl apply -f deploy/cr.yaml
command to apply changes).

Monitor Kubernetes

Monitoring the state of the database is crucial to timely identify and react to performance issues.
Percona Monitoring_and Management (PMM) _solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s
important to have metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has
been tested with the PMM Server [4 as the centralized data storage and the Victoria Metrics
Kubernetes monitoring stack as the metrics collector. These steps may also apply if you use another
Prometheus-compatible storage.

Pre-requisites

To set up monitoring of Kubernetes, you need the following:

1. PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or
on an AWS instance. Please refer to the official PMM documentation [for the installation

instructions.

2. Helimv3 4.

3. kubectl (4.

4. The PMM Server API key. The key must have the role “Admin”.
Get the PMM API key:

https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/

i! From PMM Ul

C Generate the PMM API key [)

From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace

<login>:<password>@<server_host> placeholders with your real PMM Server login,
password, and hostname in the following command:

S API_KEY=S$(curl --insecure -X POST -H "Content-Type: application/json" -d
"name" :"operator", "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

. Note

The API key is not rotated.

Install the Victoria Metrics Kubernetes monitoring stack

X Quick install

1. To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the
quick install command. Replace the following placeholders with your values:

e API-KEY - The API key of your PMM Server

e PMM-SERVER-URL - The URL to access the PMM Server

UNIQUE-K8s-CLUSTER-IDENTIFIER - Identifier for the Kubernetes cluster. It can be the name
you defined during the cluster creation.

You should use a unique identifier for each Kubernetes cluster. The use of the same identifier for
more than one Kubernetes cluster will result in the conflicts during the metrics collection.

NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If
you haven't created the namespace before, it will be created during the command execution.

We recommend to use a separate namespace like monitoring-system.

https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

S curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/quick-install.sh | bash
-s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-
id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --namespace <NAMESPACE>

. Note

The Prometheus node exporter is not installed by default since it requires privileged containers with the
access to the host file system. If you need the metrics for Nodes, add the --node-exporter-enabled flag
as follows:

S curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/quick-install.sh | bash -s -- --
api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-
CLUSTER-IDENTIFIER> --namespace <NAMESPACE> --node-exporter-enabled

2a Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

¢ Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics
Operator. Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled and
vmcluster.enabled parameters setto false in this setup.

o Check all the role-based access control (RBAC) rules [4 of the victoria-metrics-k8s-stack
chart and the dependencies chart, and modify them based on your requirements.

Configure authentication in PMM

To access the PMM Server resources and perform actions on the server, configure authentication.
1. Encode the PMM Server API key with base64.
A Linux
$ echo -n <API-key> | base64 --wrap=0
& macos

S echo -n <API-key> | base64

https://helm.sh/docs/topics/rbac/

2. Create the Namespace where you want to set up monitoring. The following command creates
the Namespace monitoring-system. You can specify a different name. In the latter steps,
specify your namespace instead of the <namespace> placeholder.

S kubectl create namespace monitoring-system

3. Create the YAML file for the Kubernetes Secrets [4 and specify the base64-encoded API key
value within. Let’s name this file pmm-api-vmoperator.yaml.

pmm-api-vmoperator.yaml

apiVersion: vi1
data:
api_key: <base-64-encoded-API-key>
kind: Secret
metadata:
name: pmm-token-vmoperator
#namespace: default
type: Opaque

4. Create the Secrets object using the YAML file you created previously. Replace the <filename>
placeholder with your value.

S kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>
5. Check that the secret is created. The following command checks the secret for the resource

named pmm-token-vmoperator (as defined in the metadata.name option in the secrets file). If
you defined another resource name, specify your value.

S kubectl get secret pmm-token-vmoperator -n <namespace>

Create a ConfigMap to mount for kube-state-metrics

The kube-state-metrics (KSM) [4 is a simple service that listens to the Kubernetes API server
and generates metrics about the state of various objects - Pods, Deployments, Services and Custom
Resources.

To define what metrics the kube-state-metrics should capture, create the ConfigMap [4 and
mount it to a container.

Use the example configmap.yaml configuration file [4 to create the ConfigMap.

https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/ksm-configmap.yaml -n
<namespace>

As a result, you have the customresource-config-ksm ConfigMap created.

Install the Victoria Metrics Kubernetes monitoring stack

1. Add the dependency repositories of victoria-metrics-k8s-stack [chart.

S helm repo add grafana https://grafana.github.io/helm-charts
S helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

2. Add the Victoria Metrics Kubernetes monitoring stack repository.
S helm repo add vm https://victoriametrics.github.io/helm-charts/
3. Update the repositories.

S helm repo update

4. Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the
following configuration:

e the URL to access the PMM server in the externalVM.write.url option in the format
<PMM-SERVER-URL>/victoriametrics/api/v1/write. The URL can contain either the IP
address or the hostname of the PMM server.

e the unique name or an ID of the Kubernetes cluster in the
vmagent.spec.externallLabels.k8s_cluster_id option. Ensure to set different values if
you are sending metrics from multiple Kubernetes clusters to the same PMM Server.

e the <namespace> placeholder with your value. The Namespace must be the same as the
Namespace for the Secret and ConfigMap

https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack

{.bash data-prompt="§" }
S helm install vm-k8s vm/victoria-metrics-k8s-stack \
-f https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/values.yaml \
--set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write

--set vmagent.spec.externallLabels.k8s_cluster_id=<UNIQUE-CLUSTER-
IDENTIFIER/NAME> \

-N <namespace>

To illustrate, say your PMM Server URL is https://pmm-example.com, the cluster ID is test-
cluster and the Namespace is monitoring-system. Then the command would look like this:

“*{.bash .no-copy } $ helm install vm-k8s vm/victoria-metrics-k8s-stack \ -f
https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-
k8s-stack/values.yaml \ —set externalVM.write.url=https://pmm-
example.com/victoriametrics/api/v1/write \ —set
vmagent.spec.externalLabels.k8s_cluster_id=test-cluster \ -n monitoring-system

Validate the successful installation

S kubectl get pods -n <namespace>

. Sample output .

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs 1/1 Running 0
28m
vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n 1/1 Running 0
28m
vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx 2/2 Running ©
28m

What Pods are running depends on the configuration chosen in values used while installing

victoria-metrics-k8s-stack chart.

Verify metrics capture

1. Connect to the PMM server.

. Click Explore and switch to the Code mode.

. Check that the required metrics are captured, type the following in the Metrics browser
dropdown:

e cadvisor [7:
® Explore < Metrics Qv

A (Metrics) ®@ 0 © w
Query patterns v Explain Builder Code

Metrics browser > container_

blkio_device_usage_total
> Options Legend: Auto Forma cpu_cfs_periods_total
cpu_cfs_throttled_periods_total
+ Add query o) Query histc cpu_cfs_throttled_seconds_total
cpu_load_average_10s
cpu_system_seconds_total
cpu_usage_seconds_total
cpu_user_seconds_total
file_descriptors

fs_inodes_free

fs_inodes_total

)
)
)
)
)
)
©
)
0
N/
N/
N/

fs_io_current

container_blkio_device_usage_total :

e kubelet:

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

® Explore = Metrics aQ v

A (Metrics) ®@ 0 © w
Query patterns v Explain @ Builder = Code

Metrics browser > kubelet_

@ kubelet_certificate_manager_server_rotation_seconds_bu..
> Options Legend: Auto Forl) kubelet_certificate_manager_server_rotation_seconds_co..

@ kubelet_certificate_manager_server_rotation_seconds_sum

+ Add query 0} Query hi @ kubelet_certificate_manager_server_ttl_seconds

@ kubelet_cgroup_manager_duration_seconds_bucket

@ kubelet_cgroup_manager_duration_seconds_count

@ kubelet_cgroup_manager_duration_seconds_sum

@ kubelet_container_log_filesystem_used_bytes

@ kubelet_containers_per_pod_count_bucket

@ kubelet_containers_per_pod_count_count

@ kubelet_containers_per_pod_count_sum

@ kubelet_graceful_shutdown_end_time_seconds

kubelet_certificate_manager_server_rotation_seconds_b

ucket

e kube-state-metrics [4 metrics that also include Custom resource metrics for the Operator and

database deployed in your Kubernetes cluster:
@ Explore o8 Metrics Qv

A (Metrics) O 0 © W
Query patterns v Explain @ Builder Code

Metrics browser > kube_pg
@ kube_pg_info

> Options Legend: Auto Fol @y kube_pg_status_pgbouncer_replicas
& kube_pg_status_pgbouncer_replicas_ready

+ Add query 9 Queryh @ kube_pg_status_postgres_replicas

@ kube_pg_status_postgres_replicas_ready
@ kube_pg_status_state
@ kube_poddisruptionbudget_annotations
& kube_poddisruptionbudget_created
@ kube_poddisruptionbudget_labels
@ kube_poddisruptionbudget_status_current_healthy
@ kube_poddisruptionbudget_status_desired_healthy
@ kube_poddisruptionbudget_status_expected_pods

kube_pg_info :

https://github.com/kubernetes/kube-state-metrics/tree/main/docs

Uninstall Victoria metrics Kubernetes stack

To remove Victoria metrics Kubernetes stack used for Kubernetes cluster monitoring, use the
cleanup script. By default, the script removes all the Custom Resource Definitions(CRD)_[4 and
Secrets associated with the Victoria metrics Kubernetes stack. To keep the CRDs, run the script with

the --keep-crd flag.
[Remove CRDs

Replace the <NAMESPACE> placeholder with the namespace you specified during the Victoria metrics
Kubernetes stack installation:

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace
<NAMESPACE>

[Keep CRDs

Replace the <NAMESPACE> placeholder with the namespace you specified during the Victoria metrics
Kubernetes stack installation:

S bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v@.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace
<NAMESPACE> --keep-crd

Check that the Victoria metrics Kubernetes stack is deleted:
$ helm list -n <namespace>

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

S helm uninstall vm-k8s-stack -n < namespace>

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

Use PostGIS extension with Percona
Distribution for PostgreSQL

PostGIS [is a PostgreSQL extension that adds GIS capabilities to this database.

Starting from the Operator version 2.3.0 it became possible to deploy and manage PostGIS-enabled
PostgreSQL.

Due to the large size and domain specifics of this extension, Percona provides separate PostgreSQL
Distribution images with it.

Deploy the Operator with PostGIS-enabled database
cluster

Following steps will allow you to deploy PostgreSQL cluster with these images.
1. Clone the percona-postgresql-operator repository:

S git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
S cd percona-postgresql-operator

. Note

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

2. The Custom Resource Definition for Percona Distribution for PostgreSQL should be created from
the deploy/crd.yaml file. Custom Resource Definition extends the standard set of resources
which Kubernetes “knows” about with the new items (in our case ones which are the core of the
Operator). Apply. it (4 as follows:

S kubectl apply --server-side -f deploy/crd.yaml

3. Create the Kubernetes namespace for your cluster if needed (for example, let's name it

postgres-operator):

S kubectl create namespace postgres-operator

https://postgis.net/
https://kubernetes.io/docs/reference/using-api/server-side-apply/

4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is configured with
the deploy/rbac.yaml file. Role-based access is based on defined roles and the available
actions which correspond to each role. The role and actions are defined for Kubernetes
resources in the yaml file. Further details about users and roles can be found in Kubernetes
documentation [4.

S kubectl apply -f deploy/rbac.yaml -n postgres-operator

. Note

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command:

S kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-
admin --user=$(gcloud config get-value core/account)

5. Start the Operator within Kubernetes:
$ kubectl apply -f deploy/operator.yaml -n postgres-operator

6. After the Operator is started, modify the deploy/cr.yaml configuration file with PostGIS-
enabled image - use docker.io/percona/percona-postgresql-operator:2.8.0-ppgl17.6-
postgres-gis3.3.8 instead of docker.io/percona/percona-postgresql-
operator:2.8.0-ppgl17.6-postgres

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:

name: cluster
spec:

image: docker.io/percona/percona-postgresql-operator:2.8.0-ppgl17.6-
postgres-gis3.3.8

When done, Percona Distribution for PostgreSQL cluster can be created at any time with the
following command:

S kubectl apply -f deploy/cr.yaml -n postgres-operator

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

The creation process may take some time. When the process is over your cluster will obtain the

ready status. You can check it with the following command:

S kubectl get pg -n postgres-operator

. Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
cluster cluster1-pgbouncer.default.svc ready 3 3

AGE
30m

Check PostGIS extension

To use PostGIS extension you should enable it for a specific database.

For example, you can create the new database named mygisdata with the psql tool as follows:

CREATE database mygisdata;
\c mygisdata;
CREATE SCHEMA gis;

earlier and run the following command:

CREATE EXTENSION postgis;

Finally, check that the extension is enabled:

SELECT postgis_full_version();

The output should resemble the following:

postgis_full_version

POSTGIS="3.3.3" [EXTENSION] PGSQL="140" GE0S="3.10.2-CAPI-1.16.0"

Next, enable the postgis extension. Make sure you are connected to the database you created

PROJ="8.2.1" LIBXML="2.9.13" LIBJSON="0.15" LIBPROTOBUF="1.3.3" WAGYU="0.5.0

(Internal)”

You can find more about using PostGIS in the official Percona Distribution for PostgreSQL
documentation [4, as well as in this blogpost [4.

https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/

Delete Percona Operator for PostgreSQL

When cleaning up your Kubernetes environment (e.g., moving from a trial deployment to a production
one, or testing experimental configurations), you may need to remove some (or all) of the following
objects:

Percona Distribution for PosgreSQL cluster managed by the Operator

Percona Operator for PostgreSQL itself

Custom Resource Definition deployed with the Operator

Resources like PVCs and Secrets

Delete a database cluster

You can delete the Percona Distribution for PosgreSQL cluster managed by the Operator by deleting
the appropriate Custom Resource.

. Note

There are two finalizers [4 defined in the Custom Resource, which define whether TLS-related objects and data
volumes should be deleted or preserved when the cluster is deleted.

e finalizers.percona.com/delete-ssl:if present, deletes objects, created for SSL (Secret, certificate, and

issuer) when the cluster deletion occurs.

o finalizers.percona.com/delete-pvc: if present, deletes Persistent Volume Claims [for the database
cluster Pods and user Secrets when the cluster deletion occurs.

Both finalizers are off by default in the deploy/cr.yaml configuration file, and this allows you to recreate the
cluster without losing data, credentials for the system users, etc.

Here's a sequence of steps to follow:

o List Custom Resources, replacing the <namespace> placeholder with your namespace.

S kubectl get pg -n <namespace>

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

. Sample output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

9 Delete the Custom Resource with the name of your cluster (for example, let’s use the default
cluster1 name).

S kubectl delete pg clusterl -n <namespace>

. Sample output .

perconapgcluster.pgv2.percona.com "cluster1" deleted

e Check that the cluster is deleted by listing the available Custom Resources once again.

S kubectl get pg -n <namespace>

. Sample output .

No resources found in <namespace> namespace.

Delete the Operator

You can uninstall the Operator by deleting the Deployments [related to it.

o List the deployments. Replace the <namespace> placeholder with your namespace.

$ kubectl get deploy -n <namespace>

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

. Sample output .

NAME READY UP-TO-DATE AVAILABLE AGE
percona-postgresql-operator 1/1 1 1 13m

9 Delete the percona-* deployment

S kubectl delete deploy percona-postgresql-operator -n <namespace>

e Check that the Operator is deleted by listing the Pods. As a result you should have no Pods
related to it.

S kubectl get pods -n <namespace>

. Sample output .

No resources found in <namespace> namespace.

Delete Custom Resource Definition

If you are not just deleting the Operator and PostgreSQL cluster from a specific namespace, but want
to clean up your entire Kubernetes environment, you can also delete the CustomResourceDefinitions

(CRDs) [7.

! Warning

CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you
shouldn’t delete CRD if you still have the Operator and database cluster in some namespace.

You can delete CRD as follows:

ﬂ List the CRDs:

S kubectl get crd

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

. Sample output

allowlistedv2workloads.auto.gke.io
allowlistedworkloads.auto.gke.io
audits.warden.gke.io
backendconfigs.cloud.google.com
capacityrequests.internal.autoscaling.gke.io
frontendconfigs.networking.gke.io
managedcertificates.networking.gke.io
memberships.hub.gke.io
perconapgbackups.pgv2.percona.com
perconapgclusters.pgv2.percona.com
perconapgrestores.pgv2.percona.com
postgresclusters.postgres-operator.crunchydata.com
serviceattachments.networking.gke.io
servicenetworkendpointgroups.networking.gke.io
storagestates.migration.k8s.io
storageversionmigrations.migration.k8s.io
updateinfos.nodemanagement.gke.io
volumesnapshotclasses.snapshot.storage.k8s.io
volumesnapshotcontents.snapshot.storage.k8s.io
volumesnapshots.snapshot.storage.k8s.1io

2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
128
:29:
129
129
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:
2023-09-07T14:

2023-09-07T14
2023-09-07T14
2023-09-07T14
2023-09-07T14

15
15
15
15
15
15
15
15

15
15

:30Z
1297
1327
1417
1257
1417
1417
:30Z

597
027
037
067

1447
1437
15:
15:
15:
15:
15:
185

537
537
557
527
527
527

e Now delete the percona*.pgv2.percona.com CRDs:

S kubectl delete crd perconapgbackups.pgv2.percona.com

perconapgclusters.pgv2.percona.com perconapgrestores.pgv2.percona.com

. Sample output

deleted
deleted

deleted

customresourcedefinition.apiextensions.k8s.io "perconapgbackups.pgv2.percona.com"
customresourcedefinition.apiextensions.k8s.io "perconapgclusters.pgv2.percona.com"

customresourcedefinition.apiextensions.k8s.io0 "perconapgrestores.pgv2.percona.com"

Clean up resources

By default, TLS-related objects and data volumes remain in Kubernetes environment after you delete

the cluster to allow you to recreate it without losing the data.

You can automate resource cleanup by turning on percona.com/delete-pvc and/or
percona.com/delete-ssl finalizers). You can also delete TLS-related objects and PVCs manually.

To manually clean up resources, do the following:
ﬂ Delete Persistent Volume Claims.

List PVCs. Replace the <namespace> placeholder with your namespace:

S kubectl get pvc -n <namespace>

. Sample output .

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE
clusterl-instancel-mkwh-pgdata Bound pvc-c22220e9-c5e9-40b8-91b5-

3d437b4ebdec 161 RWO standard-rwo <unset>

4m17s

clusterl-instancel-nvh4-pgdata Bound pvc-61a64aca-5165-4d25-b0855-
efc455d545b8 161 RWO standard-rwo <unset>

4m17s

cluster1-instancel-gknb-pgdata Bound pvc-87bc6549-ee49-47f5-9f5e-
83a315f78fd9 1G1i RWO standard-rwo <unset>

4m18s

cluster1-repol Bound pvc-380e1100-b679-4716-ae8f-
78372448b5f0 1G1i RWO standard-rwo <unset>

4m15s

Delete PVCs related to your cluster. The following command deletes PVCs for the
cluster1 cluster:

kubectl delete pvc clusteri-instancel-mkwh-pgdata cluster1-instancel-
nvh4-pgdata cluster1-instancel-gknb-pgdata cluster1-repol -n
<namespace>

. Sample output .

persistentvolumeclaim "clusterl1-instancel-mkwh-pgdata" deleted
persistentvolumeclaim "clusterl1-instancel-nvh4-pgdata" deleted
persistentvolumeclaim "cluster1-instancel-gknb-pgdata" deleted
persistentvolumeclaim "cluster1-repol" deleted

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Note that if your Custom Resource manifest includes the percona.com/delete-pvc
finalizer, all user Secrets will be automatically deleted when you delete the PVCs. To
prevent this from happening, disable the finalizer.

Delete the Secrets

List Secrets:

$ kubectl get secrets -n <namespace>

Delete the Secret:

S kubectl delete secret <secret_name> -n <namespace>

Retrieve Percona certified images

When preparing for the upgrade, you must have the list of compatible images for a specific Operator
version and the database version you wish to update to. You can either manually find the images in
the list of certified images or you can get this list by querying the Version Service server.

What is the Version Service?

The Version Service is a centralized repository that the Percona Operator for PostgreSQL connects
to at scheduled times to get the latest information on compatible versions and valid image paths.
This service is a crucial part of the automatic upgrade process, and it is enabled by default. Its
landing page, check.percona.com, provides more details about the service itself.

How to query the Version Service

You can manually query the Version Service using the curl command. The basic syntax is:

S curl https://check.percona.com/versions/v1/pg-operator/<operator-
version>/<pg-version> | jq -r '.versions[].matrix'

where:

e <operator-version> is the version of the Percona Operator for PostgreSQL you are using.

e <pg-version> is the version of PostgreSQL you want to get images for. This part is optional and
helps filter the results. It can be a specific PostgreSQL version (e.g.16.3), a recommended version
(e.g. 16-recommended), or the latest available version (e.g. 16-latest).

For example, to retrieve the list of images for Operator version 2.4.0 for PostgreSQL version 16.3,
use the following command:

$ curl https://check.percona.com/versions/v1/pg-operator/2.4.0/16.3 | jq -r
' .versions[].matrix'

. Sample output .

{
“pmm": {
"2.42.0": {
"imagePath": "percona/pmm-client:2.42.0",
"imageHash": "14cb96de47e3bc239bf285f22ec6f170b4a1181301b19100f5b7dc22c210bf8c",

"imageHashArm64" : ,
"status": "recommended",
"critical": false

}
}
"operator": {
"2.4.8": {
"imagePath": "percona/percona-postgresql-operator:2.4.0",
"imageHash": "3012437bcfe793eaf34258aa44bb3bc404e7702711aefe4183324€€2d6928240",
"imageHashArm64": "",
"status": "recommended",
"critical": false
}
}

ostgresqgl": {
"16.3": {
"imagePath": "percona/percona-postgresql-operator:2.4.0-ppgl16.3-postgres"”,
"imageHash": "8248b290a88h881f1871fbcabde7dalacace31f94f795d1990e3ca3ca5dd3636",
"imageHashArm64": "",
"status": "recommended",

"critical": false

}
}

gbackrest": {
"16.3": {
"imagePath": "percona/percona-postgresql-operator:2.4.0-ppg16.3-pgbackrest2.51-
17,
"imageHash": "3e59b19b619e5580292c4fa8f9efedea3e9dB5b79af8e186643490b13a6f83a5",
"imageHashArmé64": "",
"status": "recommended",
"critical": false
}
by
"pgbackrestRepo”: {},
"pgbadger”: {},
"pgbouncer": {
"16.3": {
"imagePath": "percona/percona-postgresql-operator:2.4.0-ppgl16.3-
pgbouncer1.22.1",
"imageHash": "37f466cea2330939f16c890a327b1d88b16cd85063ced45aff8255b8108accho8”,

"imageHashArmé64": "",
"status": "recommended",
"critical": false
}
}.
"postgis": {
"16.3": {
"imagePath": "percona/percona-postgresql-operator:2.4.0-ppgl16.3-postgres-
gis3.3.6",
"imageHash": "7ca3172329ade3be97b9bd837a3315fch87179357e420f76662a9d0e%9a4a74d3",
"imageHashArmé64": "",
"status": "recommended",
"critical": false
}
}

To narrow down the results to the recommended version of PostgreSQL 16, you can use:

$ curl https://check.percona.com/versions/v1/pg-operator/2.4.0/16-recommended
| jq -r '.versions[].matrix'

This command helps you retrieve the PostgreSQL images available for a specific Operator version
(2.4.0 in the following example):

S curl -s https://check.percona.com/versions/v1/pg-operator/2.4.0 | jq -r
'.versions[0@].matrix.postgresql | to_entries[] | "\(.key)\t\
(.value.imagePath)\t\(.value.status)"'

. Sample output .

12.19 percona/percona-postgresql-operator:2.4.0-ppg12.19-postgres recommended
13.15 percona/percona-postgresql-operator:2.4.0-ppg13.15-postgres recommended
14.12 percona/percona-postgresql-operator:2.4.0-ppg14.12-postgres recommended
15.7 percona/percona-postgresql-operator:2.4.0-ppg15.7-postgres recommended
16.3 percona/percona-postgresql-operator:2.4.0-ppg16.3-postgres recommended

Troubleshooting

Percona Operator troubleshooting

This section provides information on how to troubleshoot issues when you install Percona Operator
for PostgreSQL.

Make sure you have CLI tool kubectl installed to interact with Kubernetes API.

Check connection to Kubernetes cluster

It may happen that kubectl you installed locally is not connected to your Kubernetes cluster.

To check connectivity to your Kubernetes API, run the following command:
kubectl cluster-info

If you see the output similar to the following, it means that kubectl is connected to your
Kubernetes cluster:

. Sample output .

Kubernetes control plane is running at https://<control-plane-ip>:49475
CoreDNS is running at https://<control-plane-ip>:49475/api/v1/namespaces/kube-
system/services/kube-dns:dns/proxy

If multiple Kubernetes configurations are present in kubeconfig,check if you have set the correct
context. If the context is wrong, switch it. Here's how:

1. Check the current context:

kubectl config current-context # Get the current Context

2. Switch the context :

kubectl config use-context <Context-To-Be-Used>

3. Runthe kubectl cluster-info command again to verify that kubectl is connected to your
Kubernetes cluster.

If you are still running into issues, check with your Kubernetes cluster administrator to resolve the
connectivity or configuration issues.

Troubleshoot Operator installation issues

1. Check the Operator logs
kubectl logs deploy/<operator-deployment-name>

2. Installing the Operator requires specific privileges, such as the ability to create custom resource
definitions and other Kubernetes objects.

To verify that you have the necessary privileges, run the following script:
bash <(curl -s

https://gist.githubusercontent.com/cshiv/6048bdd0174275b48f633549c69d0844/
raw/fd547b783a30b827362ee9f9ecB83436f9bc79524 /check_priviliges.sh)

. Sample output .

Checking privileges to install Percona Operators in kubernetes cluster...
Warning: Unable to check the privileges for resource 'issuers', check if the
resource 'issuers' is present in the cluster

Warning: Unable to check the privileges for resource 'certificates', check if the
resource 'certificates' is present in the cluster

Warning: Some resources are not found in the kubernetes cluster.Check the Warning
messages before you proceed

GOOD TO INSTALL: Percona Operator for PostgreSQL
https://docs.percona.com/percona-operator-for-postgresql/index.html

GOOD TO INSTALL: Percona Operator for MySQL based on Percona XtraDB Cluster
https://docs.percona.com/percona-operator-for-postgresql/index.html

GOOD TO INSTALL: Percona Operator for MongoDB
https://docs.percona.com/percona-operator-for-mongodb/index.html

If you have insufficient permissions, the script will show you which ones are missing for
installing a particular Operator. In this case, contact the Kubernetes cluster administrator.

3. If you have the necessary privileges but the installation is still failing, review the Kubernetes
Events for more details. Keep in mind that Kubernetes Events are retained for only 60 minutes.

kubectl get events --sort-by=".lastTimestamp"

Events provide good information about affinity issues, resource issues etc.

Troubleshooting database cluster issues

1. The Operator deployment must be in the Running state for the database cluster to function
properly. Check the Operator Pod for restarts to identify potential issues.

kubectl get pod <operator-pod-name>
2. Check the status of the database cluster
kubectl get pg <database-cluster-name>
The cluster should typically be in the Running state. It may briefly enter the initializing

state while reconciling changes. If the cluster remains in the initializing state for an
extended period, investigate further to identify any underlying issues.

Additionally, you can describe the database cluster and search for the information in the State
and State Description fields:

kubectl describe pg <database-cluster-name>
3. Check the Operator logs

kubectl logs deploy/<operator-deployment-name>
4. Check the events

kubectl get events --sort-by=".lastTimestamp"

Events can provide information like storage class issues, PVC binding issues etc

5. Check for the PVC, PV. Both of them should be in Bound status

kubectl get pvc

kubectl get pv
6. Check for logs of database pods / Proxy pods

kubectl logs <database-pod-name>

kubectl logs <proxy-pod-name>

To check logs of init containers or other sidecar containers, use the option -c with the
container name:

kubectl logs <proxy-pod-name> -c postgres-startup
7. Check for error details. Run the kubectl describe command:

bash

kubectl describe <database-pod-name>

" “bash
kubectl describe <proxy-pod-name>

Check the information in the "Status’ section. The "State’ and "State
Description” fields explain why the Pod reports errors.

1. To run commands inside a container, use the kubectl exec command:
kubectl exec <pod-name> -- <command>

If you need an interactive shell to run multiple commands, use the -it flag for an interactive
terminal:

kubectl exec -it <pod-name> -- sh
2. If the pods are not running, it may not be possible to execute commands or open an interactive

shell. In such cases, consider using a sleep-forever script to prevent the containers from
restarting repeatedly.

See the Disable health check probes for maintenance section for steps.

Initial troubleshooting

Percona Operator for PostgreSQL uses Custom Resources [4 to manage options for the various

components of the cluster.

e PerconaPGCluster Custom Resource with Percona PostgreSQL Cluster options (it has handy

pg shortname also),

e PerconaPGBackup and PerconaPGRestore Custom Resources contain options for pgBackRest
used to backup PostgreSQL Cluster and to restore it from backups (pg-backup and pg-restore

shortnames are available for them).

The first thing you can check for the Custom Resource is to query it with kubectl get command:

S kubectl get pg

. Expected output .

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster cluster1-pgbouncer.default.svc ready 3 3 30m

The Custom Resource should have Ready status.

. Note

You can check which Percona’s Custom Resources are present and get some information about them as follows:

$ kubectl api-resources | grep -i percona

. Expected output .

perconapgbackups pg-backup pgv2.percona.com/v2 true
PerconaPGBackup

perconapgclusters pg pgv2.percona.com/v2 true
PerconaPGCluster

perconapgrestores pg-restore pgv2.percona.com/v2 true

PerconaPGRestore

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Check the Pods

If Custom Resource is not getting Ready status, it makes sense to check individual Pods. You can
do it as follows:

S kubectl get pods

. Expected output .
NAME READY STATUS RESTARTS AGE
cluster1-backup-4vwt-p5d9j 0/1 Completed 0 97m
cluster1-instancel1-b5mr-0 4/4 Running 0 99m
cluster1-instance1-b8p7-0 4/4 Running 0 99m
cluster1-instancel-w7q2-0 4/4 Running 0 99m
cluster1-pgbouncer-79bbf55c45-62x1k 2/2 Running 0 99m
cluster1-pgbouncer-79bbf55c45-9g4ch 2/2 Running 0 99m
cluster1-pgbouncer-79bbf55c45-9nrmd 2/2 Running 0 99m
cluster1-repo-host-0 2/2 Running 0 99m
percona-postgresql-operator-79cd8586f5-2qzcs 1/1 Running 0 120m

The above command provides the following insights:

READY indicates how many containers in the Pod are ready to serve the traffic. In the above
example, cluster1-repo-host-0 container has all two containers ready (2/2). For an
application to work properly, all containers of the Pod should be ready.

e STATUS indicates the current status of the Pod. The Pod should be in a Running state to confirm
that the application is working as expected. You can find out other possible states in the official
Kubernetes documentation (4.

e RESTARTS indicates how many times containers of Pod were restarted. This is impacted by the
Container Restart Policy [4. In an ideal world, the restart count would be zero, meaning no issues

from the beginning. If the restart count exceeds zero, it may be reasonable to check why it
happens.

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can find more details about a specific Pod using the kubectl describe pods <pod-name>
command.

S § kubectl describe pods clusteri1-instancel-b5mr-90

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy

. Expected output .

Name : cluster1-instancel1-b5mr-0
Namespace: default

Controlled By: StatefulSet/clusteri-instancel-b5mr
Init Containers:
postgres-startup:

Containers:
database:
pgbackrest:
Restart Count: ©
Liveness: http-get https://:8008/1liveness delay=3s timeout=5s period=10s #success=1
#failure=3
Readiness: http-get https://:8008/readiness delay=3s timeout=5s period=10s
#success=1 #failure=3
Environment:
Mounts:
Volumes:

Events:

This gives a lot of information about containers, resources, container status and also events. So,
describe output should be checked to see any abnormalities.

Check Storage-related objects

Storage-related objects worth to check in case of problems are the following ones:

e Persistent Volume Claims (PVC) and Persistent Volumes (PV)_[4, which are playing a key role in
stateful applications.

« Storage Class [4, which automates the creation of Persistent Volumes and the underlying

storage.

It is important to remember that PVC is namespace-scoped, but PV and Storage Class are cluster-
scoped.

Check the PVC

You can check all the PVC with the following command (use different namespace name instead of

postgres-operator, if needed):

S kubectl get pvc -n postgres-operator

. Expected output .

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
cluster1-instancel-4xkv-pgdata Bound pvc-2d20abb7-5350-4810-a098-fbdfbffdab41 1Gi

RWO standard 11h
clusterl-instancel-njt9-pgdata Bound pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b 1Gi
RWO standard 11h
cluster1-instancel-qhh6-pgdata Bound pvc-7228300b-81de-4a60-a615-8ca935c95139 161
RWO standard 11h
cluster1-repo1 Bound pvc-b2eBbac3-993d-499e-b311-3aa7b9851bc2 1Gi
RWO standard 11h

e STATUS: shows the state [4 of the PVC:

e For normal working of an application, the status should be Bound.
o If the status is not Bound, further investigation is required.

¢ VOLUME: is the name of the Persistent Volume with which PVC is Bound to. Obviously, this field
will be occupied only when a PVC is Bound.

e CAPACITY: it is the size of the volume claimed.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase

e STORAGECLASS: it indicates the Kubernetes storage class [4 used for dynamic provisioning of
Volume.

e ACCESS MODES: Access mode [4 indicates how Volume is used with the Pods. Access modes
should have write permission if the application needs to write data, which is obviously true in case
of databases.

Now you can check a specific PVC for more details using its name as follows:

S kubectl get pvc clusteri-instancel-4xkv-pgdata -n postgres-operator -oyaml
output stripped for brevity, name of PVC may vary

. Expected output .

apiVersion: vi
kind: PersistentVolumeClaim
metadata:

name: clusterl-instancel-4xkv-pgdata
namespace: postgres-operator

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1G
storageClassName: standard
volumeMode: Filesystem
volumeName: pvc-2d20abb7-5350-4810-a098-fhdfbffdab41
status:
accessModes:
- ReadWriteOnce
capacity:
storage: 24Gi
phase: Bound

You can use a number of Custom Resource options to tweaking PVC for the components of your
cluster:

e options under instances.walVolumeClaimSpec allow you to set access modes and requested

storage size for PostgreSQL Write-ahead Log storage,

e options under instances.dataVolumeClaimSpec allow you to set access modes and also
requests and limits for PostgreSQL database storage,

e options under instances.tablespaceVolumes.dataVolumeClaimSpec allow you to set access

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

modes and requested storage size for PostgreSQL tablespace volumes,

e options under backups.pgbackrest.repos.volume.volumeClaimSpec allow you to set access
modes and requested storage size for the pgBackRest storage.

Check the PV

It is important to remember that PV is a cluster-scoped Object. If you see any issues with attaching a
Volume to a Pod, PV and PVC might be looked upon.

Check all the PV present in the Kubernetes cluster as follows:

S kubectl get pv

. Expected output .

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM STORAGECLASS REASON AGE
pvc-2d20abb7-53506-4810-a098-fbdfbffdad41 161 RWO Delete

Bound postgres-operator/clusteri-instancel-4xkv-pgdata standard 11h
pvc-7228300b-81de-4a60-a615-8ca935¢c95139 1Gi RWO Delete

Bound postgres-operator/cluster1-instancel-ghh6-pgdata standard 11h
pvc-b2eBbac3-993d-499e-b311-3aa7b9851bc2 1Gi RWO Delete

Bound postgres-operator/clusterl-repof standard 11h
pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b 1Gi RWO Delete

Bound postgres-operator/clusteri-instancel-njt9-pgdata standard 11h

Now you can check a specific PV for more details using its name as follows:

$ kubectl get pv pvc-2d20abb7-5350-4810-a098-fbdfbffdag41 -oyaml

. Expected output .

apiVersion: v1
kind: PersistentVolume
metadata:

name: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b

spec:
accessModes:
- ReadWriteOnce
capacity:
storage: 1Gi
claimRef:
apiVersion: v
kind: PersistentVolumeClaim
name: clusterl-instancel1-4xkv-pgdata
namespace: postgres-operator
resourceVersion: "912868"
uid: f3e7097f-accd-4f5d-9¢9d-6f29b54a368b
gcePersistentDisk:
fsType: ext4
pdName: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/zone
operator: In

values:

- us-centrali-a

- key: topology.kubernetes.io/region
operator: In

values:

- us-centrall
persistentVolumeReclaimPolicy: Delete
storageClassName: standard
volumeMode: Filesystem

status:
phase: Bound

Fields to check if there are any issues in binding with PVC, are the claimRef and nodeAffinity.

The claimRef one indicates to which PVC this volume is bound to. This means that if by any
chance PVC is deleted (e.g. by the appropriate finalizer), this section needs to be modified so that it
can bind to a new PVC.

The spec.nodeAffinity field may influence the PV availability as well: for example, it can make
Volume accessed in one availability zone only.

Check the StorageClass

StorageClass is also a cluster-scoped object, and it indicates what type of underlying storage is used

for the Volumes.

You can set StorageClass in instances.dataVolumeClaimSpec.storageClassName,

instances.walVolumeClaimSpec.storageClassName, and

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName Custom Resource

options.

The following command checks all the storage class present in the Kubernetes cluster, and allows to

see which storage class is the default one:

S kubectl get sc

. Expected output

NAME PROVISIONER
ALLOWVOLUMEEXPANSION AGE

premium-rwo pd.csi.storage.gke.io
44d

standard (default) kubernetes.io/gce-pd
44d

standard-rwo pd.csi.storage.gke.io
44d

RECLAIMPOLICY

Delete

Delete

Delete

VOLUMEBINDINGMODE
WaitForFirstConsumer true
Immediate true

WaitForFirstConsumer true

If some PVC does not refer any storage class explicitly, it means that the default storage class is

used. Ensure there is only one default Storage class.

You can check a specific storage class as follows:

S kubectl get sc standard -oyaml

. Expected output .

allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
annotations:
storageclass.kubernetes.io/is-default-class: "true"
creationTimestamp: "2022-10-09T06:28:03Z"
labels:
addonmanager .kubernetes.io/mode: EnsureExists
name: standard
resourceVersion: "906"
uid: 933d37db-990b-4b2d-bf3a-dde91debooae
parameters:
type: pd-standard
provisioner: kubernetes.io/gce-pd
reclaimPolicy: Delete
volumeBindingMode: Immediate

Important things to observe here are the following ones:

e Check if the provisioner and parameters are indicating the type of storage you intend to provision.

e Check the volumeBindingMode [4 especially if the storage cannot be accessed across availability

zones. “WaitForFirstConsumer” volumeBindingMode ensures volume is provisioned only after a
Pod requesting the Volume is created.

« If you are going to rely on the Operator storage scaling_functionality, ensure the storage class

supports PVC expansion (it should have allowVolumeExpansion: true inthe output of the
above command).

You can set PVC storage class with the following Custom Resource options:

e instances.walVolumeClaimSpec.storageClassName allows you to set storage class for
PostgreSQL Write-ahead Log storage,

instances.dataVolumeClaimSpec.storageClassName allows you to set storage class for
PostgreSQL database storage,

e instances.tablespaceVolumes.dataVolumeClaimSpec.storageClassName allows you to set
storage class for PostgreSQL tablespace volumes,

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName allows you to set
storage class for the pgBackRest storage.

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode

Exec into the containers

If you want to examine the contents of a container “in place” using remote access to it, you can use
the kubectl exec command. It allows you to run any command or just open an interactive shell
session in the container. Of course, you can have shell access to the container only if container
supports it and has a “Running” state.

In the following examples we will access the container database of the cluster1-instancel-
b5mr-0 Pod.

e Run date command:

S kubectl exec -ti clusterl-instancel-b5mr-08 -c database -- date

. Expected output .

Wed Jun 14 11:18:47 UTC 2023

You will see an error if the command is not present in a container. For example, trying to run the
time command, which is not present in the container, by executing kubectl exec -ti
clusterl1-instancel-b5mr-0 -c database -- time would show the following result:

OCI runtime exec failed: exec failed: unable to start container process:
exec: "time": executable file not found in SPATH: unknown command
terminated with exit code 126

e Print log files to a terminal:

S kubectl exec -ti clusterl-instancel-b5mr-0 -c database -- cat
/pgdata/pg16/log/postgresql-*.1log

o Similarly, opening an Interactive terminal, executing a pair of commands in the container, and

exiting it may look as follows:

S kubectl exec -ti clusterl-instancel-b5mr-0 -c database -- bash
bash-4.4$ hostname

clusterl1-pxc-0

bash-4.4S 1ls /pgdata/pg16/log/

postgresql-Wed. log

bash-4.4$ exit

exit

$

Check the logs

Logs provide valuable information. It makes sense to check the logs of the database Pods and the
Operator Pod. Following flags are helpful for checking the logs with the kubectl logs command:

Flag Description

-c, -- Print log of a specific container in case of multiple containers in a Pod
container

<containe

r-name>

-f, -- Follows the logs for a live output

follow

--since= Print logs newer than the specified time, for example: --since="16s"
<time>

-- Print timestamp in the logs (timezone is taken from the container)

timestamp

S

=p), 55 Print previous instantiation of a container. This is extremely useful in case of container
previous restart, where there is a need to check the logs on why the container restarted. Logs of

previous instantiation might not be available in all the cases.

In the following examples we will access containers of the cluster1-instance1-b5mr-6 Pod.

e Check logs of the database container:

S kubectl logs clusteril-instancel-b5mr-0 --container database

e Check logs of the pgbackrest container:

S kubectl logs clusterl-instancel-b5mr-8 --container pgbackrest

o Filter logs of the database container which are not older than 600 seconds:

S kubectl logs clusterl-instancel-b5mr-0 --container database --since=600s

e Check logs of a previous instantiation of the database container, if any:

$ kubectl logs clusteri1-instancel-b5mr-0 --container database --previous

Increase pgBackRest log verbosity

The pgBackRest tool used for backups supports different log verbosity levels [4. By default, it logs
warnings and errors, but sometimes fixing backup/restore issues can be simpler when you get more

debugging information from it.

Log verbosity is controlled by pgBackRest —log-level-stderr (4 option.

You can add it to the deploy/backup.yaml file to use it with on-demand backups as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
name: backup1l
spec:
pgCluster: clusterT
repoName: repol
options:
- --log-level-stderr=debug

https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr

Manual management of database clusters
deployed with Percona Operator for
PostgreSQL

The purpose of the Operator is to automate database management tasks for you. However, you may
need to manage the database cluster manually. For example, to troubleshoot issues or for
maintenance.

The following sections explain how you can manage your cluster manually.

Disable health check probes for maintenance

Probes are tasks Kubernetes runs to gather information about the health and status of containers
running within Pods. They serve as a mechanism to ensure the system is running smoothly by
periodically checking the state of applications and services.

Kubernetes has various types of probes:

o Startup probe verifies whether the application within a container is started
e Liveness probe determines when to restart a Pod

¢ Readiness probe checks that the container is ready to start accepting traffic

Sometimes it's necessary to take a manual control over the postgres process for maintenance.
This means you need to disable a Kubernetes liveness probe so that it doesn't restart the database
container during the maintenance period.

Here's what you need to do:
1. Create a sleep-forever filein the data directory with the following command:
S kubectl exec clusteril-instance1-24b8-0 -- touch /pgdata/sleep-forever
2. Delete the Pod:
S kubectl delete pod clusterl-instancel1-24b8-0

3. After the Pod restarts, it won't start PostgreSQL. You can check it with the following command:

S kubectl logs clusteril-instance1-24b8-0 database

. Expected output .

The pgdata/sleep-forever file is detected, node entered an infinite sleep
If you want to exit from the infinite sleep, remove the pgdata/sleep-forever file

4. Now you can start PostgreSQL manually:

S kubectl exec clusteril-instance1-24b8-0 -- pg_ctl -D /pgdata/pgl17 start

. Expected output .

2025-04-081 16:27:41.850 UTC [1434] LOG: pgaudit extension initialized
2025-04-01 16:27:42.075 UTC [1434] LOG: redirecting log output to logging
collector process
2025-04-01 16:27:42.075 UTC [1434] HINT: Future log output will appear in
directory "log".

done

server started

5. When you are done with the maintenance, remove the sleep-forever file to re-enable the
liveness probe.

S kubectl exec clusterl1-instance1-24b8-0 -- rm /pgdata/sleep-forever

Stop reconciliation by putting a cluster into an
unmanaged mode

The Operator reconciles the database cluster to ensure its current state doesn'’t differ from the state
defined in the configuration. It can automatically install, update, or repair the cluster when needed.

By doing this, the Operator might interfere with your operations during the maintenance. Therefore,
you can put a cluster in an unmanaged mode to stop the Operator from reconciling the cluster at all.

Edit the deploy/cr.yaml Custom Resource manifest and set the spec.unmanaged optionto true:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:

name: clusteri
spec:

unmanaged: true

Apply the changes:

$ kubectl apply -f deploy/cr.yaml -n <namespace>

! Warning

Putting a cluster in an unmanaged mode doesn’t disable any of the health check probes already configured for
containers. The Operator is only responsible for configuring the probes, not for running them. Refer to the
Disabling_health check probes for maintenance section for the steps.

Override Patroni configuration

For a whole cluster

The Operator creates a ConfigMap called <cluster-name>-config to store a Patroni cluster
configuration. If you just edit the ConfigMap contents, the Operator will immediately rewrite and
remove your changes. To override anything in this ConfigMap and keep the changes, you need to
annotate it using a special annotation pgv2.percona.com/override-config.

Here is the example command for the cluster named cluster1:

S kubectl annotate cm cluster1-config pgv2.percona.com/override-config=true

. Expected output .

configmap/clusteri-config annotated

As long as the ConfigMap has this pgv2.percona.com/override-config annotation, the Operator
doesn’t rewrite your changes. You can edit the ConfigMap’s contents however you want.

! Warning

The Operator does not validate your configuration changes.

Before applying any changes, consult the Patroni documentation [to ensure your configuration is correct. This

will help you avoid issues caused by invalid settings.

It takes some time for your changes of ConfigMap to propagate to running containers. You can verify
if changes are propagated by checking the mounted file in containers. For example:

S kubectl exec -it clusterl1-instance1-24b8-8 -- cat /etc/patroni/~postgres-
operator_cluster.yaml

Operator doesn't apply a new configuration for Patroni automatically. You must run patronictl
reload <cluster_name> <pod-name> to apply it after your changes are propagated to the
container.

. Warning

Don't forget to remove this annotation once you've finished. It's not recommended to use this feature to
permanently override Patroni configuration. As long as this annotation exists, the Operator won't touch the
ConfigMap and you might have problems with your cluster.

To remove the annotation, use the following command:

S kubectl annotate cm clusteri-config pgv2.percona.com/override-config-

For an individual Pod

Operator creates a ConfigMap called <pod-name>-config to store Patroni instance configuration
for each Pod. If you just edit the ConfigMap contents, the Operator will immediately rewrite and
remove your changes. To override anything in these ConfigMaps and keep the changes, you need to
annotate them using a special annotation:

S kubectl annotate cm clusterl-instance1-24b8-config
pgv2.percona.com/override-config=true

https://patroni.readthedocs.io/en/latest/patroni_configuration.html

. Expected output .

configmap/cluster1-instancel1-24b8-config annotated

As long as the ConfigMap has the pgv2.percona.com/override-config annotation, the Operator
doesn’t rewrite your changes. You can edit the ConfigMap’s contents however you want.

! Warning

The Operator does not validate your configuration changes.

Before applying any changes, consult the Patroni documentation [4 to ensure your configuration is correct. This
will help you avoid problems caused by invalid settings.

It takes some time for your changes of ConfigMap to propagate to running containers. You can verify
if changes are propagated by checking the mounted file in containers for a Pod. For example:

S kubectl exec -it clusterl1-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_cluster.yaml

Operator doesn't apply a new configuration automatically. You must run patronictl reload
<cluster_name> <pod_name> to apply it after your changes are propagated to the container.

To find the cluster name, run:

S kubectl exec -it clusterl-instance1-24b8-0 -- patronictl list

https://patroni.readthedocs.io/en/latest/patroni_configuration.html

. Expected output .

Cluster: clusteri-ha (7523193408153182293) ------------—--—-—-——-—-———- +o—--—--—- to——-m—m—-
B et TP +

| Member | Host | Role | State
| TL | Lag in MB |

o R T it Fommm - do-m -
e e +

| cluster1-instance1-24b8-0 | cluster1-instancel-bw58-0.cluster1-pods | Replica |
streaming | 3 | 0 |

| clusteri-instancel-tmqj-0 | clusteri-instancel-tmgj-0.clusterl-pods | Leader |
running | 3 | |

| cluster1-instance1-xf85-0 | clusteri-instancel1-xf85-0.cluster1-pods | Replica |
streaming | 3 | 0 |

e T Fomm - tomm -
B St T +

. Warning

Don't forget to remove this annotation once you've finished. It's not recommended to use this feature to
permanently override Patroni configuration. As long as this annotation exists, the Operator won't touch the
ConfigMap and you might have problems with your cluster.

To remove the annotation, use the following command:

S kubectl annotate cm clusterl-instancel1-24b8-0 pgv2.percona.com/override-config-

Override PostgreSQL parameters

Use the patronictl show-config command to print PostgreSQL parameters used in the cluster.

For example:

S kubectl exec clusteri1-instance1-24b8-0 -- patronictl show-config

. Expected output

loop_wait: 10
postgresql:
parameters:

9]1{2})8"); if [! -z ${timestamp}]; then echo ${timestamp} >
/pgdata/latest_commit_timestamp.txt; fi'
archive_mode: 'on'
archive_timeout: 60s
huge_pages: 'off’
jit: 'off’
password_encryption: scram-sha-256
restore_command: pgbackrest --stanza=db archive-get %f "%p"
ssl: 'on'
ssl_ca_file: /pgconf/tls/ca.crt
ssl_cert_file: /pgconf/tls/tls.crt
ssl_key_file: /pgconf/tls/tls.key
track_commit_timestamp: 'true’
unix_socket_directories: /tmp/postgres
wal_level: logical
pg_hba:
- local all "postgres" peer
- hostssl replication "_crunchyrepl” all cert
- hostssl "postgres" "_crunchyrepl” all cert
- host all "_crunchyrepl" all reject
- host all "monitor" "127.0.0.0/8" scram-sha-256
- host all "monitor" "::1/128" scram-sha-256
- host all "monitor" all reject
- hostssl all "_crunchypgbouncer" all scram-sha-256
- host all "_crunchypgbouncer" all reject
- hostssl all all all md5
use_pg_rewind: true
use_slots: false
ttl: 30

archive_command: 'pgbackrest --stanza=db archive-push "%p" && timestamp=$(pg_waldump
"%p" | grep -oP "COMMIT \K[*;]+" | sed -E "s/([0-9]{4}-[0-9]1{2}-[0-9]{2}) ([©-9]{2}:[0-
9]1{2}:[0-9]{2}\.[0-9]{6}) (UTC|[\\+\\-]1[B-9]1{2})/\1T\2\3/" | sed "s/UTC/Z/" | tail -n 1
| grep -E "7[8-9]{4}-[0-9]{2}-[0-9]{2}T[B-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{6}(Z|[\+\-][0-

Use the patronictl edit-config command to change any PostgreSQL parameter.

For example, run the following command to change the restore_command parameter:

$ kubectl exec -it clusterl-instancel1-24b8-0 -- patronictl edit-config --pg

restore_command=/bin/true

. Expected output .

+++
@@ -9,7 +9,7 @@
huge_pages: 'off'’
jit: 'off'
password_encryption: scram-sha-256
= restore_command: pgbackrest --stanza=db archive-get %f "%p"
+ restore_command: /bin/true
ssl: 'on'
ssl_ca_file: /pgconf/tls/ca.crt
ssl_cert_file: /pgconf/tls/tls.crt

Apply these changes? [y/N]:

This command changes the shared_preload_libraries parameter:

S kubectl exec -it cluster1-instance1-24b8-0 -- patronictl edit-config --pg
shared_preload_libraries=""

. Expected output .

+++
@@ -11,7 +11,6 @@
password_encryption: scram-sha-256
pg_stat_monitor.pgsm_query_max_len: '2048'
restore_command: pgbackrest --stanza=db archive-get %f "%p"
= shared_preload_libraries: pg_stat_monitor
ssl: 'on'
ssl_ca_file: /pgconf/tls/ca.crt
ssl_cert_file: /pgconf/tls/tls.crt

Apply these changes? [y/N]:

. Warning

If you update any object controlled by the Operator, it'll reconcile the cluster and your configuration changes will
be reverted. You can put the cluster in an unmanaged mode to prevent this.

Override pg_hba entries

You may want to append entries to pg_hba. You can use the spec.patroni.postgresl.pg_hba
field to add your rules.

patroni:
dynamicConfiguration:
postgresql:
pg_hba:
- local all all trust
- reject all all all

The order of parameters matters in pg_hba.conf, so consider overriding the list completely. For
this, you can use the patronictl edit-config command

S kubectl exec -it clusteri1-instancel1-24b8-0 -- patronictl edit-config --set
postgresql.pg_hba="[

"local all all trust",

"“reject all all all"

] 1

. Warning

If you update any object controlled by the Operator, it'll reconcile the cluster and your configuration changes will
be reverted. You can put the cluster in an unmanaged mode to prevent this.

Reinitialize replicas

When you create a new Percona PostgreSQL cluster, the Operator uses the basebackup method to
create replicas for it. After the database instances are ready, the Operator automatically creates a full
backup. Once this backup finishes successfully, the Operator updates the Patroni configuration and
prepends (puts as the first method) pgBackRest inthe create_replica_methods list so that new
replicas are created using it.

A Warning

The Operator doesn’t run patronictl reload in old replicas even if Patroni instance configurations are updated
to put pgBackRest as the first method in the create_replica_methods list. For this configuration to run into
force, you need to either restart the Pods or manually run patronictl reload <cluster_name> on all old
replicas.

You may need to reinitialize cluster replicas. For example, if the data on the replica becomes
corrupted or inconsistent with the primary node. Reinitialization ensures the replica is rebuilt with the
correct data. Or, if the replica falls significantly behind the primary or encounters issues that prevent
successful synchronization, reinitialization can reset the replica to match the current state of the
primary.

This document provides the ways how to do it.

Reinitialize by deleting replica Pod and its
PersistentVolumeClaim

You can force reinitialization by deleting the Pod and its PersistentVolumeClaim:

S kubectl delete pvc/clusterl-instancel1-24b8-pgdata pod/clusteri-instancel-
24b8-0

. Expected output .

persistentvolumeclaim "cluster1-instancel1-24b8-pgdata" deleted
pod "clusterl-instance1-24b8-0" deleted

The Operator will reinitialize a replica using the method configured in this instance’s Patroni
configuration. This configuration is stored within the ConfigMap for the instance. Use the following
command to find it:

S kubectl get cm clusterl-instancel1-24b8-config

. Expected output .

NAME DATA AGE
clusterl-instance1-24b8-config 1 95m

Reinitialize with patronictl reinit

You can reinitialize a replica using the patronictl reinit command. Note that configuration in
ConfigMap might not have been applied to a running Patroni instance. The recommended approach
is to first run patronictl reload <cluster_name> and thenrun patronictl reinit.

For example:
1. List and verify Patroni configuration:

S kubectl exec -it clusteri1-instancel1-24b8-0 -- cat
/etc/patroni/~postgres-operator_instance.yaml

2. Find the cluster name:

S kubectl exec -it clusteril-instancel1-24b8-0 -- patronictl list

. Expected output .
Cluster: clusteri-ha (7523193408153182293) ------------—--——-——-———- LECE LT +-—--
------- T T TS
| Member | Host | Role |
State | TL | Lag in MB |
et e T T R +--
————————— Fomm et
| clusterl-instance1-24b8-0 | cluster1-instancel-bw58-0.cluster1-pods | Replica |
streaming | 3 | 0 |
| clusteri-instancel1-84xm-0 | clusteri-instancel-tmqj-0.clusterl1-pods | Leader |
running | 3 | |
| clusteri1-instancel-nv28-0 | cluster1-instancel1-xf85-0.cluster1-pods | Replica |
streaming | 3 | 0 |
o o - - - +--
--------- . T Ty

3. Reload the configuration:

S kubectl exec -it clusterl-instance1-24b8-06 -- patronictl reload
clusteri1-ha cluster1-instance1-24b8-0

. Expected output .
+ Cluster: cluster1-ha (7487948770079264836) -------=--=—----—-—-—-——-——- Pommcmcoos o
————————— o m et
| Member | Host | Role |
State | TL | Lag in MB |
e o e +--
————————— e T
| clusteri-instance1-24b8-0 | clusterl-instancel1-24b8-0.cluster1-pods | Replica |
streaming | 1 | 0 |
| clusteri-instancel1-84xm-0 | clusteri-instancel1-84xm-0.clusterl1-pods | Leader |
running |1 |
| clusteri-instancel-nv28-0 | clusteri-instancel-nv28-0.cluster1-pods | Replica |
streaming | 1 | 0 |
e ittt e T et +--
————————— Fomm et
Are you sure you want to reload members clusteri-instance1-24b8-8? [y/N]: vy
Reload request received for member clusterl-instance1-24b8-6 and will be processed
within 10 seconds

4. Reinitialize the replica:

$ kubectl exec -it clusterl-instance1-24b8-06 -- patronictl reinit
cluster1-ha clusteri-instance1-24b8-0

. Expected output

+ Cluster: clusteri-ha (7487948770079264836) --------=---=---—-——-—————- e

| clusterl1-instance1-24b8-0 | clusterl-instance1-24b8-0.clusterl1-pods |
| clusterl1-instancel1-84xm-0 | clusterl-instancel1-84xm-0.clusterl1-pods |

| clusterl1-instancel-nv28-0 | clusterl-instancel-nv28-0.clusterl1-pods |

—————— T e S o

| Member |

Role | State | TL | Lag in MB |
—————— et S e =
Replica | streaming | 1 |

Leader | running |1 |

Replica | streaming | 1 |

—————— e S ettt

Are you sure you want to reinitialize members clusterl1-instance1-24b8-07?

[y/N]: vy

Success: reinitialize for member clusterl-instance1-24b8-0

Configure create_replica_methods

The Operator uses basebackup and pgBackRest methods to create replicas by default. These
methods are defined within the create_replica_methods configuration block of a Patroni

instance.

If you want to change create_replica_methods list for any reason, you can use the

spec.patroni.create_replica_methods optioninthe deploy/cr.yaml Custom Resource

manifest:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
name: clusterl
spec:
patroni:
createReplicaMethods:
- basebackup
- pgbackrest

Apply this configuration:

S kubectl apply -f deploy/cr.yaml

The Operator updates Patroni instances’ ConfigMaps. You can check their configuration with this

command

S kubectl get configmap cluster1-instance1-24b8-config -o yaml

. Expected output

apiVersion: vi1
kind: ConfigMap
metadata:
name: clusterl-instance1-24b8-config
data:
patroni.yaml: |
Generated by postgres-operator. DO NOT EDIT UNLESS YOU KNOW WHAT YOU'RE DOING.
If you want to override the config, annotate this ConfigMap with
pgv2.percona.com/override-config=true
kubernetes: {}
postgresql:
basebackup:
- waldir=/pgdata/pg17_wal
create_replica_methods:

- basebackup
- pgbackrest
pgbackrest:
command: ''‘'bash'' ''-ceu'' ''--'"' "'install --directory --mode=0700
"${PGDATA?}"
&& exec "S@"'' ''-'' ''pgbackrest'' ''restore'' ''--delta'' ''--stanza=db''
"'--repo=1"'" ''--link-map=pg_wal=/pgdata/pgl17_wal'' ''--type=standby'"’

keep_data: true
no_leader: true
no_params: true
pgpass: /tmp/.pgpass
use_unix_socket: true
restapi: {}
tags: {}

After the ConfigMap is updated, it takes some time for changes to appear in mounted files in
containers. You can verify the updates by manually checking the file:

$ kubectl exec -it clusterl-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_instance.yaml

. Expected output

Generated by postgres-operator. DO NOT EDIT UNLESS YOU KNOW WHAT YOU'RE DOING.
If you want to override the config, annotate this ConfigMap with
pgv2.percona.com/override-config=true
kubernetes: {}
postgresql:

basebackup:

- waldir=/pgdata/pg17_wal

create_replica_methods:

- basebackup
- pgbackrest
pgbackrest:
command: '''bash'' ''-ceu'' ''--'' ''install --directory --mode=0700 "${PGDATA?}"
&& exec "S@"'' ''-'' ''pgbackrest'' ''restore'' ''--delta'' ''--stanza=db''
"'--repo=1"'" ''--link-map=pg_wal=/pgdata/pgl17_wal'' ''--type=standby'"’

keep_data: true
no_leader: true
no_params: true
pgpass: /tmp/.pgpass
use_unix_socket: true
restapi: {}
tags: {}

Though the Operator updates the ConfigMaps, it doesn’t automatically apply the new configuration

for Patroni. To make Patroni aware of the changes, reload its configuration on every instance with

the patronictl reload <cluster_name> <pod-name> command.

Reference

Custom Resource options

The Cluster is configured via the deploy/cr.yaml (7 file.

metadata

The metadata part of this file contains the following keys:

name (cluster1 by default) sets the name of your Percona Distribution for PostgreSQL Cluster;
it should include only URL-compatible characters [4, not exceed 22 characters, start with an

alphabetic character, and end with an alphanumeric character;

annotations.pgv2.percona.com/custom-patroni-version Kubernetes annotation [which

allows turning off automatic Patroni version detection by the Operator. You can use this
annotation to set the version manually (“3” for Patroni 3.x, “4” for Patroni 4.x).

finalizers.percona.com/delete-ssl if present, activates the Finalizer [4 which deletes
objects, created for SSL (Secret, certificate, and issuer) after the cluster deletion event (off by
default).

finalizers.percona.com/delete-pvc if present, activates the Finalizer [4 which deletes
Persistent Volume Claims [4 for the database cluster Pods and user Secrets after the deletion
event (off by default).

finalizers.percona.com/delete-backups if present, activates the Finalizer [4 which deletes
all the backups of the database cluster from all configured repos on cluster deletion event (off by
default). delete-backups finalizer is in tech preview state, and it is not yet recommended for
production environments.

Top level spec elements

The spec part of the deploy/cr.yaml [file contains the following:

crVersion

Version of the Operator the Custom Resource belongs to.

Value type Example

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

B string 2.8.0

metadata.annotations

The Kubernetes annotations [4 metadata to be set at a global level for all resources created by the

Operator.
Value type Example
D label example-annotation: value

metadata.labels

The Kubernetes labels [4 metadata to be set at a global level for all resources created by the
Operator.

Value type Example
D label example-label: value
tlsOnly

Enforce the Operator to use only Transport Layer Security (TLS) for both internal and external
communications.

Value type Example
@ boolean false
standby.enabled

Enables or disables running the cluster in a standby mode (read-only copy of an existing cluster,

useful for disaster recovery, etc).

Value type Example

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

@ boolean false

standby.host

Host address of the primary cluster this standby cluster connects to.

Value type Example
B string "<primary-ip>"
standby.port

Port number used by a standby copy to connect to the primary cluster.

Value type Example
B string "<primary-port>"
openshift

Set to true if the cluster is being deployed on OpenShift, set to false otherwise, or unset it for
auto-detection.

Value type Example

@ boolean true

autoCreateUserSchema

If setto true, the cluster will have automatically created schemas for the custom user defined in
the spec.users subsection for all of the databases listed for this specific user.

Value type Example

@ boolean true

standby. repoName

Name of the pgBackRest repository in the primary cluster this standby cluster connects to.

Value type Example

B string repol

secrets.customRootCATLSSecret.name

Name of the secret with the custom root CA certificate and key for secure connections to the
PostgreSQL server, see Transport Layer Security (TLS) for details.

Value type Example

8 string clusteri-ca-cert

secrets.customRootCATLSSecret.items

Key-value pairs of the key (a key from the secrets.customRootCATLSSecret.name secret) and
the path (name on the file system) for the custom root certificate and key. See Transport Layer
Security (TLS) for details.

Value type Example

= subdoc - key: “tls.crt”
path: “root.crt”

- key: “tls.key”
path: “root.key”

secrets.customTLSSecret.name

A secret with TLS certificate generated for external communications, see Transport Layer Security
(TLS). for details.

Value type Example

8 string clusteri-cert

secrets.customReplicationTLSSecret.name

A secret with TLS certificate generated for internal communications, see Transport Layer Security
(TLS) for details.

Value type Example
B string replicationl-cert
users.name

The name of the PostgreSQL user.

Value type Example
8 string rhino
users.databases

Databases accessible by a specific PostgreSQL user with rights to create objects in them (the option
is ignored for postgres user; also, modifying it can’t be used to revoke the already given access).

Value type Example
B string Z00
users.password. type

The set of characters used for password generation: can be either ASCII (default) or

AlphaNumeric.

Value type Example

8 string ASCII

users.options

The ALTER ROLE options other than password (the option is ignored for postgres user).

Value type Example
B string "SUPERUSER"
users.secretName

The custom name of the user’s Secret; if not specified, the default <clusterName>-pguser-
<userName> variant will be used.

Value type Example

B string "rhino-credentials”

users.grantPublicSchemaAccess

Grants access to the public schema to the user for all databases associated with this user.

Value type Example
B string false
databaseInitSqQL.key

Data key for the Custom configuration options ConfigMap [4 with the init SQL file, which will be

executed at cluster creation time.

Value type Example

8 string init.sql

databaseInitSQL.name

https://kubernetes.io/docs/concepts/configuration/configmap/

Name of the ConfigMap [4 with the init SQL file, which will be executed at cluster creation time.

Value type Example
B string cluster1-init-sql
pause

Setting it to true gracefully stops the cluster, scaling workloads to zero and suspending CronJobs;
setting it to false after shut down starts the cluster back.

Value type Example
B string false
unmanaged

Setting it to true stops the Operator’s activity including the rollout and reconciliation of changes
made in the Custom Resource; setting it to false starts the Operator’s activity back.

Value type Example

B string false

dataSource.postgresCluster.clusterName

Name of an existing cluster to use as the data source when restoring backup to a new cluster.

Value type Example

B string clustert

dataSource.postgresCluster.clusterNamespace

https://kubernetes.io/docs/concepts/configuration/configmap/

Namespace of an existing cluster used as a data source (is needed if the new cluster will be created
in a different namespace; needs the Operator deployed in multi-namespace/cluster-wide mode).

Value type Example

B string cluster1-namespace

dataSource.postgresCluster.repoName

Name of the pgBackRest repository in the source cluster that contains the backup to be restored to a

new cluster.
Value type Example
8 string repol

dataSource.postgresCluster.options

The pgBackRest command-line options for the pgBackRest restore command.

Value type Example

B string

dataSource.postgresCluster.tolerations.effect

The Kubernetes Pod tolerations [4 effect for data migration.

Value type Example

B string NoSchedule

dataSource.postgresCluster.tolerations.key

The Kubernetes Pod tolerations [key for data migration.

(

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B string role

dataSource.postgresCluster.tolerations.operator

The Kubernetes Pod tolerations [4 operator for data migration.

Value type Example

B string Equal

dataSource.postgresCluster.tolerations.value

The Kubernetes Pod tolerations [value for data migration.

Value type Example

B strin connection-poolers
p

dataSource.pgbackrest.stanza

Name of the pgBackRest stanza [to use as the data source when restoring backup to a new

cluster.
Value type Example
8 string db

dataSource.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object [4 with custom pgBackRest configuration, which will be

added to the pgBackRest configuration generated by the Operator.

Value type Example

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://pgbackrest.org/command.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

B string pgo-s3-creds

dataSource.pgbackrest.global

Settings, which are to be included in the global section of the pgBackRest configuration generated

by the Operator.
Value type Example
= subdoc /pgbackrest/postgres-operator/hippo/repol

dataSource.pgbackrest. repo.name

Name of the pgBackRest repository.

Value type Example

B string repol

dataSource.pgbackrest.repo.s3.bucket

The Amazon S3 bucket [4 or Google Cloud Storage bucket [4 name used for backups. Bucket name

should follow Amazon naming_rules or Google naming_rules, and additionally, it can’t contain dots.

Value type Example

8 string "my-bucket"

dataSource.pgbackrest.repo.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original
Amazon S3 cloud).

Value type Example

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://cloud.google.com/storage/docs/buckets

B string "s3.ca-central-1.amazonaws.com"

dataSource.pgbackrest.repo.s3.region

The AWS region [4 to use for Amazon and all S3-compatible storages.

Value type Example

@ boolean "ca-central-1"

dataSource.pgbackrest.tolerations.effect

The Kubernetes Pod tolerations [4 effect for pgBackRest at data migration.

Value type Example

B string NoSchedule

dataSource.pgbackrest.tolerations.key

The Kubernetes Pod tolerations [4 key for pgBackRest at data migration.

Value type Example

B string role

dataSource.pgbackrest.tolerations.operator

The Kubernetes Pod tolerations [4 operator for pgBackRest at data migration.

Value type Example

B string Equal

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

dataSource.pgbackrest.tolerations.value

The Kubernetes Pod tolerations [4 value for pgBackRest at data migration.

Value type Example

B string connection-poolers

dataSource.volumes.pgDataVolume.pvcName

The PostgreSQL data volume name for the Persistent Volume Claim [4 used for data migration.

Value type Example

B string cluster1

dataSource.volumes.pgDataVolume.directory

The mount point for PostgreSQL data volume used for data migration.

Value type Example

B string clusteri

dataSource.volumes.pgDataVolume.tolerations.effect

The Kubernetes Pod tolerations [4 effect for PostgreSQL data volume used for data migration.

Value type Example

B string NoSchedule

dataSource.volumes.pgDataVolume.tolerations.key

The Kubernetes Pod tolerations [4 key for PostgreSQL data volume used for data migration.

[

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B string role

dataSource.volumes.pgDataVolume.tolerations.operator

The Kubernetes Pod tolerations [4 operator for PostgreSQL data volume used for data migration.

Value type Example

8 string Equal

dataSource.volumes.pgDataVolume.tolerations.value

The Kubernetes Pod tolerations [value for PostgreSQL data volume used for data migration.

Value type Example

B string connection-poolers

dataSource.volumes.pgDataVolume.annotations

The Kubernetes annotations [4 metadata for PostgreSQL data volume used for data migration.

Value type Example

D label test-annotation: value

dataSource.volumes.pgDataVolume.labels

The Kubernetes labels [4 for PostgreSQL data volume used for data migration.

Value type Example

D label test-label: value

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

dataSource.volumes.pgWALVolume.pvcName

The PostgreSQL write-ahead logs volume name for the Persistent Volume Claim [4 used for data

migration.
Value type Example
B string clusteri

dataSource.volumes.pgWALVolume.directory

The mount point for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

8 string clustert

dataSource.volumes.pgWALVolume.tolerations.effect

The Kubernetes Pod tolerations [effect for PostgreSQL write-ahead logs volume used for data

migration.
Value type Example
B string NoSchedule

dataSource.volumes.pgWALVolume.tolerations.key

The Kubernetes Pod tolerations [4 key for PostgreSQL write-ahead logs volume used for data

migration.

Value type Example

8 string role

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

dataSource.volumes.pgWALVolume.tolerations.operator

The Kubernetes Pod tolerations [4 operator for PostgreSQL write-ahead logs volume used for data

migration.
Value type Example
B string Equal

dataSource.volumes.pgWALVolume.tolerations.value

The Kubernetes Pod tolerations [4 value for PostgreSQL write-ahead logs volume used for data

migration.
Value type Example
B string connection-poolers

dataSource.volumes.pgWALVolume.annotations

The Kubernetes annotations [4 metadata for PostgreSQL write-ahead logs volume used for data

migration.
Value type Example
D label test-annotation: value

dataSource.volumes.pgWALVolume. labels

The Kubernetes labels [4 for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

D label test-label: value

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

dataSource.volumes.pgBackRestVolume.pvcName

The pgBackRest volume name for the Persistent Volume Claim [4 used for data migration.

Value type Example

B string clusteri

dataSource.volumes.pgBackRestVolume.directory

The mount point for pgBackRest volume used for data migration.

Value type Example

B string cluster1

dataSource.volumes.pgBackRestVolume.tolerations.effect

The Kubernetes Pod tolerations [4 effect pgBackRest volume used for data migration.

Value type Example

B string NoSchedule

dataSource.volumes.pgBackRestVolume.tolerations.key

The Kubernetes Pod tolerations [key for pgBackRest volume used for data migration.

Value type Example

B string role

dataSource.volumes.pgBackRestVolume.tolerations.operator

The Kubernetes Pod tolerations [4 operator for pgBackRest volume used for data migration.

[

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B string Equal

dataSource.volumes.pgBackRestVolume.tolerations.value

The Kubernetes Pod tolerations [4 value for pgBackRest volume used for data migration.

Value type Example

B strin connection-poolers
p

dataSource.volumes.pgBackRestVolume.annotations

The Kubernetes annotations [4 metadata for pgBackRest volume used for data migration.

Value type Example

D label test-annotation: value

dataSource.volumes.pgBackRestVolume.labels

The Kubernetes labels [4 for pgBackRest volume used for data migration.

Value type Example
D label test-label: value
image

The PostgreSQL Docker image to use.

Value type Example

B string perconalab/percona-postgresql-operator:2.8.0-ppg17.6-1-postgres

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

imagePullPolicy

This option is used to set the policy [4 for updating PostgreSQL images.

Value type Example
B string Always
postgresVersion

The major version of PostgreSQL to use.

Value type Example
B int 16
port

The port number for PostgreSQL.

Value type Example
@ int 5432
expose. annotations

The Kubernetes annotations [4 metadata for PostgreSQL primary.

Value type Example

D label my-annotation: valuel

expose.labels

Set labels [for the PostgreSQL primary.

[

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Value type Example

D label my-label: value2

expose. type

Specifies the type of Kubernetes Service [4 for PostgreSQL primary.

Value type Example

B strin LoadBalancer
g

expose.loadBalancerClass

Define the implementation of the load balancer you want to use. This setting enables you to select a
custom or specific load balancer class instead of the default one provided by the cloud provider.

Value type Example

B string eks.amazonaws.com/nlb

expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there
is no limitations).

Value type Example

B string "10.0.0.08/8"

exposeReplicas.annotations

The Kubernetes annotations [4 metadata for PostgreSQL replicas.

Value type Example

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

D label my-annotation: valuel

exposeReplicas.labels

Set labels [for the PostgreSQL replicas.

Value type Example
D label my-label: value2
exposeReplicas.type

Specifies the type of Kubernetes Service [for PostgreSQL replicas.

Value type Example

B strin LoadBalancer
g

exposeReplicas.loadBalancerClass

Define the implementation of the load balancer you want to use. This setting enables you to select a
custom or specific load balancer class instead of the default one provided by the cloud provider.

Value type Example

B string eks.amazonaws.com/nlb

exposeReplicas.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there
is no limitations).

Value type Example

B string "10.0.0.0/8"

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Instances section

The instances section in the deploy/cr.yaml [4 file contains configuration options for PostgreSQL

instances. This section contains at least one cluster instance with a number of PostgreSQL instances
in it (cluster instances are groups of PostgreSQL instances used for fine-grained resources
assignment).

instances.metadata.labels

Set labels [for PostgreSQL Pods.

Value type Example
D label pg-cluster-label: cluster1
instances.name

The name of the PostgreSQL instance.

Value type Example

B string rs 0

instances.replicas

The number of Replicas to create for the PostgreSQL instance.

Value type Example
B int 3
instances.env.name

Name of an environment variable for PostgreSQL Pods. Read more about defining environment
variables in Kubernetes documentation (4.

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

Value type Example

B string MY_ENV

instances.env.value

The value for an environment variable.

Value type Example

B string 1000

instances.envFrom.secretRefName

Name of a Secret or a ConfigMap, key/values of which are used as environment variables for
PostgreSQL Pods.

Value type Example

B string instance-env-secret

instances.initContainer.image

Defines an image for an init container to run before the main container in the Pod. The init container
is typically used for setup tasks such as initializing filesystems, setting permissions, or preparing
configuration.

Value type Example

B string perconalab/percona-postgresql-operator:2.8.0

instances.initContainer.resources.limits.cpu

Kubernetes CPU limits [4 for an init container.

Value type Example

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

B string 2.0

instances.initContainer.resources.limits.memory

The Kubernetes memory limits [for an init container.

Value type Example

B string 4Gi

instances.initContainer.securityContext

Security settings for the init container. These settings control privileges, user/group IDs, and other
security-related options. For more details, see the Kubernetes documentation on SecurityContext [4

Value type Example

= subdoc runAsUser: 1001
runAsGroup: 1001
runAsNonRoot: true
privileged: false
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true

instances.resources. requests.cpu

Kubernetes CPU requests [4 for a PostgreSQL instance. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the

requested value for a resource.

Value type Example

B string 1.0

instances.resources. requests.memory

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Kubernetes memory requests [for a PostgreSQL instance. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B strin 361
g

instances.resources.limits.cpu

Kubernetes CPU limits [for a PostgreSQL instance.

Value type Example

B string 2.0

instances.resources.limits.memory

The Kubernetes memory limits [4 for a PostgreSQL instance.

Value type Example

B string 4Gi

instances.containers.replicaCertCopy.resources.requests.cpu

Kubernetes CPU requests [4 for a replica-cert-copy sidecar container. It must not exceed the

limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 100m

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

instances.containers.replicaCertCopy.resources.requests.memory

Kubernetes memory requests [4 fora replica-cert-copy sidecar container. It must not exceed
the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 120Mi

instances.containers.replicaCertCopy.resources.limits.cpu

Kubernetes CPU limits [4 for replica-cert-copy sidecar container.

Value type Example

B string 200m

instances.containers.replicaCertCopy.resources.limits.memory

The Kubernetes memory limits [4 for replica-cert-copy sidecar container.

Value type Example

B string 128Mi

instances.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread
Constraints (4.

Value type Example

B int 1

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

instances. topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

B string my-node-label

instances.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn't satisfy the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

B string DoNotSchedule

instances.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

D label postgres-operator.crunchydata.com/instance-set: instancel

instances.tolerations.effect

The Kubernetes Pod tolerations [4 effect for the PostgreSQL instance.

Value type Example

B string NoSchedule

instances.tolerations.key

The Kubernetes Pod tolerations [4 key for the PostgreSQL instance.

[

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B string role

instances.tolerations.operator

The Kubernetes Pod tolerations [operator for the PostgreSQL instance.

Value type Example

8 string Equal

instances.tolerations.value

The Kubernetes Pod tolerations [value for the PostgreSQL instance.

Value type Example

B string connection-poolers

instances.priorityClassName

The Kubernetes Pod priority class [4 for PostgreSQL instance Pods.

Value type Example

B string high-priority

instances.securityContext

A custom Kubernetes Security Context for a Pod [4 to be used instead of the default one.

Value type Example

= subdoc

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: s0:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json

supplementalGroups:

- 1001

sysctls:

- name: net.ipv4.tcp_keepalive_time
value: “660"

- name: net.ipv4.tcp_keepalive_intvl
value: “60"

instances.walVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the PostgreSQL Write-ahead Log

storage.
Value type Example
B string ReadWriteOnce

instances.walVolumeClaimSpec.storageClassName

Set the Kubernetes storage class [to use with the PostgreSQL Write-ahead Log storage

PersistentVolumeClaim 4.

Value type

B string

Example

standard

instances.walVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests [for the storage the PostgreSQL instance will use.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Value type Example

B string 161

instances.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the PostgreSQL storage.

Value type Example

B string ReadWriteOnce

instances.dataVolumeClaimSpec.storageClassName

Set the Kubernetes storage class [to use with PostgreSQL Cluster PersistentVolumeClaim (4 for

the PostgreSQL storage.

Value type Example

B string standard

instances.dataVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests [for the storage the PostgreSQL instance will use.

Value type Example

B string 161

instances.dataVolumeClaimSpec.resources.limits.storage

The Kubernetes storage limits [4 for the storage the PostgreSQL instance will use.

Value type Example

B string 5Gi

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

instances.tablespaceVolumes.name

Name for the custom tablespace volume.

Value type Example

B string user

instances.tablespaceVolumes.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the tablespace volume.

Value type Example

B string ReadWriteOnce

instances.tablespaceVolumes.dataVolumeClaimSpec.resources. requests
.storage

The Kubernetes storage requests [4 for the tablespace volume.

Value type Example

B string 161

instances.sidecars subsection

The instances.sidecars subsection in the deploy/cr.yaml [4 file contains configuration options

for custom sidecar containers which can be added to PostgreSQL Pods.

instances.sidecars.image

Image for the custom sidecar container for PostgreSQL Pods.

l

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Value type Example

B string busybox:latest

instances.sidecars.name

Name of the custom sidecar container for PostgreSQL Pods.

Value type Example

B strin testcontainer
g

instances.sidecars.imagePullPolicy

This option is used to set the policy [4 for the PostgreSQL Pod sidecar container.

Value type Example

B string Always

instances.sidecars.env

The environment variables set as key-value pairs [4 for the custom sidecar container for PostgreSQL

Pods.

Value type Example

= subdoc

instances.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps [4 for the custom sidecar container

for PostgreSQL Pods.

Value type Example

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

= subdoc

instances.sidecars.command

Command for the custom sidecar container for PostgreSQL Pods.

Value type Example

@) array ["/bin/sh"]

instances.sidecars.args

Command arguments for the custom sidecar container for PostgreSQL Pods.

Value type Example
[array ["-c", "while true; do trap 'exit ©' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]
Backup section

The backup section in the deploy/cr.yaml [file contains the following configuration options for the
regular Percona Distribution for PostgreSQL backups.

backups.enabled

Enables to turn on/off backups for the cluster. Use this option with caution. Read more in Disable

backups.
Value type Example
B string true

backups.trackLatestRestorableTime

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Enables or disables tracking the latest restorable time for latest successful backup (on by default). It
can be turned off to reduced S3 API usage.

Value type Example

@ boolean true

backups.pgbackrest.metadata.labels

Set labels [for pgBackRest Pods.

Value type Example

D label pg-cluster-label: cluster1

backups.pgbackrest.image

The Docker image for pgBackRest.

Value type Example

B string docker.io/percona/percona-pgbackrest:2.56.0-1

backups.pgbackrest.env.name

Name of an environment variable for pgBackRest Pods. Read more about defining environment
variables in Kubernetes documentation (4.

Value type Example

B string MY_ENV

backups.pgbackrest.env.value

The value for an environment variable.

(

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#backups-restore-backups-latest-restorable-time
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

Value type Example

B string 1000

backups.pgbackrest.envFrom.secretRefName

Name of a Secret or a ConfigMap, key/values of which are used as environment variables for
pgBouncer Pods.

Value type Example

8 string repo-host-env-secret

backups.pgbackrest.containers.pgbackrest.resources.requests.cpu

Kubernetes CPU requests [4 for a pgBackRest container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 150m

backups.pgbackrest.containers.pgbackrest.resources.requests.memory

Kubernetes memory requests [4 for a pgBackRest container. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 120Mi

backups.pgbackrest.containers.pgbackrest.resources.limits.cpu

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Kubernetes CPU limits [4 for a pgBackRest container.

Value type Example

B string 1.0

backups.pgbackrest.containers.pgbackrest.resources.limits.memory

The Kubernetes memory limits [4 for a pgBackRest container.

Value type Example

B strin 161
g

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.cp
u

Kubernetes CPU limits [4 for pgbackrest-config sidecar container.

Value type Example

B string 1.0

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.me
mory

The Kubernetes memory limits [4 for pgbackrest-config sidecar container.

Value type Example

B strin 161
g

backups.pgbackrest.containers.pgbackrestConfig.resources.requests.
cpu

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Kubernetes CPU requests [for a pgbackrest-config sidecar container. It must not exceed the

limit.
If you specify a limit and don’t specify a request, Kubernetes uses the specified limit as the

requested value for a resource.

Value type Example

150m

B string

backups.pgbackrest.containers.pgbackrestConfig.resources.requests.

memory

Kubernetes memory requests [4 for a pgbackrest-config sidecar container. It must not exceed

the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the

requested value for a resource.

Value type Example

8 string 120Mi

backups.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object [4 with custom pgBackRest configuration, which will be
added to the pgBackRest configuration generated by the Operator.

Value type Example

B string cluster1-pgbackrest-secrets

backups.pgbackrest. jobs.backoffLimit

The number of retries to make a backup with incremental pauses of 10 seconds, 20 seconds, etc.
between retries. By default it's @, which means that pgBackRest job Pod fails after first unsuccessful

attempt (causing creation of a new Pod on failure).

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

Value type Example

B int 2

backups.pgbackrest. jobs.restartPolicy

The Kubernetes Pod restart policy [4 for pgBackRest jobs.

Value type Example

B string OnFailure

backups.pgbackrest. jobs.priorityClassName

The Kubernetes Pod priority class [4 for pgBackRest jobs.

Value type Example

B string high-priority

backups.pgbackrest. jobs.resources.limits.cpu

Kubernetes CPU limits [for a pgBackRest job.

Value type Example

B int 200

backups.pgbackrest. jobs.resources.limits.memory

The Kubernetes memory limits [4 for a pgBackRest job.

Value type Example

B string 128Mi

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

backups.pgbackrest. jobs.resources.requests.cpu

Kubernetes CPU requests [for a pgBackRest job. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

8 string 150m

backups.pgbackrest. jobs.resources.requests.memory

Kubernetes memory requests [4 for pgBackRest job. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 120Mi

backups.pgbackrest. jobs.tolerations.effect

The Kubernetes Pod tolerations [effect for a backup job.

Value type Example

B string NoSchedule

backups.pgbackrest. jobs.tolerations.key

The Kubernetes Pod tolerations [4 key for a backup job.

Value type Example

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

B string role

backups.pgbackrest. jobs.tolerations.operator

The Kubernetes Pod tolerations [4 operator for a backup job.

Value type Example

B string Equal

backups.pgbackrest. jobs.tolerations.value

The Kubernetes Pod tolerations [value for a backup job.

Value type Example

B string connection-poolers

backups.pgbackrest. jobs.securityContext

A custom Kubernetes Security Context for a Pod [4 to be used instead of the default one.

Value type Example

= subdoc

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: s0:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
value: “660"
- name: net.ipv4.tcp_keepalive_intvl
value: “60"

backups.pgbackrest.global

Settings, which are to be included in the global section of the pgBackRest configuration generated
by the Operator.

Value type Example

= subdoc repol-retention-full: “14”
repol-retention-full-type: time
repol-path: /pgbackrest/postgres-operator/clusteri/repoT
repol-cipher-type: aes-256-cbc
repol-s3-uri-style: path
repo2-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo2
repo3-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo3
repo4-path: /pgbackrest/postgres-operator/clusteri-multi-repo/repo4

backups.pgbackrest.repoHost.sidecars.name

The name of a custom sidecar container for pgBackRest Pods.

Value type Example

B strin testcontainer
g

backups.pgbackrest.repoHost.sidecars.image

The image used to deploy a custom sidecar container for pgBackRest Pods.

Value type Example

B string busybox:latest

backups.pgbackrest.repoHost.sidecars.command

The command to use inside a custom sidecar container for pgBackRest Pods

Value type Example

B string ["sleep", "30d"]

backups.pgbackrest.repoHost.sidecars.securityContext

Security settings for the sifecar container. These settings control privileges, user/group IDs, and
other security-related options. For more details, see the Kubernetes documentation on
SecurityContext (4

Value type Example

8 string {}

backups.pgbackrest.repoHost.resources.requests.cpu

Kubernetes CPU requests [for a pgBackRest repo. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

8 string 150m

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

backups.pgbackrest.repoHost.resources.requests.memory

Kubernetes memory requests [4 for pgBackRest repo. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 120M1i

backups.pgbackrest.repoHost.resources.limits.cpu

Kubernetes CPU limits [4 for a pgBackRest repo.

Value type Example

B int 200

backups.pgbackrest.repoHost.resources.limits.memory

The Kubernetes memory limits [4 for a pgBackRest repo.

Value type Example

B string 128Mi

backups.pgbackrest.repoHost.priorityClassName

The Kubernetes Pod priority class [for pgBackRest repo.

Value type Example

B string high-priority

backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread
Constraints [4.

Value type Example

B int 1

backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

B string my-node-label

backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisf
iable

What to do with a Pod if it doesn't satisfy the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

B string ScheduleAnyway

backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelecto
r.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints [4.

Value type Example

D label postgres-operator.crunchydata.com/pgbackrest: ""

backups.pgbackrest.repoHost.affinity.podAntiAffinity

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

Value type Example

= subdoc

backups.pgbackrest.repoHost.tolerations.effect

The Kubernetes Pod tolerations [effect for pgBackRest repo.

Value type Example

B string NoSchedule

backups.pgbackrest.repoHost.tolerations.key

The Kubernetes Pod tolerations [4 key for pgBackRest repo.

Value type Example

B string role

backups.pgbackrest.repoHost.tolerations.operator

The Kubernetes Pod tolerations [4 operator for pgBackRest repo.

Value type Example

8 string Equal

backups.pgbackrest.repoHost.tolerations.value

The Kubernetes Pod tolerations [value for pgBackRest repo.

Value type Example

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

B string

connection-poolers

‘backups.pgbackrest.repoHost.securityContext’

A custom Kubernetes Security Context for a Pod [4 to be used instead of the default one.

Value type

= subdoc

Example

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: s0:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json

supplementalGroups:

- 1001

sysctls:

- name: net.ipv4.tcp_keepalive_time
value: “600”"

- name: net.ipv4.tcp_keepalive_intvl
value: “60"

backups.pgbackrest.manual. repoName

Name of the pgBackRest repository for on-demand backups.

Value type

B string

Example

repol

backups.pgbackrest.manual.options

The on-demand backup command-line options which will be passed to pgBackRest for on-demand

backups.

Value type

Example

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

B string --type=full

backups.pgbackrest.manual.initialDelaySeconds

The time to delay a backup start after the backup Pod is scheduled. The backup process wait for the
defined time before it connectsto the API server to start a backup.

Value type Example

| int 120

backups.pgbackrest.repos.name

Name of the pgBackRest repository for backups.

Value type Example

B string repol

backups.pgbackrest.repos.schedules. full

Scheduled time to make a full backup specified in the crontab format (4.

Value type Example

B string 0 0 * * 6

backups.pgbackrest.repos.schedules.differential

Scheduled time to make a differential backup specified in the crontab format [4.

Value type Example

B string 8 0 * * 6

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim [4 access modes for the pgBackRest Storage.

Value type Example

B string ReadWriteOnce

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName

Set the Kubernetes Storage Class [4 to use with the Percona Operator for PostgreSQL backups

stored on Persistent Volume.

Value type Example

8 string standard

backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests
.storage

The Kubernetes storage requests [for the pgBackRest storage.

Value type Example

B strin 1Gi
g

backups.pgbackrest.repos.s3.bucket

The Amazon S3 bucket [4 name used for backups

Value type Example

B string "my-bucket"”

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

backups.pgbackrest.repos.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original
Amazon S3 cloud).

Value type Example

B string "s3.ca-central-1.amazonaws.com"

backups.pgbackrest.repos.s3.region

The AWS region [4 to use for Amazon and all S3-compatible storages.

Value type Example

B string "ca-central-1"

backups.pgbackrest.repos.gcs.bucket

The Google Cloud Storage bucket [4 name used for backups.

Value type Example

B string "my-bucket"

backups.pgbackrest.repos.azure.container

Name of the Azure Blob Storage container [for backups.

Value type Example

B string my-container

backups.restore.tolerations.effect

The Kubernetes Pod tolerations [effect for the backup restore job.

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Value type Example

B string NoSchedule

backups.restore.tolerations.key

The Kubernetes Pod tolerations [4 key for the backup restore job.

Value type Example

B string role

backups.restore.tolerations.operator

The Kubernetes Pod tolerations [4 operator for the backup restore job.

Value type Example

B string Equal

backups.restore.tolerations.value

The Kubernetes Pod tolerations [4 value for the backup restore job.

Value type Example
B string connection-poolers
PMM section

The pmm section in the deploy/cr.yaml [file contains configuration options for Percona Monitoring

and Management.

pmm.enabled

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM 4.

Value type Example
@ boolean false
pmm.image

Percona Monitoring_and Management (PMM)_Client (4 Docker image.

Value type Example
B string percona/pmm-client:3.4.1
pmm.imagePullPolicy

This option is used to set the policy [4 for updating PMM Client images.

Value type Example
B string IfNotPresent
pmm.secret

Name of the Kubernetes Secret object [4 for the PMM Server password.

Value type Example
B string cluster1-pmm-secret
pmm.serverHost

Address of the PMM Server to collect data from the cluster.

Value type Example

https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

B string monitoring-service

pmm.customClusterName

A custom name to define for a cluster. PMM Server uses this name to properly parse the metrics and
display them on dashboards. Using a custom name is useful for clusters deployed in different data
centers - PMM Server connects them and monitors them as one deployment. Another use case is for
clusters deployed with the same name in different namespaces - PMM treats each cluster

separately.
Value type Example
B string postgresgl-cluster

pmm. resources.requests.cpu

Kubernetes CPU requests [for a PMM Client container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B strin 150m
g

pmm.resources.requests.memory

Kubernetes memory requests [4 for PMM Client container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 120Mi

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

pmm.resources.limits.cpu

Kubernetes CPU limits [4 for a PMM Client container.

Value type Example

i int 200

pmm.resources.limits.memory

The Kubernetes memory limits [4 for a PMM Client container.

Value type Example
B string 128Mi
pmm.querySource

Query source to track PostgreSQL statistics. Either pg_stat_monitor (pgstatmonitor, the default
value) or pg_stat_statements (pgstatstatements) can be used.

Value type Example
B string pgstatmonitor
pmm.postgresParams

Additional parameters which will be passed to the pmm-admin add postgresql command for
PostgreSQL Pods.

Value type Example

8 string

Proxy section

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

The proxy section in the deploy/cr.yaml [file contains configuration options for the pgBouncer [4
connection pooler for PostgreSQL.

proxy.pgBouncer.metadata.labels

Set |labels [4 for pgBouncer Pods.

Value type Example

D label pg-cluster-label: cluster1

proxy.pgBouncer.replicas

The number of the pgBouncer Pods to provide connection pooling.

Value type Example

B int 3

proxy.pgBouncer.image

Docker image for the pgBouncer [4 connection pooler.

Value type Example

B string docker.io/percona/percona-pgbouncer:1.24.1-1

proxy.pgBouncer.env.name

Name of an environment variable for pgBouncer Pods. Read more about defining environment
variables in Kubernetes documentation (4.

Value type Example

B string MY_ENV

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
http://pgbouncer.github.io/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

proxy.pgBouncer.env.value

The value for an environment variable.

Value type Example

B string 1000

proxy.pgBouncer.envFrom.secretRefName

Name of a Secret or a ConfigMap, key/values of which are used as environment variables for
pgBouncer Pods.

Value type Example

B string pgbouncer-env-secret

proxy.pgBouncer.exposeSuperusers

Enables or disables exposing superuser user through pgBouncer.

Value type Example

@ boolean false

proxy.pgBouncer.resources.requests.cpu

Kubernetes CPU requests [4 for a pgBouncer container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 150m

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

proxy.pgBouncer.resources.requests.memory

Kubernetes memory requests [4 for a pgBouncer container. It must not exceed the limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 120M1i

proxy.pgBouncer.resources.limits.cpu

Kubernetes CPU limits [4 for a pgBouncer container.

Value type Example

B string 200m

proxy.pgBouncer.resources.limits.memory

The Kubernetes memory limits [4 for a pgBouncer container.

Value type Example

B string 128Mi

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.cpu

Kubernetes CPU limits [4 for pgbouncer-config sidecar container.

Value type Example

B string 1.0

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.memory

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

The Kubernetes memory limits [4 for pgbouncer-config sidecar container.

Value type Example

B string 1Gi

proxy.pgBouncer.containers.pgbouncerConfig.resources.requests.cpu

Kubernetes CPU requests [4 for a pgbouncer-config sidecar container. It must not exceed the
limit.

If you specify a limit and don't specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 150m

proxy.pgBouncer.containers.pgbouncerConfig.resources.requests.memo
ry

Kubernetes memory requests [4 for a pgbouncer-config sidecar container. It must not exceed the

limit.

If you specify a limit and don’t specify a request, Kubernetes uses the specified limit as the
requested value for a resource.

Value type Example

B string 120Mi

proxy.pgBouncer.expose.type

Specifies the type of Kubernetes Service [4 for pgBouncer.

Value type Example

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

B string ClusterIP

proxy.pgBouncer.expose.annotations

The Kubernetes annotations [4 metadata for pgBouncer.

Value type Example

D label my-annotation: valuel

proxy.pgBouncer.expose. labels

Set labels [for the pgBouncer Service.

Value type Example

D label pg-cluster-label: cluster1

proxy.pgBouncer.expose.loadBalancerClass

Define the implementation of the load balancer you want to use. This setting enables you to select a
custom or specific load balancer class instead of the default one provided by the cloud provider.

Value type Example

B string eks.amazonaws.com/nlb

proxy.pgBouncer.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there
is no limitations).

Value type Example

B string "10.0.0.0/8"

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

proxy.pgBouncer.affinity.podAntiAffinity

Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity.

Value type Example

= subdoc

‘proxy.pgBouncer.securityContext’

A custom Kubernetes Security Context for a Pod [to be used instead of the default one.

Value type Example

= subdoc fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
type: spc_t
level: s0:c123,c456
seccompProfile:
type: Localhost
localhostProfile: localhost/profile.json

supplementalGroups:

- 1001

sysctls:

- name: net.ipv4.tcp_keepalive_time
value: “660"

- name: net.ipv4.tcp_keepalive_intvl
value: “60"

proxy.pgBouncer.config

Custom configuration options for pgBouncer. Please note that configuration changes are
automatically applied to the running instances without validation, so having an invalid config can
make the cluster unavailable.

Value type Example

= subdoc global:
pool_mode: transaction

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

proxy.pgBouncer.sidecars subsection

The proxy.pgBouncer.sidecars subsection in the deploy/cr.yaml [4 file contains configuration

options for custom sidecar containers which can be added to pgBouncer Pods.

proxy.pgBouncer.sidecars.image

Image for the custom sidecar container for pgBouncer Pods.

Value type Example

B string mycontaineri:latest

proxy.pgBouncer.sidecars.name

Name of the custom sidecar container for pgBouncer Pods.

Value type Example

B strin testcontainer
g

proxy.pgBouncer.sidecars.imagePullPolicy

This option is used to set the policy [4 for the pgBouncer Pod sidecar container.

Value type Example

B string Always

proxy.pgBouncer.sidecars.env

The environment variables set as key-value pairs [4 for the custom sidecar container for pgBouncer
Pods.

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/

Value type Example

= subdoc

proxy.pgBouncer.sidecars.envFrom

The environment variables set as key-value pairs in ConfigMaps [4 for the custom sidecar container

for pgBouncer Pods.

Value type Example

= subdoc

proxy.pgBouncer.sidecars.command

Command for the custom sidecar container for pgBouncer Pods.

Value type Example

3 array ["/bin/sh"]

proxy.pgBouncer.sidecars.args

Command arguments for the custom sidecar container for pgBouncer Pods.

Value type Example

[1 array ["-c", "while true; do trap 'exit @' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Patroni Section

The patroni section in the deploy/cr.yaml [4 file contains configuration options to customize the

PostgreSQL high-availability implementation based on Patroni (4.

Value type Example

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://patroni.readthedocs.io/

B int 3

patroni.syncPeriodSeconds

How often to perform liveness/readiness probes [for the patroni container (in seconds).

Value type Example

B int 3

patroni.leaderlLeaseDurationSeconds

Initial delay for liveness/readiness probes [4 for the patroni container (in seconds).

patroni.dynamicConfiguration

Custom PostgreSQL configuration options. Please note that configuration changes are automatically
applied to the running instances without validation, so having an invalid config can make the cluster

unavailable.
Value type Example
= subdoc postgresql:

parameters:
max_parallel_workers: 2
max_worker_processes: 2
shared_buffers: 1GB
work_mem: 2MB

patroni.switchover.enabled

Enables or disables manual change of the cluster primary instance.

Value type Example

B string true

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes

patroni.switchover.targetInstance

The name of the Pod that should be set as the new primary. When not specified, the new primary will

be selected randomly.

Value type Example

B string

patroni.createReplicaMethods

Defines available replica creation methods and the order of executing them during a cluster start or
reinitialisation. Patroni will stop on the first one that returns 0.

By default, pg_basebackup is used to create replicas during a new cluster deployment. After the
Operator makes an initial backup, it updates the Patroni ConfigMap assign the pgBackRest as the
first item in the list. This configuration is not propagated to Patroni itself until you restart the
database instance Pods or manually reload Patroni configuration.

In the same way, after you define the replica set methods and apply the configuration, the Operator
updates the Patroni ConfigMap. You must manually reload Patroni configuration of every database
instance to make Patroni aware of the changes. Read more about setting replica methods in the
Configure create_replica_methods section.

Value type Example
B string - pgbackrest
- basebackup

Custom extensions Section

The extensions section in the deploy/cr.yaml [file contains configuration options to manage

PostgreSQL extensions.

extensions. image

Image for the custom PostgreSQL extension loader sidecar container.

[

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Value type Example

B string docker.io/percona/percona-postgresql-operator:2.8.0

extensions. imagePullPolicy

Policy [4 for the custom extension sidecar container.

Value type Example

B string Always

extensions.storage.type

The cloud storage type used for backups. Only s3 type is currently supported.

Value type Example

B string s3

extensions.storage.bucket

The Amazon S3 bucket [4 name for prepackaged PostgreSQL custom extensions.

Value type Example

B string pg-extensions

extensions.storage.region

The AWS region [4 to use.

Value type Example

B string eu-central-1

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

extensions.storage.endpoint

The S3 endpoint [4 to use.

Value type Example

B string s3.eu-central-1.amazonaws.com

extensions.storage.forcePathStyle

When set to true, enforces path-style access method of constructing S3 URLs, where the bucket
name appears in the path portion of the URL. Default false value means the Operator uses the
virtual-hosted-style for accessing S3 storage, where the bucket name is part of the domain name.

Value type Example

@ boolean false

extensions.storage.disableSSL

When set to true, instructs the Operator to skip TLS verification when accessing the storage. Can
be used if your storage endpoint uses self-signed certificates or doesn't support TLS to allow
successful downloads.

Value type Example

@ boolean false

extensions.sto rage.secret.name

The Kubernetes secret [4 for the custom extensions storage. It should contain ANS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY keys.

Value type Example

B string clusterl-extensions-secret

https://docs.aws.amazon.com/general/latest/gr/s3.html
https://kubernetes.io/docs/concepts/configuration/secret/

extensions.builtin.pg_stat_monitor

Enable or disable pg_stat_monitor [4 PostgreSQL extension.

Value type Example

@ boolean true

extensions.builtin.pg_stat_statements

Enable or disable pg_stat_statements [4 PostgreSQL extension.

Value type Example

@ boolean false

extensions.builtin.pg_audit

Enable or disable PGAudit [4 PostgreSQL extension.

Value type Example

@ boolean true

extensions.builtin.pgvector

Enable or disable pgvector [4 PostgreSQL extension. This extension is not compatible with
PostgreSQL 12!

Value type Example

@ boolean false

extensions.builtin.pg_repack

Enable or disable pg_repack [4 PostgreSQL extension.

https://docs.percona.com/pg-stat-monitor/index.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.pgaudit.org/
https://github.com/pgvector/pgvector
https://github.com/reorg/pg_repack

Value type Example
@ boolean false
extensions.custom.name
Name of the PostgreSQL custom extension.
Value type Example
B string pg_cron
extensions.custom.version
Version of the PostgreSQL custom extension.
Value type Example

B string

1.6.1

Backup Resource Options

A Backup resource is a Kubernetes object that tells the Operator how to create and manage your
database backups. The deploy/backup.yaml file is a template for creating backup resources when
you make an on-demand backup. It defines the PerconaPGBackup resource.

This document describes all available options that you can use to customize your backups.

apiVersion

Specifies the API version of the Custom Resource. pgv2.percona.com indicates the group, and v2
is the version of the API.

kind

Defines the type of resource being created: PerconaPGBackup .

metadata

The metadata part of the deploy/backup.yaml contains metadata about the resource, such as its
name and other attributes. It includes the following keys:

e name - The name of the backup resource used to identify it in your deployment. You also use the
backup name for the restore operation.

spec
This subsection includes the configuration of a backup resource.

pgCluster

Specifies the name of the PostgreSQL cluster to back up.

Value type Example

B string cluster1

repoName

Specifies the name of the pgBackRest repository where to save a backup. It must match the name
you specified in the spec.backups.pgBackRest.repos subsection of the deploy/cr.yaml file.

Value type Example
B string repol
options

You can customize the backup by specifying different command line options supported by

pgBackRest :octicons-external-link-16:.

Value type Example

B string --type=full

https://pgbackrest.org/configuration.html

Restore Resource Options

A Restore resource is a Kubernetes object that tells the Operator how to restore your database from
a specific backup. The deploy/restore.yaml file is a template for creating restore resources. It
defines the PerconaPGRestore resource.

This document describes all available options that you can use to customize a restore.

apiVersion

Specifies the API version of the Custom Resource. pgv2.percona.com indicates the group, and v2
is the version of the API.

kind

Defines the type of resource being created: PerconaPGRestore.

metadata

The metadata part of the deploy/restore.yaml contains metadata about the resource, such as its
name and other attributes. It includes the following keys:

e name - The name of the restore resource used to identify it in your deployment. You use this name
to track the restore operation status and view information about it.

spec
This subsection includes the configuration of a restore resource.

pgCluster

Specifies the name of the PostgreSQL cluster to restore.

Value type Example

B string restorel

repoName

Specifies the name of one of the 4 pgBackRest repositories, already configured in the
backups.pgbackrest.repos subsection of the deploy/cr.yaml file.

Value type Example
B string repol
options

Specify the command line options supported by pgBackRest :octicons-external-link-16:. For example,

to make a point-in-time restore.

Value type Example

B string --type=time
--target=YYYY-MM-DD HH:MM:DD +00

https://pgbackrest.org/configuration.html

Secrets Resource options

A Kubernetes Secret is an object used to store sensitive data, such as passwords, tokens, or keys in
a secure and manageable way. Unlike ConfigMaps, Secrets are specifically designed to hold
confidential information and can be mounted as volumes or injected into environment variables
within Pods.

apiVersion

Specifies the API version of the Custom Resource.

kind

Defines the type of resource being created: Secret.

metadata.name

Contains the metadata about the resource, such as its name.

type

Defines the type of data stored within the Secret resource. Opaque type signals to Kubernetes and to
the Operator that the content of the secret is custom and unstructured.

stringData

The data that you pass to the Operator within the Secret.

Value type Example

B string PMM_SERVER_TOKEN

Percona certified images

This page lists Percona'’s certified Docker images that you can use with Percona Operator for
PostgreSQL 2.8.0.

To find images for a specific Operator version, see Retrieve Percona certified images

Images released with the Operator version 2.8.0:

Image Digest

percona/percona- e34a185e1b295ff627facd3cfbdfc31f32bab714eac550de5e6da00abd9053e2
postgresql-operator:2.8.0
(x86_64)

percona/percona- 18445bd761ac3f77901f0e9eddd79b295d28b779779a29bb2d69eb51¢c32e3815
postgresql-operator:2.8.0
(ARM64)

percona/percona- ce91a339a511d91d9f1946708d7ca326572796b642d2a022a1d52a2adff8a08b
distribution-
postgresql:17.6-1

percona/percona- balaede456a938f85c9614bb70c50ce264ec68b659917a3a0847112e42bc9259
distribution-
postgresql:16.10-1

percona/percona- 8280ba2410235e8266761004a2f180fe3999203e69772eb822959¢f1849bd967
distribution-
postgresql:15.14-1

percona/percona- 052e7fd765b790ad2321675e8f2b273fe705512afda5004c4d2a4da78489bfb0
distribution-
postgresql:14.19-1

percona/percona- 2989dcc4919¢8381dc970b2286dadec45¢c8a53067b48f2bcfff7c7c042b3a654
distribution-
postgresql:13.22-1

percona/percona- 3322136e6e54214255601586be8f610677fe51a494d3a002cabfacd233258fab
postgresql-operator:2.8.0-
ppg17.6-postgres-

gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg16.10-postgres-
gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg15.14-postgres-
gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg14.19-postgres-
gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg13.22-postgres-
gis3.3.8

percona/percona-
pgbouncer:1.24.1-1
(x86_64)

percona/percona-
pgbouncer:1.24.1-1
(ARM64)

percona/percona-
pgbackrest:2.56.0-1
(x86_64)

percona/percona-
pgbackrest:2.56.0-1
(ARM64)

percona/pmm-
client:2.44.1-1

percona/pmm-client:3.4.1
(x86_64)

2d5f9ac5a84129e81b9%9ab8df25abce712223¢c358847afed3637fb7063a3e4a8f

e7f5fda3cf7d2fab028b3fb70636c9b3b11fe6b89a9f31970d2792bd8f48d8ca

3f69534a0df0b608d68808df04618222e4a20c1d1567462e4482f07b86349806

cd5a2a1057708fac5dda28d0ce47006cdbf865e6ffef1ac2df74065b95258fd3

39bd093ec83cadeaeb93b43b286d39daaedcc4b3b32956d627d242d30a5ad6f5

84d34843180d852182790ce6175f1407a0438b3a415a21741212701706808ac0

387469090be8e009e17cc07903aa28aalc748ce1cc385bd69e88de3762657877

29290808bdeb17a49c90f2ce3ccc75f3bfab43e96e160320baf16cb557d165ee

52a8fb5e8f912eef1ff8a117ea323c401e278908ce29928dafc23fac1db4f1e3

1c59d7188f8404e0294f4bfb3d2¢c3600107f808a023668a170a6b8036c56619b

percona/pmm-client:3.4.1 2d23ba3e6f0ae88201be15272¢5038d7¢38f382ad8222c¢d93f094b5a20b854a5
(ARM64)

For older versions, please refer to the old releases documentation archive [4).

https://docs.percona.com/legacy-documentation/

Versions compatibility

Versions of the cluster components and platforms tested with different Operator releases are shown
below. Other version combinations may also work but have not been tested.

Cluster components:

Operator PostgreSQL pgBackRest (4 pgBouncer [§
4

2.8.0 13-17 2.56.0 1.24.1

2.7.0 13-17 2.55.0 1.24.1

2.6.0 13-17 2.54.2 for PostgreSQL 13-16 and 1.24.0 for PostgreSQL 13-16 and
17.4, 17.2,
2.54.0 for PostgreSQL 17.2 1.23.1 for PostgreSQL 17

2.5.1 12-16 2.54.2 1.24.0

2.5.0 12-16 2.53-1 1.23.1

2.4.1 12-16 2.51 1.22.1

2.4.0 12-16 2.51 1.22.1

2.3.1 12-16 2.48 1.18.0

2.3.0 12-16 2.48 1.18.0

2.2.0 12-15 2.43 1.18.0

2.1.0 12-15 2.43 1.18.0

2.0.0 12-14 2.41 1.17.0

1.6.0 12-14 2.50 1.22.0

1.5.1 12-14 2.47 1.20.0

—_
(€]
o

12-14 2.47 1.20.0

https://www.postgresql.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html

1.4.0 12-14 2.43 1.18.0

1.3.0 12-14 2.38 1.17.0

1.2.0 12-14 2.37 1.16.1

1.1. 12-14 2.34 1.16.0 for PostgreSQL 12,

1.16.1 for other versions
1.0.0 12-13 2.33 1.13.0
Platforms:

Operator KE (4 EKS (4 Openshift Azure Kubernetes Minikube
K4 Service (AKS) (4 KA

2.8.0 1.31-1.33 1.31-1.34 416-4.20 1.32-1.34 1.37.0

2.7.0 1.30-1.32 1.30-1.33 415-4.19 1.30-1.33 1.36.0

2.6.0 1.29-1.31 1.29-1.32 414-4.18 1.29-1.31 1.35.0

2.5.1 1.28-1.30 1.28-1.30 4.13.46 - 1.28-1.30 1.33.1
4.16.7

2.5.0 1.28-1.30 1.28-1.30 4.13.46 - 1.28-1.30 1.33.1
416.7

2.4.1 1.27-1.29 1.27-1.30 4.12.59 - - 1.33.1
4.15.18

2.4.0 1.27-1.29 1.27-1.30 4.12.59 - - 1.33.1
4.15.18

2.3.1 1.24-1.28 1.24-1.28 4.11.55- - 1.32
414.6

2.3.0 1.24-1.28 1.24-1.28 411.55- - 1.32

4.14.6

https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

N

o

N

o

N
o

—
o

—

—
o

—_
ESN

o

—_
w

o

—

o

—
—

o

—
o

1.23-1.26

1.23-1.25

1.22-1.25

1.26-1.29

1.24-1.28

1.24-1.28

1.22-1.25

1.21-1.24

1.19-1.22

1.19-1.22

1.17-1.21

1.23-1.27

1.23-1.25

1.26-1.29

1.24-1.28

1.24-1.28

1.22-1.25

1.20-1.22

1.19-1.21

1.18-1.21

1.21

4.12.57 -
4.15.13

411-4.14

4.11-4.14

4.10-4.12

4.7-4.10

47-4.10

47-49

46-48

https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html

Copyright and licensing information

Documentation licensing

Percona Operator for PostgreSQL documentation is (C)2009-2023 Percona LLC and/or its affiliates
and is distributed under the Creative Commons Attribution 4.0 International License [4.

https://creativecommons.org/licenses/by/4.0/

Trademark policy

This Trademark Policy [4 is to ensure that users of Percona-branded products or services know that

what they receive has really been developed, approved, tested and maintained by Percona.
Trademarks help to prevent confusion in the marketplace, by distinguishing one company’s or
person’s products and services from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB,
XtraBackup, Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons
and logos associated with these marks. Both the unregistered and registered marks of Percona are
protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product,
service, website, or other use is not permitted without Percona’s written permission with the
following three limited exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a
bona fide Percona product.

Second, when Percona has released a product under a version of the GNU General Public License
(“GPL"), you may use the appropriate Percona mark when distributing a verbatim copy of that
product in accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona
software that has been modified with minor changes for the sole purpose of allowing the software to
operate on an operating system or hardware platform for which Percona has not yet released the
software, provided that those third party changes do not affect the behavior, functionality, features,
design or performance of the software. Users who acquire this Percona-branded software receive
substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example,
if Percona believes that your modification is beyond the scope of the limited license granted in this
Policy or that your use of the Percona mark is detrimental to Percona, Percona will revoke this
authorization. Upon revocation, you must immediately cease using the applicable Percona mark. If
you do not immediately cease using the Percona mark upon revocation, Percona may take action to
protect its rights and interests in the Percona mark. Percona does not grant any license to use any
Percona mark for any other modified versions of Percona software; such use will require our prior
written permission.

https://www.percona.com/trademark-policy

Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to
truncate, modify or otherwise use any Percona mark as part of your own brand. For example, if XYZ
creates a modified version of the Percona Server, XYZ may not brand that modification as “XYZ
Percona Server” or “Percona XYZ Server”, even if that modification otherwise complies with the third
exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy,
as amended from time to time. For instance, any mention of Percona trademarks should include the
full trademarked name, with proper spelling and capitalization, along with attribution of ownership to
Percona Inc. For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is
acceptable to omit the word “Percona” for brevity on the second and subsequent uses, where such
omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy,

please contact trademarks@percona.com for assistance and we will do our very best to be helpful.

mailto:trademarks@percona.com

Release Notes

Percona Operator for PostgreSQL Release
Notes

Percona Operator for PostgreSQL 2.8.0 (2025-11-13)

e Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

e Percona Operator for PostgreSQL 2.6.0 (2025-03-17),

e Percona Operator for PostgreSQL 2.5.1 (2024-03-03)

e Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

e Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

e Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

e Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

e Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

e Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

e Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04),

e Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Percona Operator for PostgreSQL 2.8.0
(2025-11-13)

C Get started with the Operator >)

Release Highlights

This release provides the following features and improvements:

Custom PostgreSQL user credentials are now fully respected by the
Operator

You no longer have to define full login and connection information within a Secret to have the
Operator use it. Now you can set only the password. The Operator generates the missing details that
it needs automatically using the values from the Custom Resource. Also, if you name your Secret in
the format that the Operator expects such as <clusterName>-pguser-<userName> — the Operator
will automatically detect and use it without needing an explicit reference in the Custom Resource.

However, if you choose a custom name for the Secret, you must still reference it explicitly in the
Custom Resource under the users[].secretName field. This ensures the Operator can locate and
apply it correctly.

Read more about managing user passwords in the documentation.

This enhancement makes the management of user credentials more straightforward.

Ability to use huge pages

PostgreSQL can now use huge pages if they are enabled for your Kubernetes cluster. Instruct the
Operator to use huge pages when deploying a PostgreSQL cluster with this configuration:

spec:
instances:
- name:. instanceT
resources:
limits:

hugepages-2Mi: 16Mi
memory: 4Gi

This improvement leads to a more efficient memory utilization and improved performance. Learn
more about huge pages and their use in the Huge pages chapter.

Expanded S3 compatibility for custom extensions

Some S3-compatible services (like MinlO or Ceph) require path-style access instead of virtual-hosted
style. Or they may use self-signed certificates or not support TLS.

To address these issues, you can now fine-tune the Operator with these new options:

e forcePathStyle enforces path-style access instead of virtual-hosted style

e disableSSL disables SSL verification to allow successful downloads.

extensions:
image: docker.io/perconalab/percona-postgresql-operator:main
storage:

.....

forcePathStyle: false
disableSSL: false

This improvement enables you to use a wider range of S3-compatible storage services with the
Operator for storing custom extensions.

Changed Patroni version management

The Operator no longer runs a temporary Pod cluster_name-patroni-version-check to identify
the Patroni version during cluster initialization.

Instead, it uses the patronictl CLI tool to connect to a database Pod and detect the Patroni
version. The detected version is recorded in the pgv2.percona.com/patroni-version annotation
on the cluster resource and is added to the resource status.

The Operator standardizes on Patroni 4 as the only supported version and no longer honors Patroni
version overrides via the pgv2.percona.com/custom-patroni-version annotation.

However, if your Custom Resource is still at version 2.7.0, the Operator 2.8.0 will continue to run a
temporary Pod to check Patroni version and use Patroni 3 if specified via the annotation for
backward compatibility. But after you upgrade the Custom Resource to version 2.8.0, the
pgv2.percona.com/custom-patroni-version annotation is ignored, and Patroni 4 is always used.

This change eliminates ambiguity and ensures your cluster is deployed with a modern high-
availability implementation.

Official Docker image for PostgreSQL images

The Operator now uses the official Percona Docker images for Percona Distribution for PostgreSQL,
with the image path percona/percona-distribution-postgresql:<postgresql-version>.

Because of this transition, the Operator is compatible with and supports only the following specific
PostgreSQL versions:

¢ Percona Distribution for PostgreSQL 17.5.2,17.6.2

Percona Distribution for PostgreSQL 16.10

Percona Distribution for PostgreSQL 15.14

Percona Distribution for PostgreSQL 14.19

Percona Distribution for PostgreSQL 13.22

Attempting to use the Operator with other PostgreSQL versions or custom images is not supported.

Changelog

New features

e KB8SPG-730 - Added the status.observedGeneration field to the Custom Resource Definition to
improve observability and ensure the controller successfully reconciled the latest changes to the
cluster.

o K8SPG-752 - Allowed setting loadBalancerClass service type and use a custom implementation of
a load balancer rather than the cloud provider default one.

e K8SPG-768 Introduced a mechanism to prevent excessive logging caused by continuous pod
annotation updates for suggested volume sizing. The Operator now skips updating the Pod
annotation with the suggested volume size unless the auto-growable disk feature is explicitly
configured. This significantly reduces redundant logs and unnecessary load on both the
Kubernetes API and the logging pipeline.

o K8SPG-832 - Users can now specify custom sidecar containers for the repo-host Pod, enabling
seamless integration with external tools, storage systems, or observability agents. This enhances
flexibility in backup workflows without modifying the Operator’s core logic.

https://perconadev.atlassian.net/browse/K8SPG-730
https://perconadev.atlassian.net/browse/K8SPG-752
https://perconadev.atlassian.net/browse/K8SPG-768
https://perconadev.atlassian.net/browse/K8SPG-832

e K8SPG-833 - Added the ability to define custom environment variables across all components.
This enables tighter integration with external systems, secrets, or runtime configurations.

Improvements

K8SPG-460 - The Operator now correctly enables and used Huge pages functionality if they are
enabled on the OS level.

o K8SPG-570 - The Operator now correctly respects custom user passwords defined in secrets
when creating new users, and automatically adds any missing credentials.

e K8SPG-611 - The operator now uses official Percona PostgreSQL docker images, which are
compatible only with specific latest PostgreSQL versions.

o K8SPG-624, KBSPG-728 - Added the ability to configure the Operator to use path-style access to
S3 storage or skip TLS verification to ensure broader compatibility with S3 storage services.

e K8SPG-718 - Improved Patroni observability by sending Patroni metrics to PMM.

e KB8SPG-748 - The PerconaPGCluster status now provides more comprehensive details, including
persistent volume resizing and pgBackRest backup conditions.

o K8SPG-757: The Percona PostgreSQL Operator now successfully deploys in environments where
readOnlyRootFilesystem is enforced.

o K8SPG-874- Improved logging to no longer contain backup-related information when backups are
disabled.

o K8SPG-882 - The operator no longer deploys a temporary Patroni version check pod, as it now
detects the version directly from running database instances.

Fixed bugs

o K8SPG-724 - Fixed the issue with upgrading custom extension versions. The Operator now
correctly uninstalls old versions and installs new ones automatically.

e K8SPG-777 - Custom Resource crVersion is now automatically assigned if not explicitly defined.

o KB8SPG-778 - Backup restores no longer fail due to empty repository name errors during the
finalization process.

o K8SPG-781- Error messages for primary pod issues now reveal the specific underlying problem
instead of a generic message.

e K8SPG-803 - Outdated backups are now correctly cleaned up, even when pgBackRest debug
logging is enabled.

https://perconadev.atlassian.net/browse/K8SPG-833
https://perconadev.atlassian.net/browse/K8SPG-460
https://perconadev.atlassian.net/browse/K8SPG-570
https://perconadev.atlassian.net/browse/K8SPG-611
https://perconadev.atlassian.net/browse/K8SPG-624
https://perconadev.atlassian.net/browse/K8SPG-728
https://perconadev.atlassian.net/browse/K8SPG-718
https://perconadev.atlassian.net/browse/K8SPG-748
https://perconadev.atlassian.net/browse/K8SPG-757
https://perconadev.atlassian.net/browse/K8SPG-874
https://perconadev.atlassian.net/browse/K8SPG-882
https://perconadev.atlassian.net/browse/K8SPG-724
https://perconadev.atlassian.net/browse/K8SPG-777
https://perconadev.atlassian.net/browse/K8SPG-778
https://perconadev.atlassian.net/browse/K8SPG-781
https://perconadev.atlassian.net/browse/K8SPG-803

o K8SPG-826 - Fixed the issue with cluster monitoring on OpenShift by using the correct folder for
PMM3 .

e K8SPG-835 - Improved affinity behavior for patroni-version-check pod

o KB8SPG-844 - Fixed the issue with the Operator overriding user configuration with archive
commands when the latest restorable time tracking disabled by fully respecting user
configuration.

o K8SPG-869 - A backup repository is no longer required when configuring a cluster with disabled
backups.

o K8SPG-872 - Updated DNS records used in certificates to no longer include a trailing period to
comply with updated validation standards.

o KB8SPG-876: Fixed an issue where PostgreSQL clusters remained in an “Initialized” state after
restoring a backup from S3 storage.

e K8SPG-879 - Clusters can now be created successfully on Kubernetes version 1.34.

o K8SPG-883: Patroni version information is now displayed in the status.patroni.version field
instead of status.patroniVersion.

e K8SPG-884 - Clusters deployed with PostgreSQL 13 now correctly support the
pg_stat_statements extension.

Documentation improvements
¢ Refined the Upgrade guide structure, moving instructions for updating built-in extensions under
the Database upgrade section for better clarity.

e Improved documentation for generating custom TLS certificates used by your cluster and added
steps how to safely renew or replace your certificate authorities and secrets.

¢ Enhanced the Adding custom extensions documentation by including a sample configuration for a
custom extension, illustrating the overall workflow as a practical reference.

¢ Improved the Upgrade document with the steps to change collation version is there is a collation
mismatch.

¢ PostGIS image documentation now accurately reflects the available versions.

Deprecation, Change, Rename and Removal

o New repository for postgresql image.

https://perconadev.atlassian.net/browse/K8SPG-826
https://perconadev.atlassian.net/browse/K8SPG-835
https://perconadev.atlassian.net/browse/K8SPG-844
https://perconadev.atlassian.net/browse/K8SPG-869
https://perconadev.atlassian.net/browse/K8SPG-872
https://perconadev.atlassian.net/browse/K8SPG-876
https://perconadev.atlassian.net/browse/K8SPG-879
https://perconadev.atlassian.net/browse/K8SPG-883
https://perconadev.atlassian.net/browse/K8SPG-884

Now the Operator uses the official Percona Docker images for PosgreSQL. Pay attention to the new
image path when you upgrade the Operator and the database. Check the Percona certified images

for exact image names.

e The patroni.patroniVersion field in Custom Resource Definition is deprecated and will be
removed in future releases. Starting with version 2.8.0, the Operator uses the patroni.version
field in Custom Resource Definition to populate Patroni version.

patroni:
status:
systemIdentifier: "7569216022115639385"
version: 4.0.6

Adjust your applications or scripts accordingly to this change if they rely on Patroni version
information.

e New fields in the Custom Resource Definition:

e status.observedGeneration to track whether the controller has successfully applied the latest
changes to the custom resource

e patroni subsection contains these fields for Patroni state:
e patroni.version
e patroni.systemIdentifier
e patroni.switchover
e patroni.switchoverTimeline

e pgBackRest subsection contains these fields to track the status of backup repository and
backup jobs:

e pgBackRest.manualBackup
e pgBackRest.repoHost

e pgBackRest.repos

Supported software

The Operator 2.8.0 is developed, tested and based on:

e PostgreSQL 13.22-1,14.19-1, 15.14-1, 16.10-1,17.6-1 as the database. Other versions may also
work but have not been tested.

e pgBouncer 1.24.1-1 for connection pooling

» Patroni version 4.6.0 for high-availability

e PostGIS version 3.3.8

Supported platforms

Percona Operators are designed for compatibility with all CNCF-certified [4 Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and

OpenShift, as detailed below for Operator version 2.8.0:

e Google Kubernetes Engine (GKE) (4 1.31-1.33

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.31-1.34

e OpenShift (4 4.16 - 4.20

e Azure Kubernetes Service (AKS) [4 1.32-1.34

e Minikube [4 1.37.0 with Kubernetes v1.34.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of

the release process. Other Kubernetes flavors and versions depend on the backward compatibility

offered by Kubernetes itself.

Percona certified images

Find Percona'’s certified Docker images that you can use with the Percona Operator for PostgreSQL

in the following table.

Image

percona/percona-
postgresql-operator:2.8.0
(x86_64)

percona/percona-
postgresql-operator:2.8.0
(ARM64)

percona/percona-
distribution-

Digest

e34a185e1b295ff627facd3cfbdfc31f32bab714eac550de5e6da00abd9053e2

18445bd761ac3f77901f0e9eddd79b295d28b779779a29bb2d69eb51¢c32e3815

ce91a339a511d91d9f1946708d7ca326572796b642d2a022a1d52a2adff8a08b

https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

postgresql:17.6-1

percona/percona-
distribution-
postgresql:16.10-1

percona/percona-
distribution-
postgresql:15.14-1

percona/percona-
distribution-
postgresql:14.19-1

percona/percona-
distribution-
postgresql:13.22-1

percona/percona-
postgresql-operator:2.8.0-
ppg17.6-postgres-
gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg16.10-postgres-
gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg15.14-postgres-
gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg14.19-postgres-
gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg13.22-postgres-
gis3.3.8

percona/percona-

balaede456a938f85c9614bb70c50ce264ec68b659917a3a0847112e42bc9259

8280ba2410235e8266761004a2f180fe3999203e69772eb822959¢cf1849bd967

052e7fd765b790ad2321675e8f2b273fe705512afda5004c4d2a4da78489bfb0

2989dcc4919¢8381dc970b2286dadec45¢c8a53067b48f2bcfff7¢7c042b3a654

3322136e6e54214255601586be8f610677fe51a494d3a002cabfacd233258fab

2d5f9ac5a84129e81b9ab8df25abce712223¢c358847afed3637fb7063a3e4a8f

e7f5fda3cf7d2fab028b3fb70636c9b3b11fe6b89a9f31970d2792bd8f48d8ca

3f69534a0df0b608d68808df04618222e4a20c1d1567462e4482f07b86349806

cd5a2a1057708fac5dda28d0ce47006cdbf865e6ffef1ac2df74065b95258fd3

39bd093ec83cadeaeb93b43b286d39daaedcc4b3b32956d627d242d30a5ad6f5

pgbouncer:1.24.1-1
(x86_64)

percona/percona-
pgbouncer:1.24.1-1
(ARM64)

percona/percona-
pgbackrest:2.56.0-1
(x86_64)

percona/percona-
pgbackrest:2.56.0-1
(ARM64)

percona/pmm-
client:2.44.1-1

percona/pmm-client:3.4.1
(x86_64)

percona/pmm-client:3.4.1
(ARM64)

84d34843180d852182790ce6175f1407a0438b3a415a21741212701706808ac0

387469090be8e009e17cc07903aa28aalc748ce1cc385bd69e88de3762657877

29290808bdeb17a49c90f2ce3ccc75f3bfab43e96e160320baf16cb557d165ee

52a8fb5e8f912eef1ff8al117ea323c401e278908ce29928dafc23fac1db4f1e3

1¢59d7188f8404e0294f4bfb3d2c3600107f808a023668a170a6b8036c56619b

2d23ba3e6f0ae88201be15272c5038d7¢38f382ad8222cd93f094b5a20b854a5

Percona Operator for PostgreSQL 2.7.0
(2025-07-18)

C Get started with the Operator >)

Release Highlights

This release provides the following features and improvements:

PMMS3 support

The Operator is natively integrated with PMM 3, enabling you to monitor the health and performance
of your Percona Distribution for PostgreSQL deployment and at the same time enjoy enhanced
performance, new features, and improved security that PMM 3 provides.

Note that the Operator supports both PMM2 and PMM3. The decision on what PMM version is used
depends on the authentication method you provide in the Operator configuration: PMM2 uses API
keys while PMM3 uses service account token. If the Operator configuration contains both
authentication methods with non-empty values, PMM3 takes the priority.

To use PMM, ensure that the PMM client image is compatible with the PMM Server version. Check
Percona certified images for the correct client image.

For how to configure monitoring with PMM see the documentation.

Improved monitoring for clusters in multi-region or multi-namespace
deployments in PMM

Now you can define a custom name for your clusters deployed in different data centers. This name
helps Percona Management and Monitoring (PMM) Server to correctly recognize clusters as
connected and monitor them as one deployment. Similarly, PMM Server identifies clusters deployed
with the same names in different namespaces as separate ones and correctly displays performance
metrics for you on dashboards.

To assign a custom name, define this configuration in the Custom Resource manifest for your
cluster:

spec:
pmm :
customClusterName: postgresql-cluster

Added labels to identify the version of the Operator

Custom Resource Definition (CRD) is compatible with the last three Operator versions. To know
which Operator version is attached to it, we've added labels to all Custom Resource Definitions. The
labels help you identify the current Operator version and decide if you need to update the CRD. To
view the labels, run: kubectl get crd perconapgclusters.pgv2.percona.com --show-
labels.

Grant users access to a public schema

Starting with PostgreSQL 15, a non-database owner cannot access the default public schema and
cannot create tables in it. We have improved this behavior so that the Operator creates a user and a
schema with the name matching the username for all databases listed for this user. This custom
schema is set by default enabling you to work in the database right away.

You can explicitly grant access to a public schema for a non-superuser setting the
grantPublicSchemaAccess optionto true. This grants the user permission to create tables and
update in the public schema of every database they own. If multiple users are granted access to
the public schema in the same database, each user can only access the tables they have created
themselves. If you want one user to access tables created by another user in the public schema,
the owner of those tables must connect to PostgreSQL and explicitly grant the necessary privileges
to the other user.

Superusers have access to the public schema for their databases by default.

Improved troubleshooting with the ability to override
Patroni configuration

You can now override Patroni configuration for the whole cluster as well as for an individual Pod.
This gives you more control over the database and simplifies troubleshooting.

Also, you can redefine what method the Operator will use when it creates replica instances in your
PostgreSQL cluster. For example, to force the Operator to use pgbasebackup, edit the
deploy/cr.yaml manifest:

patroni:
createReplicaMethods:
- basebackup
- pgbackrest

Note that after you apply this configuration, the Operator updates the Patroni ConfigMap, but it
doesn’t apply this configuration to Patroni. You must manually reload the Patroni configuration of
every database instance for it to come into force.

Read more about these troubleshooting methods in the documentation.

Changelog

New features

e K8SPG-615 - Introduced a custom delay on the entrypoint of the backup pod. The backup process
waits the defined time before connecting to the API server

o K8SPG-708, KBSPG-663 - Added the sleep-forever feature to keep a database container running.

o K8SPG-712 - Added the ability to control every parameter supported by Patroni configuration.
o K8SPG-725 - Added the ability to configure resources for the repo-host container
e K8SPG-719 - Added support for PMM v3

Improvements

e K8SPG-571 - Added the ability to access to a public schema for a non-superuser custom user for
every database listed for them.

o K8SPG-612 - Updated the pgBouncer image to use the official percona-pgbouncer Docker
image

e K8SPG-613 - Updated the pgBackRest image to use the official percona-pgbackrest Docker
image

o K8SPG-654 - Added the ability to add custom parameters in the Custom Resource and pass them
to PMM.

o K8SPG-675 - Added the ability to define resource requests for CPU and memory
e K8SPG-704 - Added the ability to configure create_replica_methods for Patroni
e K8SPG-710 - Added the ability to disable backups

https://perconadev.atlassian.net/browse/K8SPG-615
https://perconadev.atlassian.net/browse/K8SPG-708
https://perconadev.atlassian.net/browse/K8SPG-663
https://perconadev.atlassian.net/browse/K8SPG-712
https://perconadev.atlassian.net/browse/K8SPG-725
https://perconadev.atlassian.net/browse/K8SPG-719
https://perconadev.atlassian.net/browse/K8SPG-571
https://perconadev.atlassian.net/browse/K8SPG-612
https://perconadev.atlassian.net/browse/K8SPG-613
https://perconadev.atlassian.net/browse/K8SPG-654
https://perconadev.atlassian.net/browse/K8SPG-675
https://perconadev.atlassian.net/browse/K8SPG-704
https://perconadev.atlassian.net/browse/K8SPG-710

e K8SPG-715 - Improved custom-extensions e2e test by adding pgvector
o K8SPG-726 - Added ability to define security context for all sidecar containers

o K8SPG-729 - Added Labels for Custom Resource Definitions (CRD) to identify the Operator version
attached to them

e K8SPG-732 - Enhanced readability of pgbackrest debug logs by printing log messages on
separate lines

o K8SPG-738 - Added startup log to the Operator Pod to print commit hash, branch and build time

e K8SPG-743 - Disabled client-side rate limiting in the Kubernetes Go client to avoid throttling errors
when managing multiple clusters with a single operator. This change leverages Kubernetes'
server-side Priority and Fairness mechanisms introduced in v1.20 and later. (Thank you Joshua
Sierles for contributing to this issue)

o K8SPG-744 - Improved Contributing guide with the steps how to build the Operator for
development purposes

o K8SPG-717, KBSPG-750 - Added the ability to define a custom cluster name for PMM for filtering

e K8SPG-753 - Added the ability to enable pg_stat_statements instead of pg_stat_monitor
e K8SPG-761 - Added the ability to add concurrent reconciliation workers

o K8SPG-828 - Added registry name to images due to Openshift 4.19 changes

Bugs Fixed

K8SPG-532 - Improved log visibility to include logs about missing data source to INFO logs
e K8SPG-574 - Added pg_repack to the list of built-in extensions in the Custom Resource

e KB8SPG-661 - Added documentation about replica reinitialization in the Operator

e K8SPG-677 - Made the imagePullPolicy in pg-db Helm chart configurable

e KB8SPG-680 - Prevent scheduled backups to start until the volume expansion is completed with
success.

o K8SPG-698 - Fixed the issue with pgbackrest service account not being created and
reconciliation failing by creating the StatefulSet for this service account first

e K8SPG-703 - Fixed the issue with the backup Pod being stuck in a running state due to running
jobs being deleted because of the TTL expiration by adding an internal finalizer to keep the job
running until it finishes

K8SPG-722 - Documented the replica reinitialization behavior.

https://perconadev.atlassian.net/browse/K8SPG-715
https://perconadev.atlassian.net/browse/K8SPG-726
https://perconadev.atlassian.net/browse/K8SPG-729
https://perconadev.atlassian.net/browse/K8SPG-732
https://perconadev.atlassian.net/browse/K8SPG-738
https://perconadev.atlassian.net/browse/K8SPG-743
https://perconadev.atlassian.net/browse/K8SPG-744
https://perconadev.atlassian.net/browse/K8SPG-717
https://perconadev.atlassian.net/browse/K8SPG-750
https://perconadev.atlassian.net/browse/K8SPG-753
https://perconadev.atlassian.net/browse/K8SPG-761
https://perconadev.atlassian.net/browse/K8SPG-828
https://perconadev.atlassian.net/browse/K8SPG-532
https://perconadev.atlassian.net/browse/K8SPG-574
https://perconadev.atlassian.net/browse/K8SPG-661
https://perconadev.atlassian.net/browse/K8SPG-677
https://perconadev.atlassian.net/browse/K8SPG-680
https://perconadev.atlassian.net/browse/K8SPG-698
https://perconadev.atlassian.net/browse/K8SPG-703
https://perconadev.atlassian.net/browse/K8SPG-722

o K8SPG-772 - Fixed the issue with WAL watcher panicking if some backups have no CompletedAt
status field by using CreationTimestamp as fallback.

o K8SPG-782 - Fixed the issue with crashing WALWatcher by assigning Patroni version to status
when Patroni label is configured through the Custom resource option

e K8SPG-785 - Fixed PMM template in Helm chart (Thank you user Nik for reporting this issue)

o K8SPG-792 - Add the ability to configure and use images defined in environment variables when
starting a cluster (Thank you Jakub Jaruszewski for reporting this issue)

o K8SPG-799 - Fixed the issue with the cluster being blocked due to inability to pull the image fot
the Patroni Version Detector Pod if imagePullSecrets in configured. The issue is fixed by
respecting the configuration for the patroni version check pod. (Thank you Baptiste Balmon for
reporting this issue)

o K8SPG-804 - Fixed an issue where outdated cluster state could cause a duplicate backup job to
be created, blocking new backups. The issue was fixed by ensuring reconcileManualBackup
fetches the latest postgrescluster state.

o K8SPG-812 - Fixed image in PerconaPGUpgrade example

Deprecation, Change, Rename and Removal

e New repositories for pgBouncer and pgBackRest

Now the Operator uses the official Percona Docker images for pgBouncer and pgBackRest
components. Pay attention to the new image repositories when you upgrade the Operator and the

database. Check the Percona certified images for exact image names.

e Changes in image pulling on OpenShift

Starting with OpenShift version 4.19, the way Operator images are pulled has changed. Now the
registry name must be specified for image paths to ensure the images are pulled successfully
from DockerHub.

All Custom Resource manifests now include the registry name in image paths. This enables you
to successfully install the Operator using the default manifests from Git repositories. If you
upgrade the Operator and the database cluster via the command line interface, add the
docker.io registry name to image paths for all components in the format:

"docker.io/percona/percona-postgresql-operator:2.8.0-ppgl17.6-1-postgres”

Follow our upgrade documentation for update guidelines.

https://perconadev.atlassian.net/browse/K8SPG-772
https://perconadev.atlassian.net/browse/K8SPG-782
https://perconadev.atlassian.net/browse/K8SPG-785
https://perconadev.atlassian.net/browse/K8SPG-792
https://perconadev.atlassian.net/browse/K8SPG-799
https://perconadev.atlassian.net/browse/K8SPG-804
https://perconadev.atlassian.net/browse/K8SPG-812

Supported software

The Operator 2.8.0 is developed, tested and based on:

e PostgreSQL 13.21,14.18,15.13, 16.9, 17.5.2 as the database. Other versions may also work but
have not been tested.
e pgBouncer 1.24.1 for connection pooling

o Patroni version 4.0.5 for high-availability

e PostGIS version 3.3.8

Supported platforms

Percona Operators are designed for compatibility with all CNCF-certified [4 Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and
OpenShift, as detailed below for Operator version 2.8.0:

Google Kubernetes Engine (GKE)_.[4 1.30-1.32

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.30-1.33

e OpenShift (4 4.15-4.19
e Azure Kubernetes Service (AKS) (4 1.30-1.33

e Minikube [4 1.36.0 with Kubernetes v1.33.1

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility
offered by Kubernetes itself.

Percona certified images

Find Percona'’s certified Docker images that you can use with the Percona Operator for PostgreSQL
in the following table.

Image Digest

percona/percona- 96e4e3d7e4bcbd4880adebc5cch958c0f4385298f0becdef2eb14b81fab407e5
postgresql-operator:2.7.0
(x86_64)

https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

percona/percona- 055da3233a7765f22b318¢c97223909c20ecbbc9f34c6a8f7845d04ade51364ca
postgresql-operator:2.7.0
(ARM64)

percona/percona- cfb99ebeec00abbefb4fcada8da2b8c3b489dd792bd2f907848197ba09bc9553
postgresql-operator:2.7.0-
ppg17.5.2-postgres

percona/percona- 0787088575b4e4fec368achcf4dd7aead49620ec4524451e3b44ed424fb0eeebb
postgresql-operator:2.7.0-
ppg16.9-postgres

percona/percona- c93f52eald6ec955a368c4539b843a9c57eeda5acc907f0dfb59ae3018560d1b
postgresql-operator:2.7.0-
ppg15.13-postgres

percona/percona- a24059edd9864f7dc9607c3e2964844f417718a5bh9f471ceb98c0ald774a4bca
postgresql-operator:2.7.0-
ppg14.18-postgres

percona/percona- 2¢9a05399b34cfe79698bdaab66db8fdaece0db7b1fa34441124cccdbe375255
postgresql-operator:2.7.0-
ppg13.21-postgres

percona/percona- 860ccc180cTacbbe3c34c354d6ba9148b00330e183ba5913954e34d49¢c95d22f
postgresql-operator:2.7.0-

ppg17.5.2-postgres-

gis3.3.8

percona/percona- ca50f560bc7b3e18ec3360dc1a6b8c860e0346472af051cb0d2aec2a7a45d8b3
postgresql-operator:2.7.0-
ppg16.9-postgres-gis3.3.8

percona/percona- bb6707fd12ea430708e2eb22f6c7dadf3ab4258fcfd31e86f1f78c66ba211742
postgresql-operator:2.7.0-

ppg15.13-postgres-

gis3.3.8

percona/percona- c3b55d1394d8f0a476cea29340442313c9c08dcd8c83f31ccfc66afdbded2488
postgresql-operator:2.7.0-

ppg14.18-postgres-

gis3.3.8

percona/percona-
postgresql-operator:2.7.0-
ppg13.21-postgres-
gis3.3.8

percona/percona-
pgbouncer:1.24.1

percona/percona-
pgbouncer:1.24.1
(ARM64)

percona/percona-
pgbackrest:2.55.0

percona/percona-
pgbackrest:2.55.0
(ARM64)

percona/pmm-
client:2.44.1

percona/pmm-
client:2.44.1 (ARM64)

percona/pmm-client:3.3.0

percona/pmm-client:3.3.0
(ARM64)

3df44c1089563b42198ef929e27b9797ef2b04d92736293952163fa7541c0068

4514371afa3cd288ecda92b6446bec8833fbf376fbd1b7c7e314fc42f3355255f

479aa893e55c5afe8b97852c90d7551dc55d3fc526773a5a7d992876bbf54cb0

b0d2defbc7a07cf395b1fabc6e13d9d3267c3a2d3c52362ac440db26eadadbad

bc15d058e7820499bf67ccec2fe51c583fe67abe3ed55ec28adf3e252828924a

8b2eaddffd626f02a2d5318ffebc0c277fe8457da6083b8cfcada9b6e6168616

337fecd4afdb3f6daf2caa2b341b9fe41d0418a0e4ec76980c7f29be9d08b5ea

0f4ef6a814946f83ef1ed26cf3526ff606fc7815007f84995492d3ed4eaal5al0e

c03aa678d26faf783c3598b3a139a8f3154e5bf1bc9f5a3c9abf0533922f79d6

Percona Operator for PostgreSQL 2.6.0
(2025-03-17)

C Installation)

Release Highlights

This release provides the following features and improvements:

Backup improvements

This release implemented several improvements to the backup/restore process:

¢ A new delete-backups finalizer was implemented to automatically remove all backups when

deleting the cluster. This finalizer is off by default. It's experimental and, therefore, is not
recommended for production environments.

e Backup logic was improved and now allows retrying a failed backup in the same backup Pod for a
specified number of times before deleting this Pod and creating a new one. This should be
beneficial in case of short connectivity issues or timeouts. This behavior is controlled by the new
backups.pgbackrest.jobs.backoffLimit and backups.pgbackrest.jobs.restartPolicy Custom
Resource options.

e You can now overwrite the default restore command for pgBackRest via the
patroni.dynamicConfiguration Custom Resource option. Particularly, this allows to control and

filter files restored to pg_wal directory without editing these files in the backup repository
storage.

PostgreSQL 17 support

PostgreSQL 17 is now supported by the Operator in addition to versions 13 - 16. The appropriate
images are now included in the list of Percona-certified images. See these blogposts for details

about the latest PostgreSQL 17 features with the added security and functionality improvements:

o Encrypt PostgreSQL Data at Rest on Kubernetes [4 by Ege Gunes

e The Powerful Features Released in PostgreSQL 17 Beta 2 [4 by Shivam Dhapatkar

o PostgreSQL 17: Two Small Improvements That Will Have a Major Impact [4 by David Stokes.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-backups
https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/

PostgreSQL 17 is currently not recommended for production environments due to the known
limitation.

Update from April 1, 2025: We have added PostgreSQL 17.4 image and database cluster components
based on this image. It is now production ready and we recommend updating the database cluster
from PostgreSQL 17.2 to 17.4. Check the upgrade instructions for steps

pgvector is added to the PostgreSQL image

To support you with your Al journey, we've added the pgvector extension to the PostgreSQL images
shipped with our Operator. Now, you can easily use Percona Distribution for PostgreSQL as a vector
database by simply enabling it in your Custom Resource options. No more custom extension

installations [4 needed.

New features

e K8SPG-628: The custom restore_command can be now passed to pgBackRest via the

patroni.dynamicConfiguration Custom Resource option

e KB8SPG-619: New backups.pgbackrest.jobs.backoffLimit and
backups.pgbackrest.jobs.restartPolicy Custom Resource options allow to retry backup in
the backup Pod for a specified number of times before abandoning the Pod and creating the new
one

o K8SPG-648: PostgreSQL 17 is now supported by the Operator

Improvements

e K8SPG-487: New spec.metadata.labels and spec.metadata.annotations Custom Resource
options allow setting labels and annotation globally for all Kubernetes objects created by the
Operator

e K8SPG-554: New tlsOnly Custom Resource option allows the user to enforce TLS connections
for the database cluster

e K8SPG-586: The new experimental finalizers.delete-backups finalizer (off by default)
removes all backups of the cluster at cluster deletion event

e KB8SPG-634: The new autoCreateUserSchema Custom Resource option enhances the declarative
user management by automatically creating per-user schemas

o K8SPG-652: Improve security and meet compliance requirements by using PostgreSQL images

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-minor-version-upgrade
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://jira.percona.com/browse/K8SPG-628
https://jira.percona.com/browse/K8SPG-619
https://jira.percona.com/browse/K8SPG-648
https://jira.percona.com/browse/K8SPG-487
https://jira.percona.com/browse/K8SPG-554
https://jira.percona.com/browse/K8SPG-586
https://jira.percona.com/browse/K8SPG-634
https://jira.percona.com/browse/K8SPG-652

built based on Red Hat Universal Base Image (UBI) 9 instead of UBI 8
o K8SPG-692: Patroni versions 4.x are now supported by the Operator in addition to versions 3.x

e K8SPG-699: The pgvector extension is now included within the PostgreSQL image used by the
Operator

e K8SPG-701: The extensions.image Custom Resource option is now optional, and can be
omitted for builtin PostgreSQL extensions

o K8SPG-702: A retry logic was implemented to fix intermittent Pod exec failures caused by
timeouts (Thanks to dcaputo-harmoni for contribution)

e K8SPG-711: The new README.md [4 explains how to build your own images for the PostgreSQL
cluster components used by the Operator

Bugs Fixed

o K8SPG-594: Fix a bug where extension was still appearing in pg_extension table after being
removed from Custom Resource and physically deleted by the Operator

e K8SPG-637: Fix a bug where restore was failing with “waiting for another restore to finish” if the
pg-restore object of a previous unfinished restore was manually deleted

e K8SPG-638: Fix a bug that caused flooding the logs with no completed backups found error at
cluster initialization.

o K8SPG-645: Fix a bug where creating sidecar containers for pgBouncer did not work

e K8SPG-681: Fixed a bug where the “Last Recoverable Time” information field was missing from
the output of the kubectl get pg-backup command due to misdetection cases

e K8SPG-713: Fix a bug where The cluster not found errors were appearing in the Operator logs on
cluster deletion

Deprecation, Change, Rename and Removal

¢ The new versions of Percona distribution for PostgreSQL used by the Operator come with Patroni
4.x, which introduces breaking changes compared to previously used 3.x versions.

To maintain backward compatibility, the Operator detects the Patroni version used in the image. It
is also possible to disable this auto-detection feature by manually setting the Patroni version via
the [following annotation set in the metadata part](../annotations.md#customizing-patroni-
version-for-the-operator-version-260—270 of the Custom Resource:

https://jira.percona.com/browse/K8SPG-692
https://jira.percona.com/browse/K8SPG-699
https://jira.percona.com/browse/K8SPG-701
https://jira.percona.com/browse/K8SPG-702
https://jira.percona.com/browse/K8SPG-711
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://jira.percona.com/browse/K8SPG-594
https://jira.percona.com/browse/K8SPG-637
https://jira.percona.com/browse/K8SPG-638
https://jira.percona.com/browse/K8SPG-645
https://jira.percona.com/browse/K8SPG-681
https://jira.percona.com/browse/K8SPG-713

pgv2.percona.com/custom-patroni-version: "4"

e PostgreSQL 12 is no longer supported by the Operator 2.6.0 and newer versions.

Known limitations

e PostgreSQL 17.2 image and images for other database cluster components based on PostgreSQL
17 contain the known CVE-2025-1094 [- a vulnerability in the libpg PostgreSQL client library,
which makes images used by the Operator vulnerable to SQL injection within the PostgreSQL

interactive terminal due to the lack of neutralizing quoting. Images for PostgreSQL 17 will be
available soon, while images for other PosgreSQL versions have already been fixed.

e PostgreSQL 17.4 image includes the fix for CVE-2025-1094 [4, which closed a vulnerability in the
1libpg PostgreSQL client library but introduced a regression related to string handling for non-null

terminated strings. The error would be visible based on how a PostgreSQL client implemented
this behavior.

Supported platforms

The Operator 2.8.0 is developed, tested and based on:
e PostgreSQL 13.20,14.17,15.12,16.8,17.2 and 17.4 as the database. Other versions may also
work but have not been tested.
¢ pgBouncer for connection pooling:
e version 1.23.1 - for PostgreSQL 17.2
e version 1.24.0 - for PostgreSQL 13.20,14.17,15.12,16.8,17.4
¢ Patroni for high-availability:
e version 4.0.5 - for PostgreSQL 17.4
e version 4.0.3 - for PostgreSQL 17.2
e version 4.0.4 - for PostgreSQL 13.20,14.17,15.12,16.8

Percona Operators are designed for compatibility with all CNCF-certified [4 Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and
OpenShift, as detailed below for Operator version 2.8.0:

https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.cncf.io/training/certification/software-conformance/

e Google Kubernetes Engine (GKE) [4 1.29 - 1.31

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.29 - 1.32

e OpenShift (44.14-4.18
e Azure Kubernetes Service (AKS) [4 1.29 - 1.31

e Minikube [4 1.35.0 with Kubernetes 1.32.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility

offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.5.1

e Date
March 03, 2025
¢ |nstallation

Installing Percona Operator for PostgreSQL

Release highlights

This release fixes the CVE-2025-1094 [4, vulnerability in the libpq PostgreSQL client library, which
made images used by the Operator vulnerable to SQL injection within the PostgreSQL interactive

terminal due to the lack of neutralizing quoting. For now, the fix includes the image of PostgreSQL
16.8 and other database cluster images based on PostgreSQL 16.8. Fixed images for other
PostgreSQL versions are to follow in the upcoming days.

Update from March 04, 2025: images of PostgreSQL 15.12 and other database cluster components
based on PostgreSQL 15.12 were added.

Update from March 06, 2025: images of PostgreSQL 14.17 and other database cluster components
based on PostgreSQL 14.17 were added.

Update from March 07, 2025: images of PostgreSQL 13.20 and other database cluster components
based on PostgreSQL 13.20 were added.

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.20, 13.20, 14.17,15.12, and
16.8. Other options may also work but have not been tested. The Operator 2.5.1 provides connection
pooling based on pgBouncer 1.24.0 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are officially supported by the Operator 2.5.1:

e Google Kubernetes Engine (GKE) [4 1.28-1.30

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.28 - 1.30

e OpenShift (4 4.13.46-4.16.7
e Azure Kubernetes Service (AKS) (4 1.28-1.30

https://www.postgresql.org/support/security/CVE-2025-1094/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/

e Minikube [4 1.34.0 with Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility

offered by Kubernetes itself.

https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.5.0

e Date
October 08, 2024
¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Automated storage scaling

Starting from this release, the Operator is able to detect if the storage usage on the PVC reaches a
certain threshold, and trigger the PVC resize. Such autoscaling needs the upstream auto-growable
disk [4 feature turned on when deploying the Operator. This is done via the PGO_FEATURE_GATES
environment variable set in the deploy/operator.yaml manifest (or in the appropriate part of

deploy/bundle.yaml):

- name: PGO_FEATURE_GATES
value: "AutoGrowVolumes=true"

When the support for auto-growable disks is turned on, the
spec.instances|[].dataVolumeClaimSpec.resources.limits.storage Custom Resource

option sets the maximum value available for the Operator to scale up.

See official documentation for more details and limitations of the feature.

Maijor versions upgrade improvements

Major version upgrade, introduced in the Operator version 2.4.0 as a tech preview, had undergone
some improvements. Now it is possible to upgrade from one PostgreSQL major version to another
with custom images for the database cluster components (PostgreSQL, pgBouncer, and
pgBackRest). The upgrade is still triggered by applying the YAML manifest with the information
about the existing and desired major versions, which now includes image names. The resulting
manifest may look as follows:

https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
name: cluster1-15-to-16
spec:
postgresClusterName: cluster]
image: percona/percona-postgresql-operator:2.4.1-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16
toPostgresImage: percona/percona-postgresql-operator:2.5.0-ppgl16.4-postgres
toPgBouncerImage: percona/percona-postgresql-operator:2.5.0-ppgl16.4-
pgbouncer1.23.1
toPgBackRestImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-
pgbackrest2.53-1

Azure Kubernetes Service and Azure Blob Storage support

Azure Kubernetes Service (AKS) is now officially supported platform, so developers and vendors of

the solutions based on the Azure platform can take advantage of the official support from Percona
or just use officially certified Percona Operator for PostgreSQL images; also, Azure Blob Storage can
now be used for backups.

New features

e K8SPG-227 and K8SPG-157: Add support for the Azure Kubernetes Service (AKS) platform and
allow using_ Azure Blob Storage for backups

e KB8SPG-244: Automated storage scaling is now supported

Improvements

e KB8SPG-630: A new backups.trackLatestRestorableTime Custom Resource option allows to
disable latest restorable time tracking for users who need reducing S3 API calls usage

e K8SPG-605 and K8SPG-593: Documentation now includes information about upgrading_the

Operator via Helm and using_databaselnitSQL commands

o K8SPG-598: Database major version upgrade now supports custom images

o K8SPG-560: A pg-restore Custom Resource is now automatically created at bootstrapping a
new cluster from an existing_ backup

o K8SPG-555: The Operator now creates separate Secret with CA certificate for each cluster

https://jira.percona.com/browse/K8SPG-227
https://jira.percona.com/browse/K8SPG-157
https://jira.percona.com/browse/K8SPG-244
https://jira.percona.com/browse/K8SPG-630
https://jira.percona.com/browse/K8SPG-605
https://jira.percona.com/browse/K8SPG-593
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-upgrade-via-helm
https://jira.percona.com/browse/K8SPG-598
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-major-version-upgrade
https://jira.percona.com/browse/K8SPG-560
https://jira.percona.com/browse/K8SPG-555

e K8SPG-553: Users can provide the Operator with their own root CA certificate

o K8SPG-454: Cluster status obtained with kubectl get pg command is now “ready” not only
when all Pods are ready, but also takes into account if all StatefulSets are up to date

e K8SPG-577: Anew pmm.querySource Custom Resource option allows to set PMM query source

Bugs Fixed
e K8SPG-629: Fix a bug where the Operator was not deleting backup Pods when cleaning outdated
backups according to the retention policy

o K8SPG-499: Fix a bug where cluster was getting stuck in the init state if pgBackRest secret didn’t
exist

o K8SPG-588: Fix a bug where the Operator didn't stop WAL watcher if the namespace and/or
cluster were deleted

o K8SPG-644: Fix a bug in the pg-db Helm chart which prevented from setting more than one
Toleration

Deprecation, Change, Rename and Removal

With the Operator versions prior to 2.5.0, autogenerated TLS certificates for all database clusters

were based on the same generated root CA. Starting from 2.5.0, the Operator creates root CA on a
per-cluster basis.

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.20, 13.16, 14.13, 15.8, and
16.4. Other options may also work but have not been tested. The Operator 2.5.0 provides connection
pooling based on pgBouncer 1.23.1 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are officially supported by the Operator 2.5.0:

e Google Kubernetes Engine (GKE) [4 1.28-1.30

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.28 - 1.30

e OpenShift (4 4.13.46-4.16.7
e Azure Kubernetes Service (AKS) [4 1.28 - 1.30

e Minikube [4 1.34.0 with Kubernetes 1.31.0

https://jira.percona.com/browse/K8SPG-553
https://jira.percona.com/browse/K8SPG-454
https://jira.percona.com/browse/K8SPG-577
https://jira.percona.com/browse/K8SPG-629
https://jira.percona.com/browse/K8SPG-499
https://jira.percona.com/browse/K8SPG-588
https://jira.percona.com/browse/K8SPG-644
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility
offered by Kubernetes itself.

Percona Operator for PostgreSQL 2.4.1

e Date
August 6, 2024
¢ Installation

Installing Percona Operator for PostgreSQL

Bugs Fixed

o K8SPG-616: Fix a bug where it was not possible to create a new cluster after deleting the previous
one with the kubectl delete pg command

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.19, 13.15,14.12, 15.7, and
16.3. Other options may also work but have not been tested. The Operator 2.4.1 provides connection
pooling based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are officially supported by the Operator 2.4.1:

¢ Google Kubernetes Engine (GKE) (4 1.27-1.29

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.27 - 1.30

e OpenShift (4 4.12.59-4.15.18
e Minikube [4 1.33.1
This list only includes the platforms that the Percona Operators are specifically tested on as part of

the release process. Other Kubernetes flavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPG-616
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.4.0

e Date
June 26, 2024
¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Major versions upgrade (tech preview)

Starting from this release Operator users can automatically upgrade from one PostgreSQL major
version to another. Upgrade is triggered by applying the yaml file with the information about the
existing and desired major versions, with an example present in deploy/upgrade.yaml:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
name: cluster1-15-to-16
spec:
postgresClusterName: cluster]
image: perconalab/percona-postgresql-operator:main-upgrade
fromPostgresVersion: 15
toPostgresVersion: 16

After applying it as usual, by running kubectl apply -f deploy/upgrade.yaml command, the
actual upgrade takes place as follows:
1. The cluster is paused for a while,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade:
<PerconaPGUpgrade.Name> annotation,

3. Jobs are created to migrate the data,
4. The cluster starts up after the upgrade finishes.

Check official documentation for more details, including ones about tracking the upgrade process
and side effects for users with custom extensions.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-major-version-upgrade

Supporting PostgreSQL tablespaces

Tablespaces allow DBAs to store a database on multiple file systems within the same server and to
control where (on which file systems) specific parts of the database are stored. You can think about
it as if you were giving names to your disk mounts and then using those names as additional
parameters when creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory.
Tablespaces support was present in Percona Operator for PostgreSQL 1.x, and starting from this
version, Percona Operator for PostgreSQL 2.x can also bring this feature to your Kubernetes
environment, when needed.

Using cloud roles to authenticate on the object storage
for backups

Percona Operator for PostgreSQL has introduced a new feature that allows users to authenticate to
AWS S3 buckets via IAM roles [4. Now Operator This enhancement significantly improves security

by eliminating the need to manage S3 access keys directly, while also streamlining the configuration
process for easier backup and restore operations.

To use this feature, add annotation to the spec part of the Custom Resource and also add
pgBackRest custom configuration option to the backups subsection:

spec:
crVersion: 2.4.0
metadata:
annotations:

eks.amazonaws.com/role-arn: arn:aws:iam::11971:role/role-pgbackrest-
access-s3-bucket
backups:
pgbackrest:
image: percona/percona-postgresql-operator:2.4.0-ppgl6-pgbackrest

global:
repol-s3-key-type: web-id

New features

o K8SPG-138: Users are now able to use AWS |AM role [4 to provide access to the S3 bucket used

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://jira.percona.com/browse/K8SPG-138
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html

for backups
K8SPG-254: Now the Operator automates upgrading PostgreSQL major versions

K8SPG-459: PostgreSQL tablespaces are now supported by the Operator

K8SPG-479 and K8SPG-492: It is now possible to specify tolerations for the backup restore jobs
as well as for the data move jobs created when the Operator 1.x is upgraded to 2.x; this is useful

in environments with dedicated Kubernetes worker nodes protected by taints

K8SPG-503 and K8SPG-513: It is now possible to specify resources for the sidecar containers of

database instance Pods

Improvements

K8SPG-259: Users can now change the default level for log messages for pgBackRest to simplify
fixing backup and restore issues

K8SPG-542: Documentation now includes HowTo on creating_a disaster recovery cluster using

streaming_replication

K8SPG-506: The pg-backup objects now have a new backupName status field, which allows
users to obtain the backup name for restore simpler

K8SPG-514: The new securityContext Custom Resource subsections allow to configure
securityContext for PostgreSQL instances, pgBouncer, and pgBackRest Pods

K8SPG-518: The kubectl get pg-backup command now shows the latest restorable time to
make it easier to pick a point-in-time recovery target

K8SPG-519: The new extensions.storage.endpoint Custom Resource option allows
specifying a custom S3 object storage endpoint for installing custom extensions

K8SPG-549: It is now possible to expose replica nodes through a separate Service, useful if you
want to balance the load and separate reads and writes traffic

K8SPG-550: The default size for /tmp mount point in PMM container was increased from 1.5G to
2G

K8SPG-585: The namespace field was added to the Operator and database Helm chart templates

Bugs Fixed

K8SPG-462: Fixed a bug where backups could not start if a previous backup had the same name

K8SPG-470: Liveness and Readiness probes timeouts are now configurable through Custom

https://jira.percona.com/browse/K8SPG-254
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-major-version-upgrade
https://jira.percona.com/browse/K8SPG-459
https://jira.percona.com/browse/K8SPG-479
https://jira.percona.com/browse/K8SPG-492
https://jira.percona.com/browse/K8SPG-503
https://jira.percona.com/browse/K8SPG-513
https://jira.percona.com/browse/K8SPG-259
https://jira.percona.com/browse/K8SPG-542
https://jira.percona.com/browse/K8SPG-506
https://jira.percona.com/browse/K8SPG-514
https://jira.percona.com/browse/K8SPG-518
https://jira.percona.com/browse/K8SPG-519
https://jira.percona.com/browse/K8SPG-549
https://jira.percona.com/browse/K8SPG-550
https://jira.percona.com/browse/K8SPG-585
https://jira.percona.com/browse/K8SPG-462
https://jira.percona.com/browse/K8SPG-470

Resource

e K8SPG-559: Fix a bug where the first full backup was incorrectly marked as incremental in the
status field

o K8SPG-490: Fixed broken replication that occurred after the network loss of the primary Pod with
PostgreSQL 14 and older versions

o K8SPG-502: Fix a bug where backup jobs were not cleaned up after completion

o K8SPG-510: Fix a bug where pausing the cluster immediately set its state to “paused” instead of
“stopping” while Pods were still running

o K8SPG-531: Fix a bug where scheduled backups did not work for a second database with the
same name in cluster-wide mode

o K8SPG-535: Fix a bug where the Operator crashed when attempting to run a backup with a non-
existent repository

e K8SPG-540: Fix a bug in the pg-db Helm chart readme where the key to set the backup secret was
incorrectly specified (Thanks to Abhay Tiwari for contribution)

o K8SPG-543: Fix a bug where applying a cr.yaml file with an empty spec.proxy field caused the
Operator to crash

o K8SPG-547: Fix dependency issue that made pgbackrest-repo container incompatible with
pgBackRest 2.50, resulting in the older 2.48 version being used instead

Deprecation and removal

e The plpythonu extension was removed from the list of built-in PostgreSQL extensions; users
who still need it can enable it for their databases via custom extensions functionality

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.19, 13.15,14.12, 15.7, and
16.3. Other options may also work but have not been tested. The Operator 2.4.0 provides connection
pooling based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are officially supported by the Operator 2.4.0:

e Google Kubernetes Engine (GKE). (4 1.27 - 1.29

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.27 - 1.30

e OpenShift (4 4.12.59-4.15.18

https://jira.percona.com/browse/K8SPG-559
https://jira.percona.com/browse/K8SPG-490
https://jira.percona.com/browse/K8SPG-502
https://jira.percona.com/browse/K8SPG-510
https://jira.percona.com/browse/K8SPG-531
https://jira.percona.com/browse/K8SPG-535
https://jira.percona.com/browse/K8SPG-540
https://jira.percona.com/browse/K8SPG-543
https://jira.percona.com/browse/K8SPG-547
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift

e Minikube [1.33.1

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility

offered by Kubernetes itself.

https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.3.1

¢ Date
January 23, 2024
¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

This release provides a number of bug fixes, including fixes for the following vulnerabilities in
PostgreSQL, pgBackRest, and pgBouncer images used by the Operator:

e OpenSSH could cause remote code execution by ssh-agent if a user establishes an SSH
connection to a compromised or malicious SSH server and has agent forwarding enabled (CVE-
2023-38408 [4). This vulnerability affects pgBackRest and PostgreSQL images.

e The c-ares library could cause a Denial of Service with 0-byte UDP payload (CVE-2023-32067 [4).
This vulnerability affects pgBouncer image.

Both Operator 1.x (including version 1.5.0) and Operator 2.x (including version 2.3.0) are affected.
The 2.x versions upgrade to 2.3.1 is recommended to resolve these issues.

Bugs Fixed

e K8SPG-493: Fix a regression due to which the Operator could run scheduled backup only one time
e K8SPG-494: Fix vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images

e K8SPG-496: Fix the bug where setting the pause Custom Resource optionto true for the cluster
with a backup running would not take effect even after the backup completed

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.17,13.13,14.10, 15.5, and
16.1. Other options may also work but have not been tested. The Operator 2.3.1 provides connection
pooling based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.1:

https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://jira.percona.com/browse/K8SPG-493
https://jira.percona.com/browse/K8SPG-494
https://jira.percona.com/browse/K8SPG-496

e Google Kubernetes Engine (GKE) [4 1.24-1.28

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.24-1.28

e OpenShift (4 4.11.55-4.14.6
e Minikube (4 1.32

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.3.0

e Date
December 21, 2023
¢ Installation

Installing Percona Operator for PostgreSQL

Release Highlights

PostGIS support

Modern businesses heavily rely on location-based data to gain valuable insights and make data-
driven decisions. However, integrating geospatial functionality into the existing database systems
has often posed a challenge for enterprises. PostGIS, an open-source software extension for
PostgreSQL, addresses this difficulty by equipping users with extensive geospatial operations for
handling geographic data efficiently. Percona Operator now supports PostGIS, available through a
separate container image. You can read more about PostGIS and how to use it with the Operator in
our documentation.

OpensShift and PostgreSQL 16 support

The Operator is now compatible with the OpenShift platform empowering enterprise customers with

seamless on-premise or cloud deployments on the platform of their choice. Also, PostgreSQL 16
was added to the range of supported database versions and is used by default starting with this
release.

Experimental support for custom PostgreSQL extensions

One of great features of PostgreSQL is support for Extensions [4, which allow adding new
functionality to the database on a plugin basis. Starting from this release, users can add custom
PostgreSQL extensions dynamically, without the need to rebuild the container image (see this HowTo
on how to create and connect yours).

New features

https://www.postgresql.org/download/products/6-postgresql-extensions/

e K8SPG-311 and K8SPG-389: A new loadBalancerSourceRanges Custom Resource option
allows to customize the range of IP addresses from which the load balancer should be reachable

o K8SPG-375: Experimental support for custom PostgreSQL extensions was added to the Operator

e K8SPG-391: The Operator is now compatible with the OpenShift platform

e K8SPG-434: The Operator now supports Percona Distribution for PostgreSQL version 16 and uses
it as default database version

Improvements

e K8SPG-413: The Operator documentation now includes a comptibility matrix for each Operator

version, specifying exact versions of all core components as well as supported versions of the
database and platforms

o K8SPG-332: Creating backups and pausing_the cluster do not interfere with each other: the

Operator either postpones the pausing until the active backup ends, or postpones the scheduled
backup on the paused cluster

e K8SPG-370: Logging_.management is now aligned with other Percona Operators, allowing to use

structured logging and to control log level

e K8SPG-372: The multi-namespace (cluster-wide) mode of the Operator was improved, making it
possible to customize the list of Kubernetes namespaces under the Operator’s control

e K8SPG-400: The documentation now explains how to allow application users to connect to a
database cluster without TLS (for example, for testing or demonstration purposes)

o K8SPG-410: Scheduled backups now create pg-backup object to simplify backup management
and tracking

o K8SPG-416: PostgreSQL custom configuration is now supported in the Helm chart

o K8SPG-422 and K8SPG-447: The user can now see backup type and status in the output of
kubectl get pg-backup and kubectl get pg-restore commands

o KB8SPG-458: Affinity configuration examples were added to the default/cr.yaml configuration
file

Bugs Fixed

o K8SPG-435: Fix a bug with insufficient size of /tmp filesystem which caused PostgreSQL Pods to
be recreated every few days due to running out of free space on it

e K8SPG-453: Bugin pg_stat_monitor PostgreSQL extensions could hang PostgreSQL

https://jira.percona.com/browse/K8SPG-311
https://jira.percona.com/browse/K8SPG-389
https://jira.percona.com/browse/K8SPG-375
https://jira.percona.com/browse/K8SPG-391
https://jira.percona.com/browse/K8SPG-434
https://jira.percona.com/browse/K8SPG-413
https://jira.percona.com/browse/K8SPG-332
https://jira.percona.com/browse/K8SPG-370
https://jira.percona.com/browse/K8SPG-372
https://jira.percona.com/browse/K8SPG-400
https://jira.percona.com/browse/K8SPG-410
https://jira.percona.com/browse/K8SPG-416
https://jira.percona.com/browse/K8SPG-422
https://jira.percona.com/browse/K8SPG-447
https://jira.percona.com/browse/K8SPG-458
https://jira.percona.com/browse/K8SPG-435
https://jira.percona.com/browse/K8SPG-453

o K8SPG-279: Fix regression which made the Operator to crash after creating a backup if there was
no backups.pgbackrest.manual section in the Custom Resource

e K8SPG-310: Documentation didn't explain how to apply pgBackRest verifyTLS option which can
be used to explicitly enable or disable TLS verification for it

o K8SPG-432: Fix a bug due to which backup jobs and Pods were not deleted on deleting the
backup object

e KB8SPG-442: The Operator didn't allow to append custom items to the PostgreSQL

shared_preload_libraries option

e K8SPG-443: Fix a bug due to which only English locale was installed in the PostgreSQL image,
missing other languages support

e K8SPG-450: Fix a bug which prevented PostgreSQL to initialize the database on Kubernetes
working nodes with enabled huge memory pages if Pod resource limits didn't allow using them

e K8SPG-401: Fix a bug which caused Operator crash if deployed with no pmm section in the
deploy/cr.yaml configuration file

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.17,13.13, 14.10, 15.5, and
16.1. Other options may also work but have not been tested. The Operator 2.3.0 provides connection
pooling based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are officially supported by the Operator 2.3.0:

e Google Kubernetes Engine (GKE) (4 1.24-1.28

e Amazon Elastic Container Service for Kubernetes (EKS) [4 1.24 - 1.28

e OpenShift (4 4.11.55-4.14.6
e Minikube [1.32
This list only includes the platforms that the Percona Operators are specifically tested on as part of

the release process. Other Kubernetes flavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-310
https://jira.percona.com/browse/K8SPG-432
https://jira.percona.com/browse/K8SPG-442
https://jira.percona.com/browse/K8SPG-443
https://jira.percona.com/browse/K8SPG-450
https://jira.percona.com/browse/K8SPG-401
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.2.0

e Date
June 30, 2023
¢ Installation

Installing Percona Operator for PostgreSQL

Percona announces the general availability of Percona Operator for PostgreSQL 2.2.0.

Starting with this release, Percona Operator for PostgreSQL version 2 is out of technical preview and
can be used in production with all the improvements it brings over the version 1 in terms of
architecture, backup and recovery features, and overall flexibility.

We prepared a detailed migration guide which allows existing Operator 1.x users to move their

PostgreSQL clusters to the Operator 2.x. Also, see this blog post [4 to find out more about the

Operator 2.x features and benefits.

Improvements

e KB8SPG-378: Anew crVersion Custom Resource option was added to indicate the API version
this Custom Resource corresponds to

e K8SPG-359: The new users.secretName option allows to define a custom Secret name for the
users defined in the Custom Resource (thanks to Vishal Anarase for contributing)

e K8SPG-301: Amazon Elastic Container Service for Kubernetes (EKS)_[4 was added to the list of
officially supported platforms

e K8SPG-302: Minikube [4 is now officially supported by the Operator to enable ease of testing and

developing

o K8SPG-326: Both the Operator and database can be now installed with the Helm package

manager

o K8SPG-342: There is now no need in manual restart of PostgreSQL Pods after the monitor user
password changed in Secrets

e KB8SPG-345: The new proxy.pgBouncer.exposeSuperusers Custom Resource option makes it
possible for administrative users to connect to PostgreSQL through PgBouncer

https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://jira.percona.com/browse/K8SPG-378
https://jira.percona.com/browse/K8SPG-359
https://jira.percona.com/browse/K8SPG-301
https://aws.amazon.com/
https://jira.percona.com/browse/K8SPG-302
https://github.com/kubernetes/minikube
https://jira.percona.com/browse/K8SPG-326
https://jira.percona.com/browse/K8SPG-342
https://jira.percona.com/browse/K8SPG-345

e K8SPG-355: The Operator can now be deployed in multi-namespace (“cluster-wide”) mode to track
Custom Resources and manage database clusters in several namespaces

Bugs Fixed

e K8SPG-373: Fix the bug due to which the Operator did not not create Secrets for the pguser user
if PMM was enabled in the Custom Resource

o K8SPG-362: It was impossible to install Custom Resource Definitions for both 1.x and 2.x
Operators in one environment, preventing the migration of a cluster to the newer Operator version

e K8SPG-360: Fix a bug due to which manual password changing or resetting via Secret didn't work
Known limitations

e Query analytics (QAN) will not be available in Percona Monitoring and Management (PMM) due to
bugs PMM-12024 [4 and PMM-11938 [4. The fixes are included in the upcoming PMM 2.38, so
QAN can be used as soon as it is released and both PMM Client and PMM Server are upgraded.

Supported platforms

The Operator was developed and tested with PostgreSQL versions 12.14, 13.10, 14.7, and 15.2. Other
options may also work but have not been tested. The Operator 2.2.0 provides connection pooling
based on pgBouncer 1.18.0 and high-availability implementation based on Patroni 3.0.1.

The following platforms were tested and are officially supported by the Operator 2.2.0:

e Google Kubernetes Engine (GKE) [4 1.23-1.26

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.23-1.27

e Minikube [4 1.30.1 (based on Kubernetes 1.27)

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPG-355
https://jira.percona.com/browse/K8SPG-373
https://jira.percona.com/browse/K8SPG-362
https://jira.percona.com/browse/K8SPG-360
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-11938
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://github.com/kubernetes/minikube

Percona Operator for PostgreSQL 2.1.0 (Tech
preview)

e Date
May 4, 2023
¢ Installation

Installing_Percona Operator for PostgreSQL

The Percona Operator built with best practices of configuration and setup of Percona Distribution for
PostgreSQL on Kubernetes [4.

Percona Operator for PostgreSQL helps create and manage highly available, enterprise-ready
PostgreSQL clusters on Kubernetes. It is 100% open source, free from vendor lock-in, usage
restrictions and expensive contracts, and includes enterprise-ready features: backup/restore, high
availability, replication, logging, and more.

The benefits of using Percona Operator for PostgreSQL include saving time on database operations
via automation of Day-1 and Day-2 operations and deployment of consistent and vetted environment
on Kubernetes.

. Note

Version 2.1.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is
production-ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL

clusters in a Kubernetes-based environment, on-premises or in the cloud.

Release Highlights

e PostgreSQL 15 is now officially supported by the Operator with the new exciting_features [it

brings to developers

e UXimprovements related to Custom Resource have been added in this release, including the
handy pg, pg-backup, and pg-restore short names useful to quickly query the cluster state
with the kubectl get command and additional information in the status fields, which now show

name, endpoint, status, and age

https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/

New Features

K8SPG-328: The new delete-pvc finalizer allows to either delete or preserve Persistent Volumes
at Custom Resource deletion

K8SPG-330: The new delete-ssl finalizer can now be used to automatically delete objects
created for SSL (Secret, certificate, and issuer) in case of cluster deletion

K8SPG-331: Starting from now, the Operator adds short names to its Custom Resources: pg, pg-
backup, and pg-restore

K8SPG-282: PostgreSQL 15 is now officially supported by the Operator

Improvements

K8SPG-262: The Operator now does not attempt to start Percona Monitoring and Management
(PMM) client if the corresponding secret does not contain the pmmserver or pmmserverkey key

K8SPG-285: To improve the Operator we capture anonymous telemetry and usage data. In this
release we add more data points to it

K8SPG-295: Additional information was added to the status of the Operator Custom Resource,
which now shows name, endpoint, status, and age fields

K8SPG-304: The Operator stops using trust authentication method in pg_hba.conf for better
security

K8SPG-325: Custom Resource options previously named paused and shutdown were renamed
to unmanaged and pause for better alignment with other Percona Operators

Bugs Fixed

K8SPG-272: Fix a bug due to which PMM agent related to the Pod wasn't deleted from the PMM
Server inventory on Pod termination

K8SPG-279: Fix a bug which made the Operator to crash after creating a backup if there was no
backups.pgbackrest.manual section in the Custom Resource

K8SPG-298: Fix a bug due to which the shutdown Custom Resource option didn't work making it
impossible to pause the cluster

K8SPG-334: Fix a bug which made it possible for the monitoring user to have special characters in
the autogenerated password, making it incompatible with the PMM Client

https://jira.percona.com/browse/K8SPG-328
https://jira.percona.com/browse/K8SPG-330
https://jira.percona.com/browse/K8SPG-331
https://jira.percona.com/browse/K8SPG-282
https://jira.percona.com/browse/K8SPG-262
https://jira.percona.com/browse/K8SPG-285
https://jira.percona.com/browse/K8SPG-295
https://jira.percona.com/browse/K8SPG-304
https://jira.percona.com/browse/K8SPG-325
https://jira.percona.com/browse/K8SPG-272
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-298
https://jira.percona.com/browse/K8SPG-334

Supported platforms

The following platforms were tested and are officially supported by the Operator 2.1.0:

e Google Kubernetes Engine (GKE) (4 1.23-1.25

e Amazon Elastic Container Service for Kubernetes (EKS) (4 1.23-1.25

This list only includes the platforms that the Percona Operators are specifically tested on as part of
the release process. Other Kubernetes flavors and versions depend on the backward compatibility

offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/

Percona Operator for PostgresSQL 2.0.0 (Tech
preview)

e Date
December 30, 2022
¢ Installation

Installing_Percona Operator for PostgreSQL

The Percona Operator is based on best practices for configuration and setup of a Percona
Distribution for PostgreSQL on Kubernetes [4. The benefits of the Operator are many, but saving

time and delivering a consistent and vetted environment is key.

. Note

Version 2.0.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is

production-ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL
clusters in a Kubernetes-based environment, on-premises or in the cloud.

The Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the Postgres Operator
developed by Crunchy Data [. Please see the main changes in this version below.

Architecture

Operator SDK [4 is now used to build and package the Operator. It simplifies the development and

brings more contribution friendliness to the code, resulting in better potential for growing the
community. Users now have full control over Custom Resource Definitions that Operator relies on,
which simplifies the deployment and management of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0
Statefulsets are used, which are the de-facto standard for running stateful workloads in Kubernetes.
This change improves stability of the clusters and removes a lot of complexity from the Operator.

Backups

https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/

One of the biggest challenges in version 1.x is backups and restores. There are two main problems
that our user faced:

¢ Not possible to change backup configuration for the existing cluster

¢ Restoration from backup to the newly deployed cluster required workarounds
In this version both these issues are fixed. In addition to that:

e Run up to 4 pgBackrest repositories

e Bootstrap the cluster from the existing backup through Custom Resource

e Azure Blob Storage support

Operations

Deploying complex topologies in Kubernetes is not possible without affinity and anti-affinity rules. In
version 1.x there were various limitations and issues, whereas this version comes with substantial
improvements that enables users to craft the topology of their choice.

Within the same cluster users can deploy multiple instances. These instances are going to have the

same data, but can have different configuration and resources. This can be useful if you plan to
migrate to new hardware or need to test the new topology.

Each postgreSQL node can have sidecar containers now to provide integration with your existing

tools or expand the capabilities of the cluster.

Try it out now

Excited with what you read above?

e We encourage you to install the Operator following our documentation.

« Feel free to share feedback with us on the forum [or raise a bug or feature request in JIRA [4.

e See the source code in our Github repository [4.

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator

