
Operator for PostgreSQL 2.8.0
(November 13, 2025)

Documentation

Table of Contents

Home

Discover the Operator

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Overview

System requirements

1 Quick install

With kubectl

With Helm

2 Connect to PostgreSQL

3 Insert data

4 Make a backup

5 Monitor the database with PMM

What's next

Installation

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

ConRguration

Application and system users

Exposing the cluster

Changing PostgreSQL options

Anti-aTnity and tolerations

Labels and annotations

Transport encryption (TLS/SSL)

Telemetry

ConRgure concurrency for a cluster reconciliation

Management

Back up and restore

About backups

ConRgure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

Disable backups

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming replication

Failover

Scale your cluster

High-availability

Huge pages

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

Upgrade

About upgrades

Upgrade the Operator

Upgrade the database

Upgrade PostgreSQL extensions

Upgrade from version 1 to version 2

Using data volumes

Using backup and restore

Using standby

How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Change PostgreSQL primary instance

How to use private registry

Manage PostgreSQL extensions

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Monitor Kubernetes

Use PostGIS extension

Delete the Operator

Retrieve Percona certiRed images

Troubleshooting

Troubleshoot Operator installation issues

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Manage a database manually

Reinitialize replicas

Reference

Custom Resource options

Backup resource options

Restore options

Secrets options

Percona certiRed images

Versions compatibility

Copyright and licensing information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.8.0 (2025-11-13)

Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Home

Discover the Operator

Comparison with other solutions

Design and architecture

Get help from Percona

Quickstart guide

Overview

System requirements

1 Quick install

With kubectl

With Helm

2 Connect to PostgreSQL

3 Insert data

4 Make a backup

5 Monitor the database with PMM

What's next

Installation

Install on Minikube

Install with Everest

Install on Google Kubernetes Engine (GKE)

Install on Amazon Elastic Kubernetes Service (AWS EKS)

Install on Microsoft Azure Kubernetes Service (AKS)

Install on OpenShift

Generic Kubernetes installation

ConRguration

Application and system users

Exposing the cluster

Changing PostgreSQL options

Anti-aTnity and tolerations

Labels and annotations

Transport encryption (TLS/SSL)

Telemetry

ConRgure concurrency for a cluster reconciliation

Management

Back up and restore

About backups

ConRgure storage for backups

Make scheduled backups

Make on-demand backup

Restore from a backup

Backup encryption

Speed up backups

Backup retention

Delete the unneeded backup

Disable backups

Deploy a standby cluster for Disaster Recovery

Introduction

Deploy standby cluster based on backups

Deploy standby cluster based on streaming replication

Failover

Scale your cluster

High-availability

Huge pages

Add sidecar containers

Restart or pause the cluster

Monitor the database with PMM

Upgrade

About upgrades

Upgrade the Operator

Upgrade the database

Upgrade PostgreSQL extensions

Upgrade from version 1 to version 2

Using data volumes

Using backup and restore

Using standby

How-to

Install the database with customized parameters

Run Initialization SQL commands at cluster creation time

Change PostgreSQL primary instance

How to use private registry

Manage PostgreSQL extensions

Provide Percona Operator for PostgreSQL single-namespace and multi-namespace deployment

Use PostgreSQL tablespaces with Percona Operator for PostgreSQL

Monitor Kubernetes

Use PostGIS extension

Delete the Operator

Retrieve Percona certiRed images

Troubleshooting

Troubleshoot Operator installation issues

Initial troubleshooting

Check storage

Exec into the container

Check the logs

Manage a database manually

Reinitialize replicas

Reference

Custom Resource options

Backup resource options

Restore options

Secrets options

Percona certiRed images

Versions compatibility

Copyright and licensing information

Trademark policy

Release Notes

Release notes index

Percona Operator for PostgreSQL 2.8.0 (2025-11-13)

Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2025-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)

Percona Operator for PostgreSQL
documentation
The Percona Operator for PostgreSQL automates the creation, modiRcation, or deletion of items
in your Percona Distribution for PostgreSQL environment. The Operator contains the necessary
Kubernetes settings to maintain a consistent PostgreSQL cluster.

Percona Kubernetes Operator is based on best practices for conRguration and setup of a Percona
Distribution for PostgreSQL cluster. The beneRts of the Operator are many, but saving time and
delivering a consistent and vetted environment is key.

This is the documentation for the latest release, 2.8.0 (Release Notes).

Starting with Percona Kubernetes Operator is easy. Follow our documentation guides, and you’ll be
set up in a minute.

 Installation guides
Want to see it for yourself? Get started
quickly with our step-by-step installation
instructions.

Quickstart guides

 Security and encryption
Rest assured! Learn more about our
security features designed to protect your
valuable data.

Security measures

 Backup management
Learn what you can do to maintain
regular backups of your PostgreSQL
cluster.

Backup management

 Troubleshooting
Our comprehensive resources will help
you overcome challenges, from everyday
issues to speciRc doubts.

Diagnostics

https://github.com/percona/percona-postgresql-operator

Discover the Operator

Compare various solutions to deploy
PostgreSQL in Kubernetes
There are multiple ways to deploy and manage PostgreSQL in Kubernetes. Here we will focus on
comparing the following open source solutions:

Crunchy Data PostgreSQL Operator (PGO)

CloudNative PG from Enterprise DB

Stackgres from OnGres

Zalando Postgres Operator

Percona Operator for PostgreSQL

Generic

Feature/Product Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Open-source
license

Apache 2.0 AGPL 3 Apache 2.0,
but images are

under
Developer
Program

Apache 2.0 MIT

PostgreSQL
versions

12 - 16 14 - 16 13 - 16 12 - 16 11 - 15

Kubernetes
conformance

Various
versions are

tested

Various
versions

are tested

Various
versions are

tested

Various
versions are

tested

AWS EKS

Web-based GUI Percona
Everest

Admin UI Postgres
Operator UI

Maintenance

https://github.com/CrunchyData/postgres-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/ongres/stackgres
https://github.com/zalando/postgres-operator
https://github.com/percona/percona-postgresql-operator/
https://docs.percona.com/everest/index.html
https://stackgres.io/doc/latest/administration/adminui/
https://github.com/zalando/postgres-operator/blob/master/docs/operator-ui.md

Feature/Product Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Operator
upgrade

Database
upgrade

Automated
and safe

Automated
and safe

Manual Manual Manual

Compute
scaling

Horizontal and
vertical

Horizontal
and vertical

Horizontal
and vertical

Horizontal and
vertical

Horizontal
and vertical

Storage scaling Manual Manual Manual Manual Manual,
automated

for AWS
EBS

PostgreSQL topologies

Feature/Product Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Warm standby

Hot standby

Connection
pooling

Delayed replica

Backups

Feature/Product Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Scheduled
backups

WAL archiving

PITR

GCS

S3

Azure

Monitoring

Feature/Product Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Solution Percona
Monitoring

and
Management
and sidecars

Exposing
metrics in

Prometheus
format

Prometheus
stack and
pgMonitor

Exposing
metrics in

Prometheus
format

Sidecars

Miscellaneous

Feature/Product Percona
Operator for
PostgreSQL

Stackgres CrunchyData CloudNativePG
(EDB)

Zalando

Customize
PostgreSQL
conRguration

Sidecar
containers for
customization

Helm

Transport
encryption

Data-at-rest
encryption

Through
storage class

Through
storage

class

Through
storage

class

Through
storage class

Through
storage

class

Create
users/roles

limited

Design overview
The Percona Operator for PostgreSQL automates and simpliRes deploying and managing open
source PostgreSQL clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL
Operator .

DB Pod N

Kubernetes API Operator

CSI

Storage
Area

Network

Container SuiteCustom Resource
Definitions

clusters
(perconapgcluster)

backup, restore
(perconapgbackups,
perconapgrestores)

pgbouncerprimary
PostgreSQL

replica
PostgreSQL

pgbackrest

PostgreSQL containers deployed with the Operator include the following components:

The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules ,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module ,

wal2json output plugin ,

https://access.crunchydata.com/documentation/postgres-operator/v5/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json

The pgBackRest Backup & Restore utility,

The pgBouncer connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template ,

the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

Each PostgreSQL cluster includes one member available for read/write transactions (PostgreSQL
primary instance, or leader in terms of Patroni) and a number of replicas which can serve read
requests only (standby members of the cluster).

To provide high availability from the Kubernetes side the Operator involves node aTnity to run
PostgreSQL Cluster instances on separate worker nodes if possible. If some node fails, the Pod with
it is automatically re-created on another node.

https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL
Namespace

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A
PersistentVolumeClaim (PVC) is used to implement the automatic storage provisioning to pods. If a
failure occurs, the Container Storage Interface (CSI) should be able to re-mount storage on a
different node.

The Operator functionality extends the Kubernetes API with Custom Resources DeRnitions . These
CRDs provide extensions to the Kubernetes API, and, in the case of the Operator, allow you to
perform actions such as creating a PostgreSQL Cluster, updating PostgreSQL Cluster resource
allocations, adding additional utilities to a PostgreSQL cluster, e.g. pgBouncer for connection
pooling and more.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

When a new Custom Resource is created or an existing one undergoes some changes or deletion,
the Operator automatically creates/changes/deletes all needed Kubernetes objects with the
appropriate settings to provide a proper Percona PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

perconapgclusters stores information required to manage a PostgreSQL cluster. This includes
things like the cluster name, what storage and resource classes to use, which version of
PostgreSQL to run, information about how to maintain a high-availability cluster, etc.

perconapgbackups and perconapgrestores are in charge for making backups and restore
them.

Get help from Percona
Our documentation guides are packed with information, but they can’t cover everything you need to
know about Percona Operator for PostgreSQL. They also won’t cover every scenario you might come
across. Don’t be afraid to try things out and ask questions when you get stuck.

Percona’s Community Forum
Be a part of a space where you can tap into a wealth of knowledge from other database enthusiasts
and experts who work with Percona’s software every day. While our service is entirely free, keep in
mind that response times can vary depending on the complexity of the question. You are engaging
with people who genuinely love solving database challenges.

We recommend visiting our Community Forum. It’s an excellent place for discussions, technical
insights, and support around Percona database software. If you’re new and feeling a bit unsure, our
FAQ and Guide for New Users ease you in.

If you have thoughts, feedback, or ideas, the community team would like to hear from you at Any
ideas on how to make the forum better?. We’re always excited to connect and improve everyone’s
experience.

Percona experts
Percona experts bring years of experience in tackling tough database performance issues and
design challenges.

Talk to a Percona Expert

We understand your challenges when managing complex database environments. That’s why we
offer various services to help you simplify your operations and achieve your goals.

Service Description

24/7 Expert
Support

Our dedicated team of database experts is available 24/7 to assist you with any database
issues. We provide mexible support plans tailored to your speciRc needs.

Hands-On
Database
Management

Our managed services team can take over the day-to-day management of your database
infrastructure, freeing up your time to focus on other priorities.

https://forums.percona.com/t/welcome-to-perconas-community-forum/7
https://forums.percona.com/faq
https://forums.percona.com/t/faq-guide-for-new-users/8562
https://forums.percona.com/t/any-ideas-on-how-to-make-the-forum-better/11522

Expert
Consulting

Our experienced consultants provide guidance on database topics like architecture
design, migration planning, performance optimization, and security best practices.

Comprehensive
Training

Our training programs help your team develop skills to manage databases effectively,
offering virtual and in-person courses.

We’re here to help you every step of the way. Whether you need a quick Rx or a long-term partnership,
we’re ready to provide your expertise and support.

Quickstart guide

Overview
Ready to get started with the Percona Operator for PostgreSQL? In this section, you will learn some
basic operations, such as:

Install and deploy an Operator

Connect to PostgreSQL

Insert sample data to the database

Set up and make a manual backup

Monitor the database health with PMM

Next steps

Install the Operator

System requirements
The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is
cloud native and storage agnostic, working with a wide variety of storage classes, hostPath, and
NFS.

Supported versions
The Operator 2.8.0 is developed, tested and based on:

PostgreSQL 13.22-1, 14.19-1, 15.14-1, 16.10-1,17.6-1 as the database. Other versions may also
work but have not been tested.

pgBouncer 1.24.1-1 for connection pooling

Patroni version 4.6.0 for high-availability

PostGIS version 3.3.8

Supported platforms
The following platforms were tested and are oTcially supported by the Operator 2.8.0:

Google Kubernetes Engine (GKE) 1.31 - 1.33

Amazon Elastic Container Service for Kubernetes (EKS) 1.31 - 1.34

OpenShift 4.16 - 4.20

Azure Kubernetes Service (AKS) 1.32 - 1.34

Minikube 1.37.0 with Kubernetes v1.34.0

Other Kubernetes platforms may also work but have not been tested.

Huge pages
We strongly recommend enabling huge pages on worker nodes for better stability and performance.

Installation guidelines
Choose how you wish to install Percona Operator for PostgreSQL:

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/

with Helm

with kubectl

on Minikube

on Google Kubernetes Engine (GKE)

on Amazon Elastic Kubernetes Service (AWS EKS)

on Azure Kubernetes Service (AKS)

in a general Kubernetes-based environment

1 Quick install

Install Percona Distribution for PostgreSQL
using kubectl
A Kubernetes Operator is a special type of controller introduced to simplify complex deployments.
The Operator extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for conRguration and setup of a
Percona Distribution for PostgreSQL cluster in a Kubernetes-based environment on-premises or in
the cloud.

We recommend installing the Operator with the kubectl command line utility. It is the universal
way to interact with Kubernetes. Alternatively, you can install it using the Helm package manager.

 Install with kubectl Install with Helm

Prerequisites
To install Percona Distribution for PostgreSQL, you need the following:

1. The kubectl tool to manage and deploy applications on Kubernetes, included in most Kubernetes
distributions. Install not already installed, follow its oTcial installation instructions .

2. A Kubernetes environment. You can deploy it on Minikube for testing purposes or using any
cloud provider of your choice. Check the list of our oTcially supported platforms.

Set up Minikube

Create and conRgure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Create and conRgure the AKS cluster

Procedure
Here’s a sequence of steps to follow:

See also

https://kubernetes.io/docs/tasks/tools/
https://github.com/helm/helm
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/kubernetes/minikube

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in
Kubernetes by installing the Operator in a custom namespace. For example, let’s name it
postgres-operator :

We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.

1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Deploy the Operator using the following command:2

$ kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

https://kubernetes.io/docs/reference/using-api/server-side-apply/

You have successfully installed and deployed the Operator with default parameters. You can check
them in the Custom Resource options reference.

Next steps

 Connect to PostgreSQL

At this point, the Operator Pod is up and running.

Deploy Percona Distribution for PostgreSQL cluster:3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Check the Operator and replica set Pods status.

The creation process may take some time. When the process is over your cluster obtains the
ready status.

4

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3
143m

Install Percona Distribution for PostgreSQL
using Helm
Helm is the package manager for Kubernetes. A Helm chart is a package that contains all the
necessary resources to deploy an application to a Kubernetes cluster.

You can Rnd Percona Helm charts in percona/percona-helm-charts repository in Github.

Prerequisites
To install and deploy the Operator, you need the following:

1. Helm v3 .

2. kubectl command line utility.

3. A Kubernetes environment. You can deploy it locally on Minikube for testing purposes or
using any cloud provider of your choice. Check the list of our oTcially supported platforms.

Set up Minikube

Create and conRgure the GKE cluster

Set up Amazon Elastic Kubernetes Service

Installation
Here’s a sequence of steps to follow:

See also

Add the Percona’s Helm charts repository and make your Helm client up to date with it:1

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

It is a good practice to isolate workloads in Kubernetes via namespaces. Create a namespace:2

$ kubectl create namespace <my-namespace>

https://github.com/helm/helm
https://helm.sh/docs/topics/charts/
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/
https://github.com/kubernetes/minikube

You have successfully installed and deployed the Operator with default parameters. You can check
them in the Custom Resource options reference.

You can Rnd in the documentation for the charts which Operator and database parameters can
be customized during installation.

Next steps

Install the Percona Operator for PostgreSQL:

The my-namespace is the name of your namespace. The my-operator parameter is the name
of a new release object which is created for the Operator when you install its Helm chart (use
any name you like).

3

$ helm install my-operator percona/pg-operator --namespace <my-namespace>

Install Percona Distribution for PostgreSQL:

The cluster1 parameter is the name of a new release object which is created for the
Percona Distribution for PostgreSQL when you install its Helm chart (use any name you like).

4

$ helm install cluster1 percona/pg-db -n <my-namespace>

Check the Operator and replica set Pods status.

The creation process is over when both the Operator and replica set Pods report the ready
status:

5

$ kubectl get pg -n <my-namespace>

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3
143m

https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-db#installing-the-chart
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

Connect to PostgreSQL

2 Connect to the PostgreSQL cluster
When the installation is done, we can connect to the cluster.

The pgBouncer component of Percona Distribution for PostgreSQL provides the point of entry to
the PostgreSQL cluster. We will use the pgBouncer URI to connect.

The pgBouncer URI is stored in the Secret object, which the Operator generates during the
installation.

To connect to PostgreSQL, do the following:

List the Secrets objects

The Secrets object we target is named as <cluster_name>-pguser-<cluster_name> . The
<cluster_name> value is the name of your Percona Distribution for PostgreSQL Cluster. The
default variant is:

1

$ kubectl get secrets -n <namespace>

 via kubectl

cluster1-pguser-cluster1

 via Helm

cluster1-pg-db-pguser-cluster1-pg-db

Retrieve the pgBouncer URI from your secret, decode and pass it as the PGBOUNCER_URI
environment variable. Replace the <secret> , <namespace> placeholders with your Secret
object and namespace accordingly:

The following example shows how to pass the pgBouncer URI from the default Secret object
cluster1-pguser-cluster1 :

2

$ PGBOUNCER_URI=$(kubectl get secret <secret> --namespace <namespace> -o
jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

$ PGBOUNCER_URI=$(kubectl get secret cluster1-pguser-cluster1 --namespace
<namespace> -o jsonpath='{.data.pgbouncer-uri}' | base64 --decode)

http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Congratulations! You have connected to your PostgreSQL cluster.

Next steps

 Insert testing data

Create a Pod where you start a container with Percona Distribution for PostgreSQL and connect
to the database. The following command does it, naming the Pod pg-client and connects you
to the cluster1 database:

It may take some time to create the Pod and connect to the database. As the result, you should
see the following sample output:

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:16 --restart=Never -- psql $PGBOUNCER_URI

Expected output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
cluster1=>

3 Insert sample data
The next step after connecting to the cluster is to insert some sample data to PostgreSQL.

When you start a PostgreSQL container and connect to the database, a user is created with the
username that matches the name of your cluster. Also, a database and a schema named after the
name of this user are created so that you can create a table right away.

Create a schema (for Operator version earlier than 2.6.0)
In Operator versions earlier than 2.6.0, you must create a new schema to insert the data. This is
because your user cannot access the default schema called public due to PostgreSQL restrictions
(instroduced starting with PostgreSQL 15).

A schema stores database objects like tables, views, indexes and allows organizing them into logical
groups.

Use the following statement to create a schema

Create a table
After you created a schema, all tables you create end up in this schema if not speciRed otherwise.

At this step, we will create a sample table Library as follows:

CREATE SCHEMA demo;

CREATE TABLE LIBRARY(
 ID INTEGER NOT NULL,
 NAME TEXT,
 SHORT_DESCRIPTION TEXT,
 AUTHOR TEXT,
 DESCRIPTION TEXT,
 CONTENT TEXT,
 LAST_UPDATED DATE,
 CREATED DATE
);

If the schema has not been automatically set to the one you created, set it manually using the following SQL
statement:

Replace the demo schema name with your value if you used another name.

Insert the data
PostgreSQL does not have the built-in support to generate random data. However, it provides the
random() function which generates random numbers and generate_series() function which
generates the series of rows and populates them with the numbers incremented by 1 (by default).

Combine these functions with a couple of others to populate the table with the data:

This command does the following:

Fills in the columns id , name , author with the values id , name and name2 respectively;

generates the random md5 hash sum as the values for the columns short_description ,
description and content ;

generates the random number of dates from the current date and time within the last 100 days,
and

inserts 100 rows of this data

Now your cluster has some data in it.

Next steps

Tip

SET schema 'demo';

INSERT INTO LIBRARY(id, name, short_description, author,
 description,content, last_updated, created)
SELECT id, 'name', md5(random()::text), 'name2'
 ,md5(random()::text),md5(random()::text)
 ,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100)
 ,NOW() - '1 day'::INTERVAL * (RANDOM()::int * 100 + 100)
FROM generate_series(1,100) id;

:simple-amazons3: Make a backup

4 Make a backup
Now your database contains some data, so it’s a good time to learn how to manually make a full
backup of your data with the Operator.

If you are interested to learn more about backups, their types and retention policy, see the Backups section.

Considerations and prerequisites

In this tutorial we use the AWS S3 as the backup storage. You need the following S3-related
information:

The name of S3 bucket;

The endpoint - the URL to access the bucket

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage.

If you don’t have access to AWS, you can use any S3-compatible storage like MinIO . Check the
list of supported storages. Find the storage conRguration instructions for each

The Operator uses the pgBackRest tool to make backups. pgBackRest stores the backups
and archives WAL segments in repositories. The Operator has up to four pgBackRest
repositories named repo1 , repo2 , repo3 and repo4 . In this tutorial we use repo2 for backups.

Also, we will use some Rles from the Operator repository for setting up backups. So, clone the
percona-postgresql-operator repository:

It is important to specify the right branch with -b option while cloning the code on this step. Please be
careful.

Note

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

Note

https://aws.amazon.com/s3/
https://min.io/docs/minio/linux/index.html
https://pgbackrest.org/

Configure backup storage

Encode the S3 credentials and the pgBackRest repository name (repo2 in our setup).1

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

Create the Secret conRguration Rle and specify the base64-encoded string from the previous
step. The following is the example of the cluster1-pgbackrest-secrets.yaml Secret Rle:

2

apiVersion: v1
kind: Secret
metadata:
 name: cluster1-pgbackrest-secrets
type: Opaque
data:
 s3.conf: <base64-encoded-configuration-contents>

Create the Secrets object from this yaml Rle. Specify your namespace instead of the
<namespace> placeholder:

3

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml conRguration. Specify the Secret Rle you created in the
backups.pgbackrest.configuration subsection, and put all other S3 related information in
the backups.pgbackrest.repos subsection under the repository name that you intend to use
for backups. This name must match the name you used when you encoded S3 credentials on
step 1.

4

Make a backup
For manual backups, you need a backup conRguration Rle.

For example, the S3 storage for the repo2 repository looks as follows:

...
backups:
 pgbackrest:
 ...
 configuration:
 - secret:
 name: cluster1-pgbackrest-secrets
 ...
 repos:
 - name: repo2
 s3:
 bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
 endpoint: "<YOUR_AWS_S3_ENDPOINT>"
 region: "<YOUR_AWS_S3_REGION>"

Create or update the cluster. Specify your namespace instead of the <namespace> placeholder:5

$ kubectl apply -f deploy/cr.yaml

Edit the example backup conRguration Rle [deploy/backup.yaml]
(https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/backup.yaml). Specify your cluster name and the repo name.

1

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
 name: backup1
spec:
 pgCluster: cluster2
 repoName: repo1
options:
- --type=full

Apply the conRguration. This instructs the Operator to start a backup.2

Congratulations! You have made the Rrst backup manually. Want to learn more about backups? See
the Backup and restore section for details like types, retention and how to automatically make
backups according to the schedule.

Next steps

 Monitor the database

$ kubectl apply -f deploy/backup.yaml -n <namespace>

To make a backup takes a while. Track the backup progress:3

$ kubectl get pg-backup -n <namespace>

Expected output

NAME CLUSTER REPO DESTINATION STATUS TYPE COMPLETED AGE
backup1 cluster1 repo2 s3://pg-operator-testing
Succeeded full 3m14s 4m46s

5 Monitor the database
Finally, when we are done with backup, it’s time for one more step. In this section you will learn how
to monitor the health of Percona Distribution for PostgreSQL with Percona Monitoring and
Management (PMM) .

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you
provide. For PMM 2, the Operator uses API keys for authentication. For PMM 3, it uses service
account tokens.

We recommend to use the latest PMM 3.

PMM is a client/server application. It includes the PMM Server and the number of PMM Clients
running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you
connect to the PMM Server to see database metrics on a number of dashboards. PMM Server and
PMM Client are installed separately.

Considerations
1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you

are using PMM server version 3, use a PMM client image compatible with PMM 3. Check
Percona certiRed images for the right one.

2. If you speciRed both authentication methods for PMM server conRguration and they have non-
empty values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation . Also check the
Automatic migration of API keys page.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual
appliance, or in Kubernetes. Please refer to the oTcial PMM documentation for the installation
instructions.

https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html

Install PMM Client
PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based
environment. To install PMM Client, do the following:

Configure authentication

Create a secret

PMM3

PMM3 uses Grafana service accounts to control access to PMM server components and resources.
To authenticate in PMM server, you need a service account token. Generate a service account and
token . Specify the Admin role for the service account.

When you create a service account token, you can select its lifetime: it can be either a permanent token that
never expires or the one with the expiration date. PMM server cannot rotate service account tokens after they
expire. So you must take care of reconRguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this
key to authorize PMM Client within PMM Server.

The API key is not rotated.

Warning

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login, password,
and hostname in the following command:

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d
'{"name":"operator", "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

Warning

https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

Now you must pass the credentials to the Operator. To do so, create a Secret object.

1. Create a Secret conRguration Rle. You can use the deploy/secrets.yaml secrets Rle.

2. Create the Secrets object using the deploy/secrets.yaml Rle.

Deploy a PMM Client

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN value in the secrets Rle:

PMM 2

Specify the API key as the PMM_SERVER_KEY value in the secrets Rle:

apiVersion: v1
kind: Secret
metadata:
 name: cluster1-pmm-secret
type: Opaque
stringData:
 PMM_SERVER_TOKEN: ""

apiVersion: v1
kind: Secret
metadata:
 name: cluster1-pmm-secret
type: Opaque
stringData:
 PMM_SERVER_KEY: ""

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

Expected output

secret/cluster1-pmm-secret created

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml

1. Update the pmm section in the deploy/cr.yaml Rle.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost option. The
PMM Server IP address should be resolvable and reachable from within your cluster.

Specify the name of the Secret object that you created earlier

2. Update the cluster

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if
there are errors on the previous steps:

Update the secrets file
The deploy/secrets.yaml Rle contains all values for each key/value pair in a convenient plain text
format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If
you want to update the password Reld, you need to encode the new password into the base64 format
and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

 pmm:
 enabled: true
 image: percona/pmm-client:3.4.1
imagePullPolicy: IfNotPresent
 secret: cluster1-pmm-secret
 serverHost: monitoring-service

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pods -n postgres-operator
$ kubectl logs <pod_name> -c pmm-client

https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml

For example, to set the new service account token in the my-cluster-name-secrets object, do the
following:

Check the metrics
Let’s see how the collected data is visualized in PMM.

Next steps

What’s next

 Linux

 macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

 Linux

 macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'$(echo -n <new-token> | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN":
'$(echo -n <new-token> | base64)'}}'

Log in to PMM server.1

Click PostgreSQL from the left-hand navigation menu. You land on the Instances Overview
page.

2

Click PostgreSQL → Other dashboards to see the list of available dashboards that allow you
to drill down to the metrics you are interested in.

3

What’s next?
Congratulations! You have completed all the steps in the Get started guide.

You have the following options to move forward with the Operator:

Deepen your monitoring insights by setting up Kubernetes monitoring with PMM

Control Pods assignment on speciRc Kubernetes Nodes by setting up aTnity / anti-aTnity

Ready to adopt the Operator for production use and need to delete the testing deployment? Use
this guide to do it

You can also try operating the Operator and database clusters via the web interface with Percona
Everest - an open-source web-based database provisioning tool based on Percona Operators. See
Get started with Percona Everest on how to start using it

https://docs.percona.com/everest/index.html
https://docs.percona.com/everest/quickstart-guide/quick-install.html

Installation

Install Percona Distribution for PostgreSQL
on Minikube
Installing the Percona Operator for PostgreSQL on Minikube is the easiest way to try it locally
without a cloud provider.

Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide
hypervisor, such as VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to
test Kubernetes application locally prior to deploying it on a cloud.

This document describes how to deploy the Operator and Percona Distribution for PostgreSQL on
Minikube.

Set up Minikube

Install Minikube , using a way recommended for your system. This includes the installation of
the following three components:

1

kubectl tool,1

a hypervisor, if it is not already installed,2

actual minikube package3

After the installation, initialize and start the Kubernetes cluster. The parameters we pass for the
following command increase the virtual machine limits for the CPU cores, memory, and disk, to
ensure stable work of the Operator:

This command downloads needed virtualized images, then initializes and runs the cluster.

2

$ minikube start --memory=5120 --cpus=4 --disk-size=30g

After Minikube is successfully started, you can optionally run the Kubernetes dashboard, which
visually represents the state of your cluster. Executing minikube dashboard starts the
dashboard and opens it in your default web browser.

3

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/

Deploy the Percona Operator for PostgreSQL

Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in
Kubernetes by installing the Operator in a custom namespace. For example, let’s name it
postgres-operator :

We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.

1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Deploy the Operator using the following command:2

$ kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/

As the result you have the Operator Pod up and running.

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

Deploy Percona Distribution for PostgreSQL:3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Verify the Percona Distribution for PostgreSQL cluster
operation
When creation process is over, the output of the kubectl get pg command shows the cluster
status as ready . You can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

This deploys the default Percona Distribution for PostgreSQL conRguration. Please see deploy/cr.yaml
and Custom Resource Options for the conRguration options. You can clone the repository with all manifests
and source code by executing the following command:

After editing the needed options, apply your modiRed deploy/cr.yaml Rle as follows:

Note

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

4

$ kubectl get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1 .

1

https://kubernetes.io/docs/concepts/configuration/secret/
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Delete the cluster
If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

If you no longer need the Kubernetes cluster in Minikube, the following are the steps to remove it.

Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL
interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
pgdb=>

Stop the Minikube cluster:1

$ minikube stop

Delete the cluster

This command deletes the virtual machines, and removes all associated Rles.

2

$ minikube delete

Install Percona Distribution for PostgreSQL
cluster using Everest
Percona Everest is an open source cloud-native database platform that helps developers deploy
code faster, scale deployments rapidly, and reduce database administration overhead while regaining
control over their data, database conRguration, and DBaaS costs.

It automates day-one and day-two database operations for open source databases on Kubernetes
clusters. Percona Everest provides API and Web GUI to launch databases with just a few clicks and
scale them, do routine maintenance tasks, such as software updates, patch management, backups,
and monitoring.

You can try it in action by Installing Percona Everest and managing your Rrst cluster .

https://docs.percona.com/everest/
https://docs.percona.com/everest/quickstart-guide/qs-overview.html
https://docs.percona.com/everest/use/cluster-management.html

Install Percona Distribution for PostgreSQL
on Google Kubernetes Engine (GKE)
Following steps help you install the Operator and use it to manage Percona Distribution for
PostgreSQL with the Google Kubernetes Engine. The document assumes some experience with
Google Kubernetes Engine (GKE). For more information on GKE, see the Kubernetes Engine
Quickstart .

Prerequisites
All commands from this installation guide can be run either in the Google Cloud shell or in your local
shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

1. gcloud . This tool is part of the Google Cloud SDK. To install it, select your operating system
on the oTcial Google Cloud SDK documentation page and then follow the instructions.

2. kubectl . This is the Kubernetes command-line tool you will use to manage and deploy
applications. To install the tool, run the following command:

Create and configure the GKE cluster
You can conRgure the settings using the gcloud tool. You can run it either in the Cloud Shell or in
your local shell (if you have installed Google Cloud SDK locally on the previous step). The following
command creates a cluster named cluster-1 :

$ gcloud auth login
$ gcloud components install kubectl

$ gcloud container clusters create cluster-1 --project <project ID> --zone
us-central1-a --cluster-version 1.33 --machine-type n1-standard-4 --num-
nodes=3

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

You must edit the above command and other command-line statements to replace the <project ID>
placeholder with your project ID (see available projects with gcloud projects list command). You may also
be required to edit the zone location, which is set to us-central1 in the above example. Other parameters
specify that we are creating a cluster with 3 nodes and with machine type of 4 vCPUs.

You may wait a few minutes for the cluster to be generated.

Select Kubernetes Engine → Clusters in the left menu panel:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

Now you should conRgure the command-line access to your newly created cluster to make kubectl
be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above
image. You will see the connect statement which conRgures the command-line access. After you
have edited the statement, you may run the command in your local shell:

Finally, use your Cloud Identity and Access Management (Cloud IAM) to control access to the
cluster. The following command will give you the ability to create Roles and RoleBindings:

Note

When the process is over, you can see it listed in the Google Cloud console

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --
project <project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole
cluster-admin --user $(gcloud config get-value core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

https://cloud.google.com/iam

Install the Operator and deploy your PostgreSQL cluster

First of all, use the following git clone command to download the correct branch of the
percona-postgresql-operator repository:

1

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it
postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command,
and modify the -n postgres-operator parameter with it in the following steps. You can also omit this
parameter completely to deploy everything in the default namespace.

2

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

Note

Deploy the Operator using the following command:3

$ kubectl apply --server-side -f deploy/bundle.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/

As the result you will have the Operator Pod up and running.

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

Deploy Percona Distribution for PostgreSQL:

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

4

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

$ kubectl get pg -n postgres-operator

Verifying the cluster operation
When creation process is over, kubectl get pg -n <namespace> command will show you the
cluster status as ready , and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

When the creation process is Rnished, it will look as follows:

Name Status Type Namespace ClusterPods

cluster1-backup-7hsq OK Job pg-opertor cluster10/1

cluster1-instance1-mntz OK Stateful Set pg-opertor cluster11/1

cluster1-pgbouncer OK Deployment pg-opertor cluster11/1

cluster1-repo-host OK Stateful Set pg-opertor cluster11/1

cluster1-repo1-full OK Cron Job pg-opertor cluster10/0

percona-postgresql-operator OK Deployment pg-opertor cluster11/1

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

You can also track the creation process in Google Cloud console via the Object Browser

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Removing the cluster
If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

Also, there are several ways that you can delete your Kubernetes cluster in GKE.

You can clean up the cluster with the gcloud command as follows:

The return statement requests your conRrmation of the deletion. Type y to conRrm.

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL
interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
pgdb=>

$ gcloud container clusters delete <cluster name> --zone us-central1-a --
project <project ID>

Just click the Delete popup menu item in the clusters list:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

Also, you can delete your cluster via the Google Cloud console

Warning

Install Percona Distribution for PostgreSQL
on Amazon Elastic Kubernetes Service (EKS)
This guide shows you how to deploy Percona Operator for PostgreSQL on Amazon Elastic
Kubernetes Service (EKS). The document assumes some experience with the platform. For more
information on the EKS, see the Amazon EKS oTcial documentation .

Prerequisites

Software installation

The following tools are used in this guide and therefore should be preinstalled:

1. AWS Command Line Interface (AWS CLI) for interacting with the different parts of AWS. You can
install it following the oTcial installation instructions for your system .

2. eksctl to simplify cluster creation on EKS. It can be installed along its installation notes on
GitHub .

3. kubectl to manage and deploy applications on Kubernetes. Install it following the oTcial
installation instructions .

Also, you need to conRgure AWS CLI with your credentials according to the oTcial guide .

Creating the EKS cluster

To create your cluster, you will need the following data:

name of your EKS cluster,

AWS region in which you wish to deploy your cluster,

the amount of nodes you would like tho have,

the desired ratio between on-demand and spot instances in the total number of
nodes.

1

→

→

→

→

https://aws.amazon.com/eks/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://github.com/weaveworks/eksctl#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-on-demand-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

Install the Operator and Percona Distribution for
PostgreSQL
The following steps are needed to deploy the Operator and Percona Distribution for PostgreSQL in
your Kubernetes environment:

spot instances are not recommended for production environment, but may be useful e.g. for testing
purposes.

After you have settled all the needed details, create your EKS cluster following the oTcial cluster
creation instructions .

Note

After you have created the EKS cluster, you also need to install the Amazon EBS CSI driver on
your cluster. See the oTcial documentation on adding it as an Amazon EKS add-on.

CSI driver is needed for the Operator to work properly, and is not included by default starting from the
Amazon EKS version 1.22. Therefore servers with existing EKS cluster based on the version 1.22 or earlier
need to install CSI driver before updating the EKS cluster to 1.23 or above.

2

Note

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it
postgres-operator):

1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html

To use different namespace, specify other name instead of postgres-operator in the above command,
and modify the -n postgres-operator parameter with it in the following two steps. You can also omit
this parameter completely to deploy everything in the default namespace.

Note

Deploy the Operator using the following command:

As the result you will have the Operator Pod up and running.

2

$ kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

Expected output

customresourcedefinition.apiextensions.k8s.io/crunchybridgeclusters.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgupgrades.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgadmins.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/pgupgrades.postgres-
operator.crunchydata.com serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

The operator has been started, and you can deploy your Percona Distribution for PostgreSQL
cluster:

3

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/

Verifying the cluster operation
When creation process is over, kubectl get pg command will show you the cluster status as
ready , and you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

This deploys default Percona Distribution for PostgreSQL conRguration. Please see deploy/cr.yaml and
Custom Resource Options for the conRguration options. You can clone the repository with all manifests and
source code by executing the following command:

After editing the needed options, apply your modiRed deploy/cr.yaml Rle as follows:

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Note

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

https://kubernetes.io/docs/concepts/configuration/secret/
https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml

Removing the cluster
If you need to delete the Operator and PostgreSQL cluster (for example, to clean up the testing
deployment before adopting it for production use), check this HowTo.

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL
interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
pgdb=>

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

To delete your Kubernetes cluster in EKS, you will need the following data:

name of your EKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the eksctl command as follows (with real names instead of
<region> and <cluster name> placeholders):

The cluster deletion may take time.

After deleting the cluster, all data stored in it will be lost!

$ eksctl delete cluster --region=<region> --name="<cluster name>"

Warning

Install Install Percona Distribution for
PostgreSQL on Azure Kubernetes Service
(AKS)
This guide shows you how to deploy Percona Operator for PostgreSQL on Microsoft Azure
Kubernetes Service (AKS). The document assumes some experience with the platform. For more
information on the AKS, see the Microsoft AKS oTcial documentation .

Prerequisites
The following tools are used in this guide and therefore should be preinstalled:

1. Azure Command Line Interface (Azure CLI) for interacting with the different parts of AKS. You
can install it following the oTcial installation instructions for your system .

2. kubectl to manage and deploy applications on Kubernetes. Install it following the oTcial
installation instructions .

Also, you need to sign in with Azure CLI using your credentials according to the oTcial guide .

Create and configure the AKS cluster
To create your Kubernetes cluster, you will need the following data:

name of your AKS cluster,

an Azure resource group , in which resources of your cluster will be deployed and managed.

the amount of nodes you would like tho have.

You can create your cluster via command line using az aks create command. The following
command will create a 3-node cluster named cluster1 within some already existing resource
group named my-resource-group :

$ az aks create --resource-group my-resource-group --name cluster1 --enable-
managed-identity --node-count 3 --node-vm-size Standard_B4ms --node-osdisk-
size 30 --network-plugin kubenet --generate-ssh-keys --outbound-type
loadbalancer

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-cli#create-a-resource-group

Other parameters in the above example specify that we are creating a cluster with machine type of
Standard_B4ms and OS disk size reduced to 30 GiB. You can see detailed information about
cluster creation options in the AKS oTcial documentation .

You may wait a few minutes for the cluster to be generated.

Now you should conRgure the command-line access to your newly created cluster to make kubectl
be able to use it.

Install the Operator and deploy your PostgreSQL cluster

1. Create the Kubernetes namespace for your cluster. It is a good practice to isolate workloads in
Kubernetes by installing the Operator in a custom namespace. For example, let’s name it
postgres-operator :

We will use this namespace further on in this document. If you used another name, make sure to
replace it in the following commands.

2. Deploy the Operatorusing the following command:

az aks get-credentials --resource-group my-resource-group --name cluster1

$ kubectl create namespace postgres-operator

Expected output

namespace/postgres-operator was created

$ kubectl apply --server-side -f
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/bundle.yaml -n postgres-operator

https://azureprice.net/vm/Standard_B4ms
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest
https://kubernetes.io/docs/reference/using-api/server-side-apply/

At this point, the Operator Pod is up and running.

3. The operator has been started, and you can deploy Percona Distribution for PostgreSQL:

This deploys default Percona Distribution for PostgreSQL conRguration. Please see deploy/cr.yaml and
Custom Resource Options for the conRguration options. You can clone the repository with all manifests and
source code by executing the following command:

After editing the needed options, apply your modiRed deploy/cr.yaml Rle as follows:

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

Expected output

customresourcedefinition.apiextensions.k8s.io/perconapgbackups.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgclusters.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/perconapgrestores.pgv2.percona.com
serverside-applied
customresourcedefinition.apiextensions.k8s.io/postgresclusters.postgres-
operator.crunchydata.com serverside-applied
serviceaccount/percona-postgresql-operator serverside-applied
role.rbac.authorization.k8s.io/percona-postgresql-operator serverside-applied
rolebinding.rbac.authorization.k8s.io/service-account-percona-postgresql-operator
serverside-applied
deployment.apps/percona-postgresql-operator serverside-applied

$ kubectl apply -f https://raw.githubusercontent.com/percona/percona-
postgresql-operator/v2.8.0/deploy/cr.yaml -n postgres-operator

Expected output

perconapgcluster.pgv2.percona.com/cluster1 created

Note

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml

Verifying the cluster operation
It may take ten minutes to get the cluster started. When kubectl get pg command Rnally shows
you the cluster status as ready , you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

$ kubectl get pg

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Removing the AKS cluster
To delete your cluster, you will need the following data:

name of your AKS cluster,

AWS region in which you have deployed your cluster.

You can clean up the cluster with the az aks delete command as follows (with real names
instead of <resource group> and <cluster name> placeholders):

It may take ten minutes to get the cluster actually deleted after executing this command.

After deleting the cluster, all data stored in it will be lost!

Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL
interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
pgdb=>

$ az aks delete --name <cluster name> --resource-group <resource group> --yes
--no-wait

Warning

Install Percona Distribution for PostgreSQL
on OpenShift
Percona Operator for PostgreSQL is a Red Hat CertiRed Operator . This means that Percona
Operator is portable across hybrid clouds and fully supports the Red Hat OpenShift lifecycle.

Installing Percona Distribution for PostgreSQL on OpenShift includes two steps:

Installing the Percona Operator for PostgreSQL,

Install Percona Distribution for PostgreSQL using the Operator.

Install the Operator
You can install Percona Operator for PostgreSQL on OpenShift using the web interface (the Operator
Lifecycle Manager), or using the command line interface.

Install the Operator via the Operator Lifecycle Manager (OLM)

Operator Lifecycle Manager (OLM) is a part of the Operator Framework that allows you to install,
update, and manage the Operators lifecycle on the OpenShift platform.

Following steps will allow you to deploy the Operator and PostgreSQL cluster on your OLM
installation:

1. Login to the OLM and click the needed Operator on the OperatorHub page:

https://connect.redhat.com/en/partner-with-us/red-hat-openshift-certification
https://docs.redhat.com/en/documentation/openshift_container_platform/4.2/html/operators/understanding-the-operator-lifecycle-manager-olm#olm-overview_olm-understanding-olm
https://github.com/operator-framework

OperatorHub
Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace . You can in
developers. After installat ion, the Operator capabilit ies will appear in the Developer Catalog providing a self-service experience.

All Items

�

All Items

AI/ Machine Learning

Application Runtime

Big Data

Cloud Provider

Database

Developer Tools

Development Tools

Drivers and plugins

Integration & Delivery

Logging & Tracing

Modernization & Migration

Monitoring

percona operator for postgresql

Cert if ied

Percona Operator for
PostgreSQL
provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL…

Communit y

Percona Operator for
PostgreSQL
provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL…

Marketplace

Percona Operator for
PostgreSQL
provided by Percona

Percona Operator for
PostgreSQL manages the
lifecycle of Percona PostgreSQL…

You are logged in as a temporary administrat ive user. Update the cluster OAuth configurat ion to allow oth

Project : dima-pxc
Administrator

Home

Operators

Workloads

Networking

Storage

Builds

Compute

User Management

Administrat ion

Then click “Continue”, and “Install”.

2. A new page will allow you to choose the Operator version and the Namespace / OpenShift
project you would like to install the Operator into.

OperatorHub Operator Installation

Install Operator
Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel *

Version *

Installat ion mode *

stable

All namespaces on the cluster (default)
Operator will be available in all Namespaces.

A specif ic namespace on the cluster
Operator will be available in a single Namespace only.

provided by Percona

Provide d APIs

PXDB PerconaXtraDBCluste r

Instance of a Percona XtraDB Cluste r

Create Project

An OpenShif t project is an alternat ive representat ion of a Kubernetes namespace.

Learn more about working with projects

Name *

postgres-operator

Display name

Descript ion

�

Cancel Create

2.4.0

If you are going to install the Operator in multi-namespace (cluster-wide) mode, please choose values with -
cw suTx for the update channel and version, and select the “All namespaces on the cluster” radio button for
the installation mode instead of choosing a speciRc Namespace:

OperatorHub Operator Installation

Install Operator
Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

Update channel *

Version *

Installat ion mode *

stable

All namespaces on the cluster (default)
Operator will be available in all Namespaces.

A specif ic namespace on the cluster
Operator will be available in a single Namespace only.

�

2.6.0-cw

Click “Install” button to actually install the Operator.

3. When the installation Rnishes, you can deploy PostgreSQL cluster. In the “Operator Details” you
will see Provided APIs (Custom Resources, available for installation). Click “Create instance” for
the PerconaPGCluster Custom Resource.

Note

Installed Operators Operator details

Percona Operator for PostgreSQL
 provided by Percona2.4.0

Details YAML Subscript ion Events All instances Percona PGCluster Percona PGBackup Percona PGRestore

Provided APIs

PPGC Percona PGCluster

PerconaPGCluster is the CRD that
defines a Percona PG Cluster

Create instance

PPGB Percona PGBackup

PerconaPGBackup is the CRD that
defines a Percona PostgreSQL Backup

Create instance

PPGR Percona PGRestore

PerconaPGRestore is the CRD that
defines a Percona PostgreSQL Restore

Create instance

PC Postgres Cluster

PostgresCluster is the Schema for the
postgresclusters API

Create instance

You will be able to edit manifest to set needed Custom Resource options, and then click “Create”
button to deploy your database cluster.

Install the Operator via the command-line interface

1. First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

2. The Custom Resource DeRnition for Percona Distribution for PostgreSQL should be created from
the deploy/crd.yaml Rle. Custom Resource DeRnition extends the standard set of resources
which OpenShift “knows” about with the new items (in our case ones which are the core of the
Operator). Apply it as follows:

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

Note

$ oc apply --server-side -f deploy/crd.yaml

https://kubernetes.io/docs/reference/using-api/server-side-apply/

This step should be done only once; it does not need to be repeated with any other Operator
deployments.

3. Create the OpenShift namespace for your cluster if needed (for example, let’s name it
postgres-operator):

To use different namespace, specify other name instead of postgres-operator in the above command,
and modify the -n postgres-operator parameter with it in the following two steps. You can also omit this
parameter completely to deploy everything in the default namespace.

4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is conRgured with
the deploy/rbac.yaml Rle. Role-based access is based on deRned roles and the available
actions which correspond to each role. The role and actions are deRned for Kubernetes
resources in the yaml Rle. Further details about users and roles can be found in speciRc
OpenShift documentation)

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
OpenShift Engine can grant user needed privileges with the following command:

5. If you are going to use the operator with anyuid security context constraint please execute the
following command:

u. Start the Operator within OpenShift:

$ oc create namespace postgres-operator

Note

$ oc apply -f deploy/rbac.yaml -n postgres-operator

Note

$ oc create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --
user=$(gcloud config get-value core/account)

$ sed -i '/disable_auto_failover: "false"/a \ \ \ \ disable_fsgroup:
"false"' deploy/operator.yaml

$ oc apply -f deploy/operator.yaml -n postgres-operator

https://docs.openshift.com/enterprise/3.0/architecture/additional_concepts/authorization.html
https://docs.openshift.com/container-platform/4.9/authentication/managing-security-context-constraints.html

Optionally, you can add PostgreSQL Users secrets and TLS certiRcates to OpenShift. If you don’t,
the Operator will create the needed users and certiRcates automatically, when you create the
database cluster. You can see documentation on Users and TLS certiRcates if still want to create
them yourself.

You can simplify the Operator installation by applying a single deploy/bundle.yaml Rle instead of running
commands from the steps 2 and 4:

This will automatically create Custom Resource DeRnition, set up role-based access control and install the
Operator as one single action.

7. After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any
time with the following command:

Creation process will take some time. The process is over when both Operator and replica set
Pods have reached their Running status:

Verifying the cluster operation
When creation process is over, oc get pg command will show you the cluster status as ready ,
and you can try to connect to the cluster.

Note

$ oc apply -f deploy/bundle.yaml

$ oc apply -f deploy/cr.yaml -n postgres-operator

$ oc get pg -n postgres-operator

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER
AGE
cluster1 cluster1-pgbouncer.postgres-operator.svc ready 3 3
143m

During the installation, the Operator has generated several secrets , including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

Use oc get secrets command to see the list of Secrets objects. The Secrets object you are
interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

2

$ oc get secret <cluster_name>-<user_name>-<cluster_name> -n <namespace> -
-template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-
postgresql:17.6-1 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL
interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
pgdb=>

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Install Percona Distribution for PostgreSQL
on Kubernetes
Following steps will allow you to install the Operator and use it to manage Percona Distribution for
PostgreSQL in a Kubernetes-based environment.

First of all, clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

1

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

Note

The Custom Resource DeRnition for Percona Distribution for PostgreSQL should be created
from the deploy/crd.yaml Rle. Custom Resource DeRnition extends the standard set of
resources which Kubernetes “knows” about with the new items (in our case ones which are the
core of the Operator). Apply it as follows:

This step should be done only once; it does not need to be repeated with any other Operator
deployments.

2

$ kubectl apply --server-side -f deploy/crd.yaml

Create the Kubernetes namespace for your cluster if needed (for example, let’s name it
postgres-operator):

To use a different namespace, specify another name instead of postgres-operator in the above
command, and modify the -n postgres-operator parameter with it in the following two steps. You can
also omit this parameter completely to deploy everything in the default namespace.

3

$ kubectl create namespace postgres-operator

Note

https://kubernetes.io/docs/reference/using-api/server-side-apply/

The role-based access control (RBAC) for Percona Distribution for PostgreSQL is conRgured
with the deploy/rbac.yaml Rle. Role-based access is based on deRned roles and the available
actions which correspond to each role. The role and actions are deRned for Kubernetes
resources in the yaml Rle. Further details about users and roles can be found in Kubernetes
documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command:

4

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-
admin --user=$(gcloud config get-value core/account)

Start the Operator within Kubernetes:

Optionally, you can add PostgreSQL Users secrets and TLS certiRcates to Kubernetes. If you
don’t, the Operator will create the needed users and certiRcates automatically, when you create
the database cluster. You can see documentation on Users and TLS certiRcates if still want to
create them yourself.

5

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

After the Operator is started Percona Distribution for PostgreSQL cluster can be created at any
time with the following command:

The creation process may take some time. When the process is over your cluster will obtain the
ready status. You can check it with the following command:

6

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pg -n postgres-operator

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

Verifying the cluster operation
When creation process is over, the output of the kubectl get pg command shows the cluster
status as ready . You can now try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

Expected output

NAME ENDPOINT STATUS POSTGRES PGBOUNCER AGE
cluster1 cluster1-pgbouncer.default.svc ready 3 3 30m

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL
interactive terminal.

4

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Deleting the cluster
If you need to delete the cluster (for example, to clean up the testing deployment before adopting it
for production use), check this HowTo.

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

Sample output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
pgdb=>

Configuration

Users
The Percona Operator for PostgreSQL includes built-in functionality to simplify management of users
and databases within your PostgreSQL cluster. By default, the Operator creates a single unprivileged
user and the database that matches the cluster name.

However, many production workloads require more granular user access, separate databases for
different applications, or restricted privileges for security and compliance. With the Operator, you can
deRne custom users and manage their access to your database cluster resources:

This document explains how you can customize user and database management for your speciRc
use case.

Understanding default user management
When you create a PostgreSQL cluster with the Operator and do not specify any additional users or
databases, the Operator does the following:

1. Creates a database that matches the name of your PostgreSQL cluster.

2. Creates a schema for that database that matches the name of your PostgreSQL cluster.

3. Creates an unprivileged PostgreSQL user with the name of the cluster. This user has access to
the database created in the previous step.

4. Creates a Secret with the login credentials and connection details for the PostgreSQL user from
the previous step which is in relation to the database. The Secret is named <clusterName>-
pguser-<userName> and contains the following information:

user : The name of the user account.

password : The password for the user account.

dbname : The name of the database that the user has access to by default.

host : The name of the host of the database. This references the Service of the primary
PostgreSQL instance.

port : The port that the database is listening on.

uri : A PostgreSQL connection URI that provides all the information for logging into the
PostgreSQL database via pgBouncer

jdbc-uri : A PostgreSQL JDBC connection URI that provides all the information for logging
into the PostgreSQL database via the JDBC driver.

As an example, with the default PostgreSQL cluster name cluster1 , the Operator creates the
following:

A database named cluster1 .

A schema named cluster1 for the database cluster1

A PostgreSQL user named cluster1 .

A Secret named cluster1-pguser-cluster1 that contains the user credentials and connection
information.

Custom users and databases
You can add and manage custom users and databases using the spec.users section in the
Custom Resource. You can do this:

at the cluster creation time

at runtime.

Considerations

Here’s what you need to know:

Adding custom users and databases:

If you deRne custom users in spec.users during cluster creation, the Operator does not create
any default users or databases (except for the postgres database). If you want additional
databases, you must specify them explicitly.

For each user added in spec.users , the Operator creates a Secret named <clusterName>-
pguser-<userName> with that user’s credentials. You can override this Secret name using the
spec.users.secretName option.

If you do not specify any databases for a custom user, the resulting Secret will not include
dbname or uri Relds. This means the user will not have access to any database until one is
assigned later.

If you include at least one database in spec.users.databases for the user, the Secret will
include connection credentials for the Lrst database in the list (dbname and uri).

You can add a special postgres user as one of the custom users. This user is granted access to
the postgres database, but its privileges cannot be changed.

By default, the top-level autoCreateUserSchema option is set to true . This means each user

will have automatically-created schemas in all databases listed for this user under
users.databases .

By default, users without superuser privileges do not have access to the public schema. To
allow a non-superuser to create and update tables in the public schema, set the
grantPublicSchemaAccess option to true . This gives the user permission to create and update
tables in the public schema of every database they own.

Your custom superusers automatically have access to the public schema for their assigned
databases.

If multiple users are granted access to the public schema in the same database, each can only
access tables they themselves have created. If you want one user to access tables created by
another user, the table owner must explicitly grant privileges via PostgreSQL.

Behavior when removing or modifying users and databases:

The Operator does not automatically drop users if you remove them from the Custom Resource,
to prevent accidental data loss.

Similarly, the Operator does not automatically drop databases when you remove them from the
Custom Resource. (See how to actually drop a database here.)

Role attributes (such as SUPERUSER) are not automatically removed if you delete them from the
Custom Resource. You must specify the opposite attribute (e.g., NOSUPERUSER) to explicitly
revoke privileges.

Creating a new user

Change PerconaPGCluster Custom Resource by editing your YAML manifest in the
deploy/cr.yaml conRguration Rle:

After you apply such changes with the usual kubectl apply -f deploy/cr.yaml command, the
Operator will create the new user as follows:

The credentials of this user are populated in the <clusterName>-pguser-perconapg secret.
There are no connection credentials.

The user is unprivileged.

...
spec:
 users:
 - name: perconapg

The following example shows how to create a new pgtest database and let perconapg user
access it. The appropriate Custom Resource fragment will look as follows:

If you inspect the <clusterName>-pguser-perconapg Secret after applying the changes, you will
see dbname and uri options populated there, and the database pgtest is created in PostgreSQL
as well.

Managing user passwords

Operator-generated passwords

The Operator generates a random password for each PostgreSQL user it creates. PostgreSQL allows
almost any character in its passwords and the Operator generates passwords in ASCII format by
default.

Your application may have stricter requirements to password creation. For example, if you need
passwords without special characters, set the spec.users.password.type Reld for that user to
AlphaNumeric .

To have the Operator generate a new password, remove the existing password Reld from the user
Secret.

For example, to generate a new password for the user cluster1 in the PostgreSQL cluster
cluster1 running in the postgres-operator namespace, use the following kubectl patch
command:

Replace the namespace and the secret name with your values to reuse this command.

Custom passwords

...
spec:
 users:
 - name: perconapg
 databases:
 - pgtest

kubectl patch secret -n postgres-operator cluster1-pguser-cluster1 -p
'{"data":{"password":""}}'

https://en.wikipedia.org/wiki/ASCII

You may want a complete control over user passwords by setting a speciRc password for a
PostgreSQL user instead of letting Percona Operator for PostgreSQL generate one for you. To do
that, create a user Secret and specify the password within.

When you create a user Secret, the way you name it is important:

If you specify a Secret name using the default naming convention that the Operator expects
(<clusterName>-pguser-<userName>), the Operator will detect and use it automatically.

If you use a custom name for your Secret, you must explicitly reference that Secret in the Custom
Resource to let the Operator know about it.

The Operator looks for two Relds in the Secret:

password : the plaintext password.

verifier : a hashed representation of the password using SCRAM-SHA-256 .

When the verifier changes, the Operator updates the password inside the PostgreSQL cluster.
This approach ensures the password is securely passed into the database.

You can set a custom password in these ways:

You can provide a plaintext password in the password Reld and omit the veriRer. The Operator
will detect this and automatically generate a SCRAM veriRer for your password.

You can supply both the password and the verifier yourself. If both are present, the Operator
will use them as-is and skip the generation step. Once the Secret contains both values, the
Operator will make sure the credentials are correctly applied to PostgreSQL.

Here’s how to set a custom password within a Secret with a custom name:

1. Export your namespace as an environment variable

2. Create a Secrets object. For example, cat-credentials :

export NAMESPACE=postgres-operator

3. Add a user and reference the Secret for them in the Custom Resource:

kubectl apply -n $NAMESPACE -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
 name: cat-credentials
type: Opaque
data:
 password: $(echo -n 'mySuperStr0ngp@ssword' | base64)
EOF

Sample output

secret/cat-credentials created

4. After you update the cluster, the Operator updates the Secret with the login credentials and
connection information. View the Secret object to verify this with this command:

5. Verify that the user is created by connecting to the database as your custom user.

Password rotation

If you want to rotate a user’s password, just remove the old password in the corresponding Secret:
the Operator will immediately generate a new password and save it to the appropriate Secret. You
can remove the old password with the kubectl patch secret command:

via cr.yaml

Apply the conRguration:

via kubectl patch

To update a running cluster, use the kubectl patch command:

 users:
 - name: cat
 databases:
 - zoo
 secretName: "cat-credentials"
 grantPublicSchemaAccess: true

kubectl apply -f deploy/cr.yaml -n $NAMESPACE

kubectl patch pg cluster1 -n $NAMESPACE --type=merge --patch '{
"spec": {
 "users": [
 {
 "name": "cat",
 "databases": ["zoo"],
 "secretName": "cat-credentials",
 "grantPublicSchemaAccess": true
 }
]
 }
}'

kubectl get secret cat-credentials -o yaml -n $NAMESPACE

In the same way you can update a password with your custom one for the user. Do it as follows:

Adjusting privileges

You can set role privileges by using the standard role attributes that PostgreSQL provides and
adding them to the spec.users.options subsection in the Custom Resource.

Grant privileges

The following example will make the perconapg a superuser. You can add the following to the spec
in your deploy/cr.yaml :

Apply changes with the usual kubectl apply -f deploy/cr.yaml command.

If you want to add multiple privileges, you can use a space-separated list as follows:

Revoke privileges

To revoke the superuser privilege afterwards, apply the following conRguration:

kubectl patch secret <clusterName>-pguser-<userName> -p '{"data":
{"password":""}}'

kubectl patch secret <clusterName>-pguser-<userName> -p '{"stringData":
{"password":"<custom_password>", "verifier":""}}'

...
spec:
 users:
 - name: perconapg
 databases:
 - pgtest
 options: "SUPERUSER"

...
spec:
 users:
 - name: perconapg
 databases:
 - pgtest
 options: "CREATEDB CREATEROLE"

https://www.postgresql.org/docs/current/role-attributes.html

postgres User

By default, the Operator does not create the postgres user. You can create it by applying the
following change to your Custom Resource:

This will create a Secret named <clusterName>-pguser-postgres that contains the credentials of
the postgres user. The Operator creates a user postgres who can access the postgres
database.

Deleting users and databases

The Operator does not delete users and databases automatically. After you remove the user from the
Custom Resource, it will continue to exist in your cluster. To remove a user and all of its objects, as a
superuser you will need to run DROP OWNED in each database the user has objects in, and DROP
ROLE in your PostgreSQL cluster.

For databases, you should run the DROP DATABASE command as a superuser:

Superuser and pgBouncer

...
spec:
 users:
 - name: perconapg
 databases:
 - pgtest
 options: "NOSUPERUSER"

...
spec:
 users:
 - name: postgres

DROP OWNED BY perconapg;
DROP ROLE perconapg;

DROP DATABASE pgtest;

For security reasons we do not allow superusers to connect to cluster through pgBouncer by default.
As a superuser, you can connect through the primary service. Read more about this service in
exposure documentation.

Otherwise you can use the proxy.pgBouncer.exposeSuperusers Custom Resource option to enable
superusers connection via pgBouncer.

Exposing cluster
The Operator provides entry points for accessing the database by client applications. The database
cluster is exposed with regular Kubernetes Service objects conRgured by the Operator.

This document describes the usage of Custom Resource manifest options to expose the clusters
deployed with the Operator.

PgBouncer
We recommend exposing the cluster through PgBouncer, which is enabled by default.

DB Pod 1 DB Pod 3DB Pod 2

R
ea
d

R
ea
d

R
ea
d Write

Write Write

W
rit
e

Client Application

pgBouncer (DB proxy)

You can disable pgBouncer by setting proxy.pgBouncer.replicas to 0.

The following example deploys two pgBouncer nodes exposed through a LoadBalancer Service
object:

proxy:
 pgBouncer:
 replicas: 2
 image: docker.io/percona/percona-pgbouncer:1.24.1-1
 expose:
 type: LoadBalancer

https://kubernetes.io/docs/concepts/services-networking/service/

The Service will be called <clusterName>-pgbouncer :

You can connect to the database using the External IP of the load balancer and port 5432 .

If your application runs inside the Kubernetes cluster as well, you might want to use the Cluster IP
Service type in proxy.pgBouncer.expose.type , which is the default. In this case to connect to the
database use the internal domain name - cluster1-pgbouncer.
<namespace>.svc.cluster.local .

Exposing the cluster without pgBouncer
You can connect to the cluster without a proxy.

DB Pod 1 DB Pod NDB Pod 2

Client Application

R
ea

d W
rite

PrimaryReplica Replica

Write Write

R
ea

d

R
ea

d

For that use <clusterName>-ha Service object:

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
cluster1-pgbouncer LoadBalancer 10.88.8.48 34.133.38.186 5432:30601/TCP 20m
...

The cluster1-ha service points to the active primary. In case of failover to the replica node, will
change the endpoint automatically. Also, you can use cluster1-replicas service to make read
requests to PostgreSQL replica instances.

To change the Service type, use expose.type in the Custom Resource manifest. For example, the
following manifest will expose this service through a load balancer:

$ kubectl get service

Expected output

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
cluster1-ha ClusterIP 10.88.8.121 <none> 5432/TCP 115s
...
cluster1-replicas ClusterIP 10.88.8.115 <none> 5432/TCP 2m16s

spec:
...
 expose:
 type: LoadBalancer

Changing PostgreSQL options
Despite the Operator’s ability to conRgure PostgreSQL and the large number of Custom Resource
options, there may be situations where you need to pass speciRc options directly to your cluster’s
PostgreSQL instances. For this purpose, you can use the PostgreSQL dynamic conRguration method

 provided by Patroni. You can pass PostgreSQL options to Patroni through the Operator Custom
Resource, updating it with deploy/cr.yaml conRguration Rle).

Custom PostgreSQL conRguration options should be included into the
patroni.dynamicConfiguration.postgresql.parameters subsection as follows:

Please note that conRguration changes will be automatically applied to the running instances as
soon as you apply Custom Resource changes in a usual way, running the kubectl apply -f
deploy/cr.yaml command.

You can apply custom conRguration in this way for both new and existing clusters.

Normally, options should be applied to PostgreSQL instances dynamically without restart, except the
options with the postmaster context . Changing options which have context=postmaster will
cause Patroni to initiate restart of all PostgreSQL instances, one by one. You can check the context
of a speciRc option using the SELECT name, context FROM pg_settings; query to to see if the
change should cause a restart or not.

The Operator passes options to Patroni without validation, so there is a theoretical possibility of the cluster
malfunction caused by wrongly conRgured PostgreSQL instances. Also, this conRguration method is used for
PostgreSQL options only and cannot be applied to change other Patroni dynamic conRguration options . It
means that options in the parameters subsection under patroni.dynamicConfiguration.postgresql will
be applied, and everything else in patroni.dynamicConfiguration.postgresql will be ignored.

...
patroni:
 dynamicConfiguration:
 postgresql:
 parameters:
 max_parallel_workers: 2
 max_worker_processes: 2
 shared_buffers: 1GB
 work_mem: 2MB

Note

https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://www.postgresql.org/docs/16/view-pg-settings.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html

Using host-based authentication (pg_hba)
PostgreSQL Host-Based Authentication (pg_hba) allows controlling access to the PostgreSQL
database based on the IP address or the host name of the connecting host. You can conRgure
pg_hba through the Custom Resource patroni.dynamicConfiguration.postgresql.pg_hba
subsection as follows:

As you may guess, this example allows all hosts to connect to any database with MD5 password-
based authentication.

Obviously, you can connect both dynamicConfiguration.postgresql.parameters and
dynamicConfiguration.postgresql.pg_hba subsections:

The changes will be applied after you update Custom Resource in a usual way:

...
patroni:
 dynamicConfiguration:
 postgresql:
 pg_hba:
 - host all all 0.0.0.0/0 md5

...
patroni:
 dynamicConfiguration:
 postgresql:
 parameters:
 max_parallel_workers: 2
 max_worker_processes: 2
 shared_buffers: 1GB
 work_mem: 2MB
 pg_hba:
 - local all all trust
 - host all all 0.0.0.0/0 md5
 - host all all ::1/128 md5
 - host all mytest 123.123.123.123/32 reject

$ kubectl apply -f deploy/cr.yaml

Binding Percona Distribution for PostgreSQL
components to specific
Kubernetes/OpenShift Nodes
The operator does good job automatically assigning new Pods to nodes with suTcient resources to
achieve balanced distribution across the cluster. Still there are situations when it is worth to ensure
that pods will land on speciRc nodes: for example, to get speed advantages of the SSD equipped
machine, or to reduce network costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml Rle (such as proxy.pgBouncer) contain keys which
can be used to do this, depending on what is the best for a particular situation.

Affinity and anti-affinity
ATnity makes Pod eligible (or not eligible - so called “anti-aTnity”) to be scheduled on the node
which already has Pods with speciRc labels, or has speciRc labels itself (so called “Node aTnity”).
Particularly, Pod anti-aTnity is good to reduce costs making sure several Pods with intensive data
exchange will occupy the same availability zone or even the same node - or, on the contrary, to make
them land on different nodes or even different availability zones for the high availability and
balancing purposes. Node aTnity is useful to assign PostgreSQL instances to speciRc Kubernetes
Nodes (ones with speciRc hardware, zone, etc.).

Pod anti-aTnity is controlled by the affinity.podAntiAffinity subsection, which can be put into
proxy.pgBouncer and backups.pgbackrest.repoHost sections of the deploy/cr.yaml
conRguration Rle.

podAntiAffinity allows you to use standard Kubernetes aTnity constraints of any complexity:

affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/cluster: keycloakdb
 postgres-operator.crunchydata.com/role: pgbouncer
 topologyKey: kubernetes.io/hostname

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

You can see the explanation of these aTnity options in Kubernetes documentation .

Topology Spread Constraints
Topology Spread Constraints allow you to control how Pods are distributed across the cluster based
on regions, zones, nodes, and other topology speciRcs. This can be useful for both high availability
and resource eTciency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection,
which can be put into proxy.pgBouncer and backups.pgbackrest.repoHost sections of the
deploy/cr.yaml conRguration Rle as follows:

You can see the explanation of these aTnity options in Kubernetes documentation .

Tolerations
Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is
expressed as a key with and operator , which is either exists or equal (the latter variant also
requires a value the key is equal to). Moreover, toleration should have a speciRed effect , which
may be a self-explanatory NoSchedule , less strict PreferNoSchedule , or NoExecute . The last
variant means that if a taint with NoExecute is assigned to node, then any Pod not tolerating this
taint will be removed from the node, immediately or after the tolerationSeconds interval, like in
the following example.

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations
subsections in the deploy/cr.yaml conRguration Rle as follows:

topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: my-node-label
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/instance-set: instance1

tolerations:
- effect: NoSchedule
 key: role
 operator: Equal
 value: connection-poolers

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

The Kubernetes Taints and Tolerations contains more examples on this topic.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Labels and annotations
Labels and annotations are used to attach additional metadata information to Kubernetes
resources.

Labels and annotations are rather similar but differ in purpose.

Labels are used by Kubernetes to identify and select objects. They enable Rltering and grouping,
allowing users to apply selectors for operations like deployments or scaling.

Annotations are assigning additional non-identifying information that doesn’t affect how Kubernetes
processes resources. They store descriptive information like deployment history, monitoring
conRgurations or external integrations.

The following diagram illustrates this difference:

Custom Resource

Operator

Kubernetes resources

Labels Annotations

Selection Grouping External tools Documentation

Both Labels and Annotations are assigned to the following objects managed by Percona Operator for
PostgreSQL:

Custom Resource DeRnitions

Custom Resources

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

Deployments

Services

StatefulSets

PVCs

Pods

ConRgMaps and Secrets

When to use labels and annotations
Use Labels when:

The information is used for object selection

The data is used for grouping or Rltering

The information is used by Kubernetes controllers

The data is used for operational purposes

Use Annotations when:

The information is for external tools

The information is used for debugging

The data is used for monitoring conRguration

Labels and annotations used by Percona Operator for
PostgreSQL

Labels

Name Objects Description Example
values

pgv2.percona.com/ver

sion

CustomResourceDeRnition SpeciRes the version of the
Percona Operator for
PostgreSQL.

2.8.0

app.kubernetes.io/in

stance

Services, StatefulSets,
Deployments

IdentiRes a speciRc instance
of the application

cluster1

app.kubernetes.io/ma

naged-by

Services, StatefulSets Indicates the controller
managing the object

percona-
postgresql-
operator

app.kubernetes.io/co

mponent

Services, StatefulSets SpeciRes the component
within the application

postgres,
pgbouncer,
pgbackrest

app.kubernetes.io/pa

rt-of

Services, StatefulSets Indicates the higher-level
application the object
belongs to

percona-
postgresql

app.kubernetes.io/na

me

Services, StatefulSets,
Deployments, etc.

SpeciRes the name of the
application

percona-
postgresql

postgres-

operator.crunchydata

.com/cluster

StatefulSets,
Deployments, Services,
PVCs

SpeciRes the name of the
application

cluster1

postgres-

operator.crunchydata

.com/instance

Services, StatefulSets,
Deployments

IdentiRes a speciRc instance
of the application

cluster1

postgres-

operator.crunchydata

.com/instance-set

Pods, StatefulSets Describes the set of
instances (such as a group
of pods) within the
PostgreSQL cluster.

postgres-

operator.crunchydata

.com/name

pgBackRest resources
(Jobs, CronJobs,
Deployments, PVCs, etc.)

Used to specify the name of
a pgBackRest repository.

postgres-

operator.crunchydata

.com/patroni

Pods, StatefulSets Indicates Patroni-related
resources.

postgres-

operator.crunchydata

.com/role

Pods, PVCs, Services The role that Patroni sets on
the Pod that is currently the
leader

postgres-

operator.crunchydata

.com/cluster-

Secrets IdentiRes a secret containing
a cluster certiRcate

postgres-tls

certificate

postgres-

operator.crunchydata

.com/data

Pods, PVCs IdentiRes Pods and Volumes
that store Postgres data

postgres-

operator.crunchydata

.com/move-job

Jobs IdentiRes a directory move
Job.

postgres-

operator.crunchydata

.com/move-

pgbackrest-repo-dir

Jobs IdentiRes a Job moving a
pgBackRest repo directory.

postgres-

operator.crunchydata

.com/move-pgdata-dir

Jobs IdentiRes a Job moving a
pgData directory.

postgres-

operator.crunchydata

.com/move-pgwal-dir

Jobs IdentiRes a Job moving a
pg_wal directory.

postgres-

operator.crunchydata

.com/pgbackrest

pgBackRest resources Indicates a resource that is
for pgBackRest.

postgres-

operator.crunchydata

.com/pgbackrest-

backup

Backup Jobs Indicates a resource that is
for a pgBackRest backup.

postgres-

operator.crunchydata

.com/pgbackrest-

config

ConRgMaps, Secrets Indicates a
ConRgMap/Secret for
pgBackRest.

postgres-

operator.crunchydata

.com/pgbackrest-

dedicated

ConRgMaps Indicates a ConRgMap that
is for a dedicated
pgBackRest repo host.

postgres-

operator.crunchydata

Deployments, Pods Indicates a Deployment or a
Pod for a pgBackRest repo.

The name of
the

.com/pgbackrest-repo repository
you deRne in
CR

postgres-

operator.crunchydata

.com/pgbackrest-

volume

PVCs Indicates a PVC for a
pgBackRest repo volume.

postgres-

operator.crunchydata

.com/pgbackrest-

cronjob

CronJobs Indicates a resource is a
pgBackRest CronJob.

postgres-

operator.crunchydata

.com/pgbackrest-

restore

Jobs, Pods Indicates a Job/Pod for a
pgBackRest restore.

postgres-

operator.crunchydata

.com/pgbackrest-

restore-config

ConRgMaps, Secrets Indicates a conRguration
resource (e.g. a ConRgMap
or Secret) for pgBackRest
restore.

postgres-

operator.crunchydata

.com/crunchy-

postgres-exporter

Pods Added to Pods running the
exporter container for
Prometheus discovery.

postgres-

operator.crunchydata

.com/pguser

Secrets, Users IdentiRes the PostgreSQL
user an object is for/about.

Username

postgres-

operator.crunchydata

.com/startup-

instance

Pods, Jobs Indicates the startup
instance associated with a
resource.

postgres-

operator.crunchydata

.com/cbc-pgrole

Secrets IdentiRes a CBC PostgreSQL
role secret.

postgres-

operator.crunchydata

pgAdmin resources Indicates a resource for a
standalone pgAdmin

.com/pgadmin instance.

Annotations

Name Objects Description Example
Values

postgres-

operator.

crunchyda

ta.com/tr

igger-

switchove

r

Custom Resource Initiates a failover, switchover

postgres-

operator.

crunchyda

ta.com/pg

backrest-

backup-

job-

completio

n

Restore, PVC Added to restore jobs, pvcs, and
VolumeSnapshots that are involved in the volume
snapshot creation process. The annotation holds
a RFC3339 formatted timestamp that
corresponds to the completion time of the
associated backup job.

timestamp

postgres-

operator.

crunchyda

ta.com/pg

backrest-

hash

Custom Resource SpeciRes the hash value associated with a repo
conRguration as needed to detect conRguration
changes that invalidate running Jobs (and
therefore must be recreated)

postgres-

operator.

crunchyda

ta.com/pg

backrest-

ip-

version

Custom Resource Indicates whether to use an IPv6 wildcard
address for the pgBackRest “tls-server-address”.
Set the value “IPv6” to use an IPv6 addresses. If
the annotation is not present of has a value other
than IPv6, it defaults to IPv4 (0.0.0.0).

0.0.0.0

postgres-

operator.

crunchyda

Pods SpeciRes which collectors to enable for the
exporter. The value “None” disables all
postgres_exporter defaults. Disabling the

database,

table

ta.com/po

stgres-

exporter-

collector

s

defaults may cause errors in dashboards.

postgres-

operator.

crunchyda

ta.com/ad

opt-

bridge-

cluster

CrunchyBridgeCluster
Custom Resource

Allows users to “adopt” or take control over an
existing Bridge Cluster with a
CrunchyBridgeCluster Custom Resource.
Essentially, if a CrunchyBridgeCluster Custom
Resource does not have a status.ID, but the name
matches the name of an existing bridge cluster,
the user must add this annotation to the Custom
Resource to allow it to take control of the Bridge
Cluster. The Value assigned to the annotation
must be the ID of existing cluster.

existing
cluster ID

postgres-

operator.

crunchyda

ta.com/au

toCreateU

serSchema

Custom Resource Controls if the Operator should create schemas
for the users deRned in spec.users for all of the
databases listed for that user

true

postgres-

operator.

crunchyda

ta.com/au

thorizeBa

ckupRemov

al

Custom Resource Allows removal of PVC-based backups when
changing from a cluster with backups to a cluster
without backups. Backups stored on the cloud
storage are intact

true

postgres-

operator.

crunchyda

ta.com/ov

erride-

config

ConRgMaps Used to override default conRguration from a
ConRgMap.

custom-

config

pgv2.perc

ona.com/m

onitor-

user-

secret-

hash

Custom Resource Hash of the monitor user secret, used to detect
changes and trigger updates.

b6e1a2c3.

..

pgv2.perc

ona.com/b

ackup-in-

progress

Custom Resource Indicates a backup that is currently running for
the cluster.

true

pgv2.perc

ona.com/c

luster-

bootstrap

-restore

Custom Resource Marks that the cluster was bootstrapped from a
restore.

2024-07-

01T12:34:

56Z

pgv2.perc

ona.com/p

atroni-

version

Pods, StatefulSets The Patroni version running in the Pod or
StatefulSet.

4.6.0

pgv2.perc

ona.com/c

ustom-

patroni-

version

Pods, StatefulSets Custom Patroni version speciRed by the user.
Deprecated and ignored starting with version
2.8.0

3.3.0-

percona

kubectl.k

ubernetes

.io/defau

lt-

container

Pods DeRnes a default container used when the -c
mag is not passed when executing to a Pod.

Setting labels and annotations in the Custom Resource
You can deRne both Labels and Annotations as key-value pairs in the metadata section of a YAML
manifest for a speciRc resource.

Set labels and annotations for Pods

For PostgreSQL, pgBouncer and pgBackRest Pods, use
instances.metadata.annotations / instances.metadata.labels ,
proxy.pgbouncer.metadata.annotations / proxy.pgbouncer.metadata.labels , or
backups.pgbackrest.metadata.annotations / backups.pgbackrest.metadata.labels keys as
follows:

Set labels and annotations for Services

For PostgreSQL and pgBouncer Services, use expose.annotations / expose.labels or
proxy.pgbouncer.expose.annotations / proxy.pgbouncer.expose.labels keys as follows:

Set global labels and annotations

You can also use the top-level spec metadata.annotations and metadata.labels options to set
annotations and labels at a global level, for all resources created by the Operator:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
...
spec:
...
 instances:
 - name: instance1
 replicas: 3
 metadata:
 annotations:
 my-annotation: value1
 labels:
 my-label: value2
 ...

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
...
spec:
 ...
 expose:
 annotations:
 my-annotation: value1
 labels:
 my-label: value2
 ...

Settings labels and annotations for the Operator Pod
You can assign labels and/or annotations to the Operator itself by editing the deploy/operator.yaml
conRguration Rle before applying it during the installation. This way you add labels and
annotations to the Pod where the Operator is running

Querying labels and annotations
To check which labels are attached to a speciRc object, use the additional --show-labels option of
the kubectl get command.

For example, to see the Operator version associated with a Custom Resource DeRnition, use the
following command:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
...
spec:
 ...
 metadata:
 annotations:
 my-global-annotation: value1
 labels:
 my-global-label: value2
 ...

apiVersion: apps/v1
kind: Deployment
...
spec:
...
 template:
 metadata:
 labels:
 app.kubernetes.io/component: operator
 app.kubernetes.io/instance: percona-postgresql-operator
 app.kubernetes.io/name: percona-postgresql-operator
 app.kubernetes.io/part-of: percona-postgresql-operator
 pgv2.percona.com/control-plane: postgres-operator
 ...

https://github.com/percona/percona-server-mongodb-operator/blob/main/deploy/operator.yaml


```{.text .no-copy} NAME CREATED AT LABELS

perconapgclusters.pgv2.percona.com 2025-07-01T13:13:36Z pgv2.percona.com/version=v2.8.0 ```

To check annotations associated with an object, use the following command:

For example, this command lists annotations assigned to a cluster1-pgbouncer  Service:

Special annotations
Metadata can be used as an additional way to inmuence the Operator behavior by setting special
annotations.

Customizing Patroni version (for the Operator version 2.6.0 - 2.7.0)

This behavior is deprecated and the annotation is ignored starting with version 2.8.0.

kubectl get crd perconapgclusters.pgv2.percona.com --show-labels

Sample output

kubectl get <resource> <resource-name> -o jsonpath='{.metadata.annotations}'

kubectl get service cluster1-instance1-xvbt-0 -o 
jsonpath='{.metadata.annotations}'

Sample output

{
  "cloud.google.com/neg": "{\"ingress\":true}"
}

Note



Starting from the Operator 2.6.0, Percona distribution for PostgreSQL comes with Patroni 4.x, which
introduces breaking changes compared to previously used 3.x versions. To maintain backward
compatibility, the Operator needs to detect the Patroni version used in the image. For this, it runs a
temporary Pod named cluster_name-patroni-version-check  with the following default
resources:

You can disable this auto-detection feature by manually setting the Patroni version via the following
annotation in the metadata part of the Custom Resource (it should contain “4” for Patroni 4.x or “3”
for Patroni 3.x):

Resources:
   Requests:
     memory: 32Mi
     cpu: 50m
   Limits:
     memory: 64Mi
     cpu: 100m

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
  name: cluster1
  annotations:
    pgv2.percona.com/custom-patroni-version: "4"
  ...



Transport layer security (TLS)
The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for
the following types of communication:

Internal - communication between PostgreSQL instances in the cluster

External - communication between the client application and the cluster

The internal certiRcate is also used as an authorization method for PostgreSQL Replica instances.

TLS security can be conRgured in following ways:

the Operator can generate long-term certiRcates automatically at cluster creation time,

you can generate certiRcates manually.

Additionally, you can force your database cluster to use only encrypted channels for both internal and external
communications. This effect is achieved by setting the tlsOnly  Custom Resource option to true .

Allow the Operator to generate certificates automatically
The Operator is able to generate long-term certiRcates automatically and turn on encryption at
cluster creation time, if there are no certiRcate secrets available. Just deploy your cluster as usual,
with the kubectl apply -f deploy/cr.yaml  command, and certiRcates will be generated.

With the Operator versions before 2.5.0, autogenerated certiRcates for all database clusters were based on the
same generated root CA. Starting from 2.5.0, the Operator creates root CA on per-cluster basis.

Check connectivity to the cluster
You can check TLS communication with use of the psql , the standard interactive terminal-based
frontend to PostgreSQL. The following command will spawn a new pg-client  container, which
includes the needed command and can be used for the check (use your real cluster name instead of
the <cluster-name>  placeholder):

Note

Note



Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal
to check connectivity over the encrypted channel (please use real cluster-name, PostgreSQL user
login and password):

Now you should see the prompt of PostgreSQL interactive terminal:

$ cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
  name: pg-client
spec:
  replicas: 1
  selector:
    matchLabels:
      name: pg-client
  template:
    metadata:
      labels:
        name: pg-client
    spec:
      containers:
        - name: pg-client
          image: percona/percona-distribution-postgresql:17.5-2
          imagePullPolicy: Always
          command:
          - sleep
          args:
          - "100500"
          volumeMounts:
            - name: ca
              mountPath: "/tmp/tls"
      volumes:
      - name: root
        secret:
          secretName: <cluster_name>-cert-ca
          items:
          - key: root.crt
            path: root.crt
            mode: 0777
EOF

$ kubectl exec -it deployment/pg-client -- bash -il
[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt 
psql postgres://<postgresql-user>:<postgresql-password>@<cluster-name>-
pgbouncer.<namespace>.svc.cluster.local



Generate certificates manually
You can customize TLS for the Operator by providing your own TLS certiRcates. To do this, you must
create two Kubernetes Secret objects before deploying your cluster:

One for external communication, later referenced by the spec.customTLSSecret  Reld in the
deploy/cr.yaml

One for internal communication (used for replication authentication), referenced by the
spec.customReplicationTLSSecret  Reld in the deploy/cr.yaml .

Each Secret must contain the following Relds:

tls.crt  (the TLS certiRcate)

tls.key  (the TLS private key)

ca.crt  (the CertiRcate Authority certiRcate)

Note that you cannot use only one custom set of certiRcates. If you provide a custom TLS Secret,
you must also provide a custom replication TLS Secret, and both must contain the same ca.crt .

Provide pre-existing custom certificates

For example, you have Rles named ca.crt , my_tls.key , and my_tls.crt . Run the following
command to create a custom TLS Secret named cluster1-tls :

In the same way, create the custom TLS replication Secret, for example replication1-tls .

Next, reference your Secrets in the deploy/cr.yaml  Custom Resource manifest as follows:

add a Secret created for the external use to the secrets.customTLSSecret.name  Reld

add a Secret created for internal communications to the

$ psql (17.6-1)
Type "help" for help.
cluster1=>

$ kubectl create secret generic -n postgres-operator cluster1-tls \
  --from-file=ca.crt=ca.crt \
  --from-file=tls.key=my_tls.key \
  --from-file=tls.crt=my_tls.crt



secrets.customReplicationTLSSecret.name  Reld

Here’s the sample conRguration:

Now you can create a cluster with your custom certiRcates:

Provide a pre-existing custom root CA certificate to the Operator

You can also provide a custom root CA certiRcate to the Operator. In this case the Operator will not
generate one itself, but will use the user-provided CA certiRcate. This can be useful if you would like
to have several database clusters with certiRcates generated by the Operator based on the same
root CA.

To make the Operator use a custom root certiRcate, create a separate secret with this certiRcate and
specify this secret in the Custom Resource options before you deploy a cluster.

For example, if you have Rles named my_tls.key  and my_tls.crt  stored on your local machine,
you could run the following command to create a Secret named cluster1-ca-cert  in the
postgres-operator  namespace:

You also need to specify details about this secret in your deploy/cr.yaml  manifest:

spec:
  ...
  secrets:
    customTLSSecret:
      name: cluster1-tls
    customReplicationTLSSecret:
      name: replication1-tls
  ...

$ kubectl apply -f deploy/cr.yaml

$ kubectl create secret generic -n postgres-operator cluster1-ca-cert \
  --from-file=tls.crt=my_tls.crt \
  --from-file=tls.key=my_tls.key



Now, you can create the cluster with the kubectl apply -f deploy/cr.yaml  command. The
Operator should use the root CA certiRcate you had provided.

This approach allows using root CA certiRcate auto-generated by the Operator for some other clusters, but it
needs caution. If the cluster with auto-generated certiRcate has delete-ssl  Rnalizer enabled, the certiRcate will
be deleted at the cluster deletion event even if it was manually provided to some other cluster.

Generate custom certificates for the Operator yourself

Understand certificate requirements

To Rnd out the certiRcates speciRcs needed for the Operator, view the certiRcates generated by the
Operator automatically. For example, if you have a cluster deployed in some staging environment.

Here’s how to do it:

1. Check the secrets created by the Operator:

...
secrets:
  customRootCATLSSecret:
    name: cluster1-ca-cert
    items:
      - key: "tls.crt"
        path: "root.crt"
      - key: "tls.key"
        path: "root.key"

Warning

$ kubectl get secrets



The Secrets of interest are cluster1-cluster-cert  for external communication and
cluster1-replication-cert  for internal communication.

2. You can examine the auto-generated CA certiRcate ( ca.crt ) as follows:

3. You can check the auto-generated TLS certiRcate ( tls.crt ) in a similar way:

Expected output

cluster1-cluster-ca-cert        Opaque   2      143m
cluster1-cluster-cert           Opaque   3      143m
cluster1-instance1-frdm-certs   Opaque   6      143m
cluster1-instance1-qcqk-certs   Opaque   6      143m
cluster1-instance1-wq55-certs   Opaque   6      143m
cluster1-pgbackrest             Opaque   5      143m
cluster1-pgbouncer              Opaque   6      143m
cluster1-pguser-cluster1        Opaque   12     143m
cluster1-replication-cert       Opaque   3      143m

$ kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.ca\.crt}' | 
base64 --decode | openssl x509 -text -noout

Expected output

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            ec:f3:d6:f5:35:5c:97:0c:66:cc:90:ed:e6:4b:0a:07
        Signature Algorithm: ecdsa-with-SHA384
        Issuer: CN = postgres-operator-ca
        Validity
            Not Before: Dec 24 13:58:21 2023 GMT
            Not After : Dec 21 14:58:21 2033 GMT
        Subject: CN = postgres-operator-ca
        Subject Public Key Info:
        ...
    ...

External communication

$ kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.tls\.crt}' 
| base64 --decode | openssl x509 -text -noout



Internal communication

Expected output

Certificate:
    Data:
       Version: 3 (0x2)
       Serial Number:
           43:ac:81:65:4e:c6:1b:15:db:ca:36:c4:16:96:79:1b
       Signature Algorithm: ecdsa-with-SHA384
       Issuer: CN=postgres-operator-ca
       Validity
           Not Before: Jul 22 08:15:42 2025 GMT
           Not After : Jul 22 09:15:42 2026 GMT
       Subject: CN=cluster1-primary.default.svc.cluster.local.
       Subject Public Key Info:
           Public Key Algorithm: id-ecPublicKey
               Public-Key: (256 bit)
               pub:
                   04:cd:06:b5:27:67:64:2b:a3:9e:84:e6:31:81:7f:
                   3f:a9:ae:c9:da:bd:b8:76:3e:f0:09:bd:b8:eb:03:
                   88:c2:d3:4b:2a:1f:e9:5b:97:cf:4e:7b:b3:12:2b:
                   47:ee:a6:24:fb:29:ae:01:74:e2:4c:5c:3e:f9:8d:
                   cb:ff:0a:62:8d
               ASN1 OID: prime256v1
               NIST CURVE: P-256
       X509v3 extensions:
           X509v3 Key Usage: critical
               Digital Signature, Key Encipherment
           X509v3 Basic Constraints: critical
               CA:FALSE
           X509v3 Authority Key Identifier:
               59:98:FE:88:1B:54:A0:7D:DD:20:A0:F6:29:08:05:C7:18:38:7C:92
           X509v3 Subject Alternative Name:
               DNS:cluster1-primary.default.svc.cluster.local., DNS:cluster1-
primary.default.svc, DNS:cluster1-primary.default, DNS:cluster1-primary, 
DNS:cluster1-replicas.default.svc.cluster.local., DNS:cluster1-
replicas.default.svc, DNS:cluster1-replicas.default, DNS:cluster1-replicas
    Signature Algorithm: ecdsa-with-SHA384
    ...

$ kubectl get secret/cluster1-replication-cert -o 
jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -text -noout



Both secrets share the same ca.crt  certiRcate but have different tls.crt  certiRcates. The
tls.crt  in the Secret for external communications should have a Common Name (CN) setting that
matches the primary Service name ( CN = cluster1-primary.default.svc.cluster.local.  in
the above example). Similarly, the tls.crt  in the Secret for internal communications should have a
Common Name (CN) setting that matches the preset replication user: CN=_crunchyrepl .

Generate certificates

One of the options to create certiRcates yourself is to use CloudFlare PKI and TLS toolkit .

You must generate certiLcates twice: one set is for external communications, and another set is for
internal ones!

Expected output

Certificate:
     Data:
          Version: 3 (0x2)
          Serial Number:
              31:1b:1e:ca:06:e6:98:4d:7e:de:6d:1b:68:d8:53:0e
          Signature Algorithm: ecdsa-with-SHA384
          Issuer: CN=postgres-operator-ca
          Validity
              Not Before: Jul 22 08:15:42 2025 GMT
              Not After : Jul 22 09:15:42 2026 GMT
          Subject: CN=_crunchyrepl
          Subject Public Key Info:
              Public Key Algorithm: id-ecPublicKey
                  Public-Key: (256 bit)
                  pub:
                      04:b1:f7:9d:cd:33:0d:a5:19:a3:f2:fd:f6:b3:cd:
                      e1:a5:e4:19:11:ec:18:db:fe:9c:a8:7e:eb:d2:27:
                      59:d1:ef:3b:09:24:58:21:6a:54:60:30:1c:be:b0:
                      7a:39:c5:91:6f:01:ee:d1:0b:23:86:0c:16:cf:fc:
                      7d:7e:39:cb:0e
                  ASN1 OID: prime256v1
                  NIST CURVE: P-256
          X509v3 extensions:
              X509v3 Key Usage: critical
                  Digital Signature, Key Encipherment
              X509v3 Basic Constraints: critical
                  CA:FALSE
              X509v3 Authority Key Identifier:
                  59:98:FE:88:1B:54:A0:7D:DD:20:A0:F6:29:08:05:C7:18:38:7C:92
              X509v3 Subject Alternative Name:
                  DNS:_crunchyrepl
    Signature Algorithm: ecdsa-with-SHA384
    ...

https://cfssl.org/


Let’s say that your cluster name is cluster1  and the desired namespace is postgres-operator .
The commands to generate certiRcates may look as follows:

1. Set cluster context

2. Generate the root CA certiRcate:

You should have the following Rles:

ca-key.pem – CA private key

ca.pem – CA certiRcate

3. DeRne the CA signing policy for certiRcates signed by the CA.

$ export CLUSTER_NAME=cluster1
$ export NAMESPACE=postgres-operator

$ cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca
  {
    "CN": "*",
    "key": {
      "algo": "ecdsa",
      "size": 384
    }
  }
  EOF

Expected output

2025/07/22 18:44:00 [INFO] generating a new CA key and certificate from CSR
2025/07/22 18:44:00 [INFO] generate received request
2025/07/22 18:44:00 [INFO] received CSR
2025/07/22 18:44:00 [INFO] generating key: ecdsa-384
2025/07/22 18:44:00 [INFO] encoded CSR
2025/07/22 18:44:00 [INFO] signed certificate with serial number         
558041563526770695468617559855840603242491856749



Explanation of the values:

expiry  - sets the lifetime for the certiRcates

usages  speciRes what the certiRcate is valid for:

digital signature : for signing data

key encipherment : for secure key exchange

content commitment : ensures data integrity

Generate the custom TLS certiRcates for external communication and sign them using the
previously created CA certiRcate. These certiRcates have the Common Name (CN) cluster1-
primary.postgres-operator.svc.cluster.local

$ cat <<EOF > ca-config.json
  {
     "signing": {
       "default": {
          "expiry": "87600h",
          "usages": ["digital signature", "key encipherment", "content 
commitment"]
        }
     }
  }
  EOF



You should have the following Rles as deRned by the -bare server  part of the command:

server.pem  - the signed certiRcate

server-key.pem  - the private key

Generate the custom TLS certiRcates for internal communication and sign them using the
previously created CA certiRcate. These certiRcates have the Common Name (CN)
_crunchyrepl .

You should have the following Rles as deRned by the -bare server  part of the command:

replication.pem  - the signed certiRcate

replication-key.pem  - the private key

$ cat <<EOF | cfssl gencert -ca=ca.pem  -ca-key=ca-key.pem -config=./ca-
config.json - | cfssljson -bare server
  {
     "hosts": [
       "localhost",
       "${CLUSTER_NAME}-primary",
       "${CLUSTER_NAME}-primary.${NAMESPACE}",
       "${CLUSTER_NAME}-primary.${NAMESPACE}.svc.cluster.local",
       "${CLUSTER_NAME}-primary.${NAMESPACE}.svc",
       "${CLUSTER_NAME}-replicas.${NAMESPACE}.svc.cluster.local",
       "${CLUSTER_NAME}-replicas.${NAMESPACE}.svc",
       "${CLUSTER_NAME}-replicas.${NAMESPACE}",
       "${CLUSTER_NAME}-tls-replicas"
     ],
     "CN": "${CLUSTER_NAME}-primary.${NAMESPACE}.svc.cluster.local", 
     "key": {
       "algo": "ecdsa",
       "size": 384
     }
  }
EOF

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-
config.json - | cfssljson -bare replication
  {
    "CN": "_crunchyrepl",
    "key": {
      "algo": "ecdsa",
      "size": 384
    }
  }
  EOF



You can Rnd more on generating certiRcates this way in oTcial Kubernetes documentation .

Refer to the Provide pre-existing custom certiRcates section for the steps to create Secrets and
conRgure the Operator. Replace the values with your Rles.

Check your certificates for expiration

1. First, check the necessary secrets names ( cluster1-cluster-cert  and cluster1-
replication-cert  by default):

You will have the following response:

2. Now use the following command to Rnd out the certiRcates validity dates, substituting Secrets
names if necessary:

The resulting output will be self-explanatory:

Update certificates

$ kubectl get secrets

NAME                            TYPE     DATA   AGE
cluster1-cluster-cert           Opaque   3      11m
...
cluster1-replication-cert       Opaque   3      11m
...

$ {
  kubectl get secret/cluster1-replication-cert -o 
jsonpath='{.data.tls\.crt}' | base64 --decode | openssl x509 -noout -dates
  kubectl get secret/cluster1-cluster-cert -o jsonpath='{.data.ca\.crt}' | 
base64 --decode | openssl x509 -noout -dates
  }

notBefore=Jun 28 10:20:19 2023 GMT
notAfter=Jun 27 11:20:19 2024 GMT
notBefore=Jun 28 10:20:18 2023 GMT
notAfter=Jun 25 11:20:18 2033 GMT

https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/


The Operator automatically updates the automatically-generated certiRcates to ensure your
applications continue operation without communication issues. However, the Operator doesn’t
update custom certiRcates. It is your responsibility to timely update them.

Update custom certificates

You can update only custom certiRcates for external and / or internal communication and keep the
same root CA certiRcate.

You can update the contents of your existing Secrets referenced in the spec.customTLSSecret
and/or spec.customReplicationTLSSecret  Relds in deploy/cr.yaml  without changing their
names. In this case, the Operator detects the updated certiRcate data and applies the changes to the
running cluster without restarting it. Such update is called hot reload.

This example shows how you can do it. Let’s say you have the following certiRcates and Secrets:

server.pem  / server-key.pem  and the cluster1-cert  Secret for external communication,

replica.pem  / replica-key.pem  and cluster1-replication-cert  Secret for internal
communication

ca.pem  / ca-key.pem  is the existing CA root certiRcate that you keep

Your cluster is deployed in the postgres-operator  namespace.

1. Set the context for the cluster:

2. Create a YAML manifest for the cluster1-cert  Secret. Run the following command to
generate a YAML manifest (adjust Rle paths if needed):

3. Create a YAML manifest for the cluster1-replication-cert  Secret. Run the following
command to generate a YAML manifest (adjust Rle paths if needed):

$ export NAMESPACE=postgres-operator

$ kubectl create secret generic cluster1-cert \
   --from-file=tls.crt=server.pem \
   --from-file=tls.key=server-key.pem \
   --from-file=ca.crt=ca.pem \
   -n "$NAMESPACE" \
   --dry-run=client -o yaml > cluster1-cert.yaml



4. Apply the manifests to update the Secrets:

If you create new Secrets with new names and values, update the spec.customTLSSecret  and
spec.customReplicationTLSSecret  Relds in the deploy/cr.yaml . When you apply the new
conRguration,this causes the Operator to restart the cluster.

Update a custom root CA certificate

Here’s what you need to know if you wish to update a custom root CA certiRcate:

If you change a root CA certiRcate, you must also change your custom TLS certiRcates for
external and internal communications as these must be signed with the same root CA.

The new root CA and associated certs must be stored in new Secrets (not overwriting existing
ones). This ensures rollback capability in case of misconRguration or validation issues.

You must pause the cluster before applying changes. This prevents the Operator from restarting
or reconRguring Pods mid-update.

To update a custom root CA certiRcate, do the following:

1. Generate a new root CA certiRcate and key. For example, you have them in Rles named new-
ca.pem  and new-ca-key.pem .

2. Generate all dependent certiRcates for external and internal communication and sign them using
the new root CA certiRcate. Check the Generate certiRcates manually section for the steps. For
example, you end up with the following certiRcates:

server.pem  and server-key.pem  for external communication

replication.pem  and replication-key.pem  for internal communication

3. Create a new Secret object for the new root CA certiRcate and deRne the new CA certiRcate and
key within. Let’s name it cluster1-ca-cert-new .

$ kubectl create secret generic cluster1-replication-cert \
   --from-file=tls.crt=replica.pem \
   --from-file=tls.key=replica-key.pem \
   --from-file=ca.crt=ca.pem \
   -n "$NAMESPACE" \
   --dry-run=client -o yaml > cluster1-replication-cert.yaml

$ kubectl apply -f cluster1-cert.yaml -f cluster1-replication-cert.yaml -n 
"$NAMESPACE"



4. Create new Secrets for external and internal communications, named cluster1-tls  and
cluster1-replication-tls  respectively

5. Pause the cluster to prevent the Operator to restart the Pods mid-update.

u. Specify details about new custom certiRcates in the deploy/cr.yaml . Since this is a
provisioned cluster, apply the patch as follows:

$ kubectl create secret generic -n postgres-operator cluster1-ca-cert-new 
\
  --from-file=ca.crt=new-ca.pem \
  --from-file=ca.key=new-ca-key.pem

$ kubectl create secret generic -n postgres-operator cluster1-tls \
  --from-file=ca.crt=ca.pem \
  --from-file=tls.key=server-key.pem \
  --from-file=tls.crt=server.pem

$ kubectl create secret generic -n postgres-operator cluster1-replication-
tls \
  --from-file=ca.crt=ca.pem \
  --from-file=tls.key=replication-key.pem \
  --from-file=tls.crt=replication.pem

$ kubectl patch pg cluster1 \
  --type merge \
  --patch '{"spec": {"pause": true}}' \
  --namespace postgres-operator



7. Unpause the cluster to resume the Operator control:

Keep certificates after deleting the cluster
In case of cluster deletion, objects, created for SSL (Secret, certiRcate, and issuer) are not deleted by
default.

$ kubectl patch pg cluster1 \
    --type merge \
    --patch '{
        "spec": {
            "secrets": {
                "customRootCATLSSecret": {
                    "name": "cluster1-ca-cert-new",
                    "items": [
                        {
                            "key": "ca.crt",
                            "path": "root.crt"
                        },
                        {
                            "key": "ca.key",
                            "path": "root.key"
                        }
                    ]
                },
                "customTLSSecret": {
                    "name": "cluster1-tls"
                },
                "customReplicationTLSSecret": {
                    "name": "cluster1-replication-tls"
                }
            }
        }
    }' \
    --namespace postgres-operator

$ kubectl patch pg cluster1 \
  --type merge \
  --patch '{"spec": {"pause": false}}' \
  --namespace postgres-operator



If the user wants the cleanup of objects created for SSL, there is a Rnalizers.percona.com/delete-ssl
Custom Resource option, which can be set in deploy/cr.yaml : if this Rnalizer is set, the Operator
will delete Secret, certiRcate and issuer after the cluster deletion event.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-ssl


Telemetry
The Telemetry function enables the Operator gathering and sending basic anonymous data to
Percona, which helps us to determine where to focus the development and what is the uptake for
each release of Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid  Reld)

Kubernetes version

Platform (is it Kubernetes or Openshift)

Is PMM enabled, and the PMM Version

Operator version

PostgreSQL version

PgBackRest version

Was the Operator deployed with Helm

Are sidecar containers used

Are backups used

We do not gather anything that identify a system, but the following thing should be mentioned:
Custom Resource ID is a unique ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects
to it at scheduled times to obtain fresh information about version numbers and valid image paths
needed for the upgrade.

The landing page for this service, check.percona.com , explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml  before applying it with
the kubectl apply -f deploy/operator.yaml  command. Open the operator.yaml  Rle with
your text editor, Rnd the DISABLE_TELEMETRY  environment variable and set it to "true"

$ helm install my-db percona/pg-db --version 2.8.0 --namespace my-namespace -
-set disable_telemetry="true"

https://check.percona.com/


...
- name: DISABLE_TELEMETRY
  value: "true"
...



Configure concurrency for a cluster
reconciliation
Reconciliation is the process by which the Operator continuously compares the desired state with
the actual state of the cluster. The desired state is deRned in a Kubernetes custom resource, like
PostgresCluster.

If the actual state does not match the desired state, the Operator takes actions to bring the system
into alignment—such as creating, updating, or deleting Kubernetes resources (Pods, Services,
ConRgMaps, etc.) or performing database-speciRc operations like scaling, backups, or failover.

Reconciliation is triggered by a variety of events, including:

Changes to the cluster conRguration

Changes to the cluster state

Changes to the cluster resources

By default, the Operator has one reconciliation worker. This means that if you deploy or update 2
clusters at the same time, the Operator will reconcile them sequentially.

The PGO_WORKERS  environment variable in the percona-postgresql-operator  deployment
controls the number of concurrent workers that can reconcile resources in PostgresSQL clusters in
parallel.

Thus, to extend the previous example, if you set the number of reconciliation workers to 2 , the
Operator will reconcile both clusters in parallel. This also helps you with benchmarking the Operator
performance.

The general recommendation is to set the number of concurrent workers equal to the number of
PostgreSQL clusters. When the number of workers is greater, the excessive workers will remain idle.

Set the number of reconciliation workers

1. Check the index of the PGO_WORKERS  environment variable using the following command:

$ kubectl get deployment percona-postgresql-operator -o 
jsonpath='{.spec.template.spec.containers[0].env[?
(@.name=="PGO_WORKERS")].value}'



The index is zero-based, thus PGO_WORKERS  has index 5.

2. List deployments to Rnd the right one:

Sample output

[
  {
    "name": "WATCH_NAMESPACE",
    "valueFrom": {
      "fieldRef": {
        "apiVersion": "v1",
        "fieldPath": "metadata.namespace"
      }
    }
  },
  {
    "name": "PGO_NAMESPACE",
    "valueFrom": {
      "fieldRef": {
        "apiVersion": "v1",
        "fieldPath": "metadata.namespace"
      }
    }
  },
  {
    "name": "LOG_STRUCTURED",
    "value": "false"
  },
  {
    "name": "LOG_LEVEL",
    "value": "INFO"
  },
  {
    "name": "DISABLE_TELEMETRY",
    "value": "false"
  },
  {
    "name": "PGO_WORKERS",
    "value": "2"
  }
]

$ kubectl get deployment



3. To set a new value, run the following command to patch the deployment:

The command does the following:

Patches the deployment to update the PGO_WORKERS  environment variable

Sets the value to 2

The value can be set to any number greater than 0.

Verify the change
To verify that the change has been applied, run the following command:

The output should be 2 .

Sample output

NAME                          READY   UP-TO-DATE   AVAILABLE   AGE
cluster1-pgbouncer            3/3     3            3           3h49m
percona-postgresql-operator   0/1     1            0           3h50m

$ kubectl patch deployment percona-postgresql-operator \
  --type='json' \
  -p='[{"op": "replace", "path": "/spec/template/spec/containers/0/env/5", 
"value": {"name": "PGO_WORKERS", "value": "2"}}]'

$ kubectl get deployment percona-postgresql-operator -o 
jsonpath='{.spec.template.spec.containers[0].env[?
(@.name=="PGO_WORKERS")].value}'



Management



Back up and restore



About backups
In this section you will learn how to set up and manage backups of your data using the Operator.

You can make backups in two ways:

On-demand. You can do them manually at any moment.

Schedule backups. ConRgure backups and their schedule in the deploy/cr.yaml  Rle. The
Operator makes them automatically according to the schedule.

What you need to know

Backup repositories

To make backups, the Operator uses the open source pgBackRest  backup and restore utility.

When the Operator creates a new PostgreSQL cluster, it also creates a special pgBackRest repository
to facilitate the usage of the pgBackRest features. You can notice an additional repo-host  Pod
after the cluster creation.

A pgBackRest repository consists of the following Kubernetes objects:

A Deployment,

A Secret that contains information speciRc to the PostgreSQL cluster (e.g. SSH keys, AWS S3
keys, etc.),

A Pod with a number of supporting scripts,

A Service.

In the /deploy/cr.yml  Rle, pgBackRest repositories are listed in the backups.pgbackrest.repos
subsection. You can have up to 4 repositories as repo1 , repo2 , repo3 , and repo4 .

Backup types

You can make the following types of backups:

full : A full backup of all the contents of the PostgreSQL cluster,

differential : A backup of only the Rles that have changed since the last full backup,

incremental : Default. A backup of only the Rles that have changed since the last full or

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/


differential backup.

Backup storage

You have the following options to store PostgreSQL backups:

Cloud storage:

Amazon S3, or any S3-compatible storage,

Google Cloud Storage,

Azure Blob Storage

A Persistent Volume attached to the pgBackRest Pod.

Next steps
Ready to move forward? ConRgure backup storage



Configure backup storage
ConRgure backup storage for your backup repositories in the backups.pgbackrest.repos  section
of the deploy/cr.yaml  conRguration Rle.

Follow the instructions relevant to the cloud storage or Persistent Volume you are using for backups.

 S3-compatible backup storage

To use Amazon S3  or any S3-compatible storage  for backups, you need to have the following
S3-related information:

The name of S3 bucket;

The region - the location of the bucket

S3 credentials such as S3 key and secret to access the storage. These are stored in an encoded
form in Kubernetes Secrets  along with other sensitive information.

For S3-compatible storage other than native Amazon S3, you will also need to specify the
endpoint - the actual URI to access the bucket - and the URI style (see below).

The pgBackRest tool does backups based on write-ahead logs (WAL) archiving. If you are using an S3 storage in
a region located far away from the region of your PostgreSQL cluster deployment, it could lead to the delay and
impossibility to create a new replica/join delayed replica if the primary restarts. A new WAL Rle is archived in 60
seconds at the backup start by default , causing both full and incremental backups fail in case of long delay.

To prevent issues with PostgreSQL archiving and have faster restores, it’s recommended to use the same S3
region for both the Operator and backup options. Additionally, you can replicate the S3 bucket to another region
with tools like Amazon S3 Cross Region Replication .

ConLguration steps

Note

Encode the S3 credentials and the pgBackRest repository name that you will use for backups. In
this example, we use AWS S3 key and S3 key secret and repo2 .

1

https://aws.amazon.com/s3/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html


 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
EOF

Create the Secret conRguration Rle and specify the base64-encoded string from the previous
step. The following is the example of the cluster1-pgbackrest-secrets.yaml  Secret Rle:

This Secret can store credentials for several repositories presented as separate data keys.

2

apiVersion: v1
kind: Secret
metadata:
  name: cluster1-pgbackrest-secrets
type: Opaque
data:
  s3.conf: <base64-encoded-configuration-contents>

Note

Create the Secrets object from this YAML Rle. Replace the <namespace>  placeholder with your
value:

3

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml  conRguration. Specify the Secret Rle you created in the
backups.pgbackrest.configuration  subsection, and put all other S3 related information in
the backups.pgbackrest.repos  subsection under the repository name that you intend to use
for backups. This name must match the name you used when you encoded S3 credentials on
step 1.

4



Provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path  option (preRx it’s name with
the repository name, for example repo1-path ). Also, if your S3-compatible storage requires
additional repository options  for the pgBackRest tool, you can specify these parameters in
the same backups.pgbackrest.global  subsection with standard pgBackRest option names,
also preRxed with the repository name.

 Amazon S3 storage

For example, the S3 storage for the repo2  repository looks as follows:

...
backups:
  pgbackrest:
    ...
    configuration:
      - secret:
          name: cluster1-pgbackrest-secrets
    ...
    global:
      repo2-path: /pgbackrest/postgres-operator/cluster1/repo2
    ...
    repos:
    - name: repo2
      s3:
        bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
        region: "<YOUR_AWS_S3_REGION>"

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global
https://pgbackrest.org/configuration.html#section-repository


To use this feature, add annotation to the spec part of the Custom Resource and also add pgBackRest
custom conRguration option to the backups subsection as follows:

:simple-amazons3: S3-compatible storage

For example, the S3-compatible storage for the repo2  repository looks as follows:

The repo2-storage-verify-tls  option in the above example enables TLS veriRcation for
pgBackRest (when set to y  or simply omitted) or disables it, when set to n .

Using AWS EC2 instances for backups makes it possible to automate access to AWS S3 buckets
based on IAM roles for Service Accounts with no need to specify the S3 credentials explicitly.

spec:
  crVersion: 2.8.0
  metadata:
    annotations:
      eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-access-s3-
bucket
  ...
  backups:
    pgbackrest:
      image: percona/percona-postgresql-operator:2.8.0-ppg16-pgbackrest
      global:
        repo2-s3-key-type: web-id

...
backups:
  pgbackrest:
    ...
    configuration:
      - secret:
          name: cluster1-pgbackrest-secrets
    ...
    global:
      repo2-path: /pgbackrest/postgres-operator/cluster1/repo2
      repo2-storage-verify-tls=y
      repo2-s3-uri-style: path
    ...
    repos:
    - name: repo2
      s3:
        bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
        endpoint: "<YOUR_AWS_S3_ENDPOINT>"
        region: "<YOUR_AWS_S3_REGION>"

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html


 Google Cloud Storage

To use Google Cloud Storage (GCS)  as an object store for backups, you need the following
information:

a proper GCS bucket name. Pass the bucket name to pgBackRest  via the gcs.bucket  key in the
backups.pgbackrest.repos  subsection of deploy/cr.yaml .

your service account key for the Operator to access the storage.

ConLguration steps

The repo2-s3-uri-style  option should be set to path   if you use S3-compatible storage
(otherwise you might see “host not found error” in your backup job logs), and is not needed for
Amazon S3.

Create or update the cluster. Replace the <namespace>  placeholder with your value:5

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Create your service account key following the oTcial Google Cloud instructions .1

Export this key from your Google Cloud account.

You can Rnd your key in the Google Cloud console (select IAM & Admin → Service Accounts in
the left menu panel, then click your account and open the KEYS tab):

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the
Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADD KEY

DETAILS PERMISSIONS KEYS METRICS LOGS

Click the ADD KEY button, choose Create new key and choose JSON as a key type. These actions
will result in downloading a Rle in JSON format with your new private key and related
information (for example, gcs-key.json ).

2

https://cloud.google.com/storage
https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-uri-style
https://cloud.google.com/iam/docs/creating-managing-service-account-keys


Create the Kubernetes Secret . The Secret consists of base64-encoded versions of two Rles:
the gcs-key.json  Rle with the Google service account key you have just downloaded, and the
special gcs.conf  conRguration Rle.

Create the gcs.conf  conRguration Rle. The Rle contents depends on the repository name
for backups in the deploy/cr.yaml  Rle. In case of the repo3  repository, it looks as
follows:

Encode both gcs-key.json  and gcs.conf  Rles.

Create the Kubernetes Secret conRguration Rle and specify your cluster name and the
base64-encoded contents of the Rles from previous steps. The following is the example of
the cluster1-pgbackrest-secrets.yaml  Secret Rle:

 Info  This Secret can store credentials for several repositories presented as separate data

keys.

3

→

[global]
repo3-gcs-key=/etc/pgbackrest/conf.d/gcs-key.json

→

 Linux

 MacOS

base64 --wrap=0 <filename>

base64 -i <filename>

→

apiVersion: v1
kind: Secret
metadata:
  name: cluster1-pgbackrest-secrets
type: Opaque
data:
  gcs-key.json: <base64-encoded-json-file-contents>
  gcs.conf: <base64-encoded-conf-file-contents>

Create the Secrets object from the Secret conRguration Rle. Replace the <namespace>
placeholder with your value:

4

https://kubernetes.io/docs/concepts/configuration/secret/


 Azure Blob Storage (tech preview)

To use Microsoft Azure Blob Storage  for storing backups, you need the following:

a proper Azure container name.

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml  conRguration. Specify your GCS credentials Secret in the
backups.pgbackrest.configuration  subsection, and put GCS bucket name into the bucket
option in the backups.pgbackrest.repos  subsection. The repository name must be the same
as the name you speciRed when you created the gcs.conf  Rle.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path  option (preRx it’s name with
the repository name, for example repo3-path ).

For example, GCS storage conRguration for the repo3  repository would look as follows:

5

...
backups:
  pgbackrest:
    ...
    configuration:
      - secret:
          name: cluster1-pgbackrest-secrets
    ...
    global:
      repo3-path: /pgbackrest/postgres-operator/cluster1/repo3
    ...
    repos:
    - name: repo3
      gcs:
        bucket: "<YOUR_GCS_BUCKET_NAME>"

Create or update the cluster. Replace the <namespace>  placeholder with your value:6

$ kubectl apply -f deploy/cr.yaml -n <namespace>

https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global


Azure Storage credentials. These are stored in an encoded form in the Kubernetes Secret .

ConLguration steps

Encode the Azure Storage credentials and the pgBackRest repo name that you will use for
backups with base64. In this example, we are using repo4 .

1

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>
EOF

$ cat <<EOF | base64
[global]
repo4-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>
repo4-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>
EOF

Create the Secret conRguration Rle and specify the base64-encoded string from the previous
step. The following is the example of the cluster1-pgbackrest-secrets.yaml  Secret Rle:

This Secret can store credentials for several repositories presented as separate data keys.

2

apiVersion: v1
kind: Secret
metadata:
  name: cluster1-pgbackrest-secrets
type: Opaque
data:
  azure.conf: <base64-encoded-configuration-contents>

Note

Create the Secrets object from this yaml Rle. Replace the <namespace>  placeholder with your
value:

3

https://kubernetes.io/docs/concepts/configuration/secret/


 Persistent Volume

Percona Operator for PostgreSQL uses Kubernetes Persistent Volumes to store Postgres data. You
can also use them to store backups. A Persistent volume is created at the same time when the
Operator creates PostgreSQL cluster for you. You can Rnd the Persistent Volume conRguration in the
backups.pgbackrest.repos  section of the cr.yaml  Rle under the repo1  name:

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml -n <namespace>

Update your deploy/cr.yaml conRguration. Specify the Secret Rle you have created in the
previous step in the backups.pgbackrest.configuration  subsection. Put Azure container
name in the backups.pgbackrest.repos  subsection under the repository name that you
intend to use for backups. This name must match the name you used when you encoded Azure
credentials on step 1.

Also, provide pgBackRest the directory path for backup on the storage. You can pass it in the
backups.pgbackrest.global subsection via the pgBackRest path  option (preRx it’s name with
the repository name, for example repo4-path ).

For example, the Azure storage for the repo4  repository looks as follows.

4

...
backups:
  pgbackrest:
    ...
    configuration:
      - secret:
          name: cluster1-pgbackrest-secrets
    ...
    global:
      repo4-path: /pgbackrest/postgres-operator/cluster1/repo4
    ...
    repos:
    - name: repo4
      azure:
        container: "<YOUR_AZURE_CONTAINER>"

Create or update the cluster. Replace the <namespace>  placeholder with your value:5

$ kubectl apply -f deploy/cr.yaml -n <namespace>

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#backups-pgbackrest-global


Next steps
Make an on-demand backup

Make a scheduled backup

This conRguration is suTcient to make a backup.

        ...
backups:
  pgbackrest:
    ...
    global:
      repo1-path: /pgbackrest/postgres-operator/cluster1/repo1
    ...
    repos:
    - name: repo1
        volume:
          volumeClaimSpec:
            accessModes:
            - ReadWriteOnce
            resources:
              requests:
                storage: 1Gi



Make scheduled backups
Backups schedule is deRned on the per-repository basis in the backups.pgbackrest.repos
subsection of the deploy/cr.yaml  Rle.

You can supply each repository with a schedules.<backup type>  key equal to an actual schedule
that you specify in crontab format.

1. Update the cluster:

Next steps
Restore from a backup

Useful links
Backup retention

Before you start, make sure you have conRgured a backup storage.1

ConRgure backup schedule in the deploy/cr.yaml  Rle. The schedule is speciRed in crontab
format as explained in Custom Resource options. The repository name must be the same as the
one you deRned in the backup storage conRguration. The following example shows the schedule
for repo1  repository:

2

...
backups:
  pgbackrest:
  ...
        repos:
        - name: repo1
          schedules:
            full: "0 0 * * 6"
            differential: "0 1 * * 1-6"
          ...

$ kubectl apply -f deploy/cr.yaml



Making on-demand backups
To make an on-demand backup manually, you need a backup conRguration Rle. You can use the
example of the backup conRguration Rle deploy/backup.yaml :

Here’s a sequence of steps to follow:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
  name: backup1
spec:
  pgCluster: cluster1
  repoName: repo1
#  options:
#  - --type=full

Before you start, make sure you have conRgured a backup storage.1

In the deploy/backup.yaml  conRguration Rle, specify the cluster name and the repository
name to be used for backups. The repository name must be the same as the one you deRned in
the backup storage conRguration. It must also match the repository name speciRed in the
backups.pgbackrest.manual  subsection of the deploy/cr.yaml  Rle.

2

If needed, you can add any pgBackRest command line options .3

Make a backup with the following command (modify the -n postgres-operator  parameter if
your database cluster resides in a different namespace):

4

$ kubectl apply -f deploy/backup.yaml -n postgres-operator

Expected output

perconapgbackup.pgv2.percona.com/backup1 created

Making a backup takes time. Use the kubectl get pg-backup  command to track the backup
progress. When Rnished, backup should obtain the Succeeded  status:

5

$ kubectl get pg-backup backup1 -n postgres-operator

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/backup.yaml
https://pgbackrest.org/configuration.html


To list available backups, run:

Next steps
Restore from a backup

Useful links
Backup retention

Expected output

NAME      CLUSTER    REPO    DESTINATION   STATUS      TYPE   COMPLETED   AGE
backup1   cluster1   repo1                 Succeeded   incr   3m38s       3m53s

Tip

$ kubectl get pg-backup -n postgres-operator



Restore the cluster from a previously saved
backup
The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-
in-time-recovery. There are two ways to restore a cluster:

restore to a new cluster using the dataSource.postgresCluster subsection,

restore in-place to an existing cluster (note that this is destructive).

Restore to a new PostgreSQL cluster
Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL
cluster that can run alongside an existing one. There are several scenarios where using this
technique is helpful:

Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of
putting this is creating a clone.

Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either an active one, or a former cluster whose pgBackRest
repository still exists, edit the dataSource.postgresCluster subsection options in the Custom
Resource manifest of the new cluster (the one you are going to create). The content of this
subsection should copy the backups  keys of the original cluster - ones needed to carry on the
restore:

dataSource.postgresCluster.clusterName  should contain the source cluster name,

dataSource.postgresCluster.clusterNamespace  should contain the namespace of the
source cluster (it is needed if the new cluster will be created in a different namespace, and you
will need the Operator deployed in multi-namespace/cluster-wide mode to make such cross-
namespace restore),

dataSource.postgresCluster.options  allow you to set the needed pgBackRest command line
options,

dataSource.postgresCluster.repoName  should contain the name of the pgBackRest
repository, while the actual storage conRguration keys for this repository should be placed into
dataSource.pgbackrest.repo  subsection,

dataSource.pgbackrest.configuration.secret.name  should contain the name of a



Kubernetes Secret with credentials needed to access cloud storage, if any.

The following example bootstraps a new cluster from a backup, which was made on the cluster1
cluster deployed in percona-db-1  namespace. For simplicity, this backup uses repo1  repository
from the Persistent Volume backup storage example, which needs no cloud credentials. The
resulting deploy/cr.yaml  manifest for the new cluster should contain the following lines:

Creating the new cluster in its namespace (for example, percona-db-2 ) with such a manifest will
initiate the restoration process:

Restore to an existing PostgreSQL cluster
To restore the previously saved backup, use a backup restore conRguration Rle. The example of the
backup conRguration Rle is deploy/restore.yaml :

The following keys are the most important ones:

pgCluster  speciRes the name of your cluster,

repoName  speciRes the name of one of the 4 pgBackRest repositories, already conRgured in the
backups.pgbackrest.repos  subsection,

...
dataSource:
  postgresCluster:
    clusterName: cluster1
    repoName: repo1
    clusterNamespace: percona-db-1
...

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
  name: restore1
spec:
  pgCluster: cluster1
  repoName: repo1
  options:
  - --type=time
  - --target="2022-11-30 15:12:11+03"

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml


options  passes through any pgBackRest command line options .

To start the restoration process, run the following command (modify the -n postgres-operator
parameter if your database cluster resides in a different namespace):

Specifying which backup to restore

When there are multiple backups, the Operator will restore the latest full backup by default.

if you want to restore to some previous backup, not the last one, follow these steps:

1. Find the label of the backup you want to restore. For this, you can list available backups with
kubectl get pg-backup  command, and then get detailed information about the backup of
your interest with kubectl describe pg-backup <BACKUP NAME> . The output should look as
follows:

The “Backup Name” status Reld will contain needed backup label.

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Name:         cluster1-backup-c55w-f858g
Namespace:    default
Labels:       <none>
Annotations:  pgv2.percona.com/pgbackrest-backup-job-name: cluster1-
backup-c55w
              pgv2.percona.com/pgbackrest-backup-job-type: replica-create
API Version:  pgv2.percona.com/v2
Kind:         PerconaPGBackup
Metadata:
  Creation Timestamp:  2024-06-28T07:44:08Z
  Generate Name:       cluster1-backup-c55w-
  Generation:          1
  Resource Version:    1199
  UID:                 92a8193c-6cbd-4cdf-82e5-a4623bf7f2d9
Spec:
  Pg Cluster:  cluster1
  Repo Name:   repo1
Status:
  Backup Name:  20240628-074416F
  Backup Type:  full
...

https://pgbackrest.org/configuration.html


2. Now use a backup restore conRguration Rle with additional --set=<backup_label>
pgBackRest option. For example, the following yaml Rle will result in restoring to a backup
labeled 20240628-074416F :

3. Start the restoration process, as usual:

Restore the cluster with point-in-time recovery
Point-in-time recovery functionality allows users to revert the database back to a state before an
unwanted change had occurred.

For this feature to work, the Operator initiates a full backup immediately after the cluster creation, to use it as a
basis for point-in-time recovery when needed (this backup is not listed in the output of the kubectl get pg-
backup  command).

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few
additional spec.options  Relds in deploy/restore.yaml :

set --type  option to time ,

set --target  to a speciRc time you would like to restore to. You can use the typical string
formatted as <YYYY-MM-DD HH:MM:DD> , optionally followed by a timezone offset: "2021-04-16 
15:13:32+00"  ( +00  in the above example means UTC),

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
  name: restore1
spec:
  pgCluster: cluster1
  repoName: repo1
  options:
  - --type=immediate
  - --set=20240628-074416F

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Note



optional --set  argument followed with a pgBackRest backup ID allows you to choose the
backup which will be the starting point for point-in-time recovery. This option must be speciRed if
the target is one or more backups away from the current moment. You can look through the
available backups with the pgBackRest info  command to Rnd out the proper backup ID.

After obtaining the Pod name with kubectl get pods  command, you can run pgbackrest --stanza=db 
info  command on the appropriate Pod as follows:

Then Rnd ID of the needed backup in the output:

Now you can put this backup ID to the backup restore conRguration Rle as follows:

pgBackRest backup ID example

$ kubectl -n postgres-operator exec -it cluster1-instance1-hcgr-0 -c database -- 
pgbackrest --stanza=db info

stanza: db
    status: ok
    cipher: none

    db (prior)
        wal archive min/max (16): 0000000F000000000000001C/0000002000000036000000C5

        full backup: 20240401-173403F
            timestamp start/stop: 2024-04-01 17:34:03+00 / 2024-04-01 17:36:57+00
            wal start/stop: 000000120000000000000022 / 000000120000000000000024
            database size: 31MB, database backup size: 31MB
            repo1: backup set size: 4.1MB, backup size: 4.1MB

        incr backup: 20240401-173403F_20240415-201250I
            timestamp start/stop: 2024-04-15 20:12:50+00 / 2024-04-15 20:14:19+00
            wal start/stop: 00000019000000000000005C / 00000019000000000000005D
            database size: 46.0MB, database backup size: 25.7MB
            repo1: backup set size: 6.1MB, backup size: 3.8MB
            backup reference list: 20240401-173403F

        incr backup: 20240401-173403F_20240415-201430I
...

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
  name: restore1
spec:
  pgCluster: cluster1
  repoName: repo1
  options:
  - --set="20240401-173403F"

https://pgbackrest.org/command.html#command-info


The example may look as follows:

Latest succeeded backup available with the kubectl get pg-backup  command has a “Latest restorable time”
information Reld handy when selecting a backup to restore. Tracking latest restorable time is turned on by
default, and you can easily query the backup for this information as follows:

After setting these options in the backup restore conRguration Rle, start the restoration process:

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time
where you do not have a backup. All relevant write-ahead log Rles must be successfully pushed before you make
the restore.

Providing pgBackRest with a custom restore command
There may be cases where it is needed to control what Rles are restored from the backup and apply
Rne-grained Rltering to them. For such scenarios there is a possibility to overwrite the
restore_command used in PosgreSQL archive recovery . You can do it in the
patroni.dynamicConfiguration  subsection of the Custom Resource as follows:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGRestore
metadata:
  name: restore1
spec:
  pgCluster: cluster1
  repoName: repo1
  options:
  - --type=time
  - --target="2022-11-30 15:12:11+03"

Note

$ kubectl get pg-backup <backup_name> -n postgres-operator -o 
jsonpath='{.status.latestRestorableTime}'

$ kubectl apply -f deploy/restore.yaml -n postgres-operator

Note

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY


The %f  template in the above example is replaced by the name of the Rle to retrieve from the
archive, and %p  is replaced by the copy destination path name on the server. See PostgreSQL oTcial
documentation  for more low-level details about this feature.

Fix the cluster if the restore fails
The restore process changes database Rles, and therefore restoring wrong information or causing
restore fail by misconRguring can put the database cluster in non-operational state.

For example, adding wrong pgBackRest arguments to PerconaGPRestore  custom resource breaks
existing database installation while the restore hangs.

In this case it’s possible to remove the restore annotation from the Custom Resource correspondent
to your cluster. Supposing that your cluster cluster1  was deployed in postgres-operator
namespace, you can do it with the following command:

Alternatively, you can temporarily delete the database cluster by removing the Custom Resource
(check the finalizers.percona.com/delete-pvc  Rnalizer is not turned on, otherwise you will not
retain your data!), and recreate the cluster back by running kubectl apply -f deploy/cr.yaml -
n postgres-operator  command you have used to deploy the it previously.

One more reason of failed restore to consider is the possibility of a corrupted backup repository or
missing Rles. In this case, you may need to delete the database cluster by removing the Custom
Resource, Rnd the startup PVC to delete it and recreate again.

patroni:
  dynamicConfiguration:
    postgresql:
      parameters:
        restore_command: "pgbackrest --stanza=db archive-get %f \"%p\""

$ kubectl annotate -n postgres-operator pg cluster1 postgres-
operator.crunchydata.com/pgbackrest-restore-

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-pvc


Configure backup encryption
Backup encryption is a security best practice that helps protect your organization’s conRdential
information and prevents unauthorized access.

The pgBackRest tool used by the Operator allows encrypting backups using AES-256 encryption. The
approach is repository-based: pgBackRest encrypts the whole repository where it stores backups.
Encryption is enabled if a user-supplied encryption key was passed to pgBackRest with the -repo-
cypher-pass  option when conMguring the backup storage.

 Limitation:  You cannot change encryption settings after the backups are established. You must

create a new repository to enable encryption or change the encryption key.

This document describes how to conRgure backup encryption.

Generate the encryption key
You should use a long, random encryption key. You can generate it using OpenSSL as follows:

Configure backup storage
Follow the general backup storage conRguration instruction relevant to the backup storage you are
using. The only difference is in encoding your cloud credentials and the pgBackRest repository name
to be used for backups: you also add the encryption key to the conRguration Rle as the repo-
cipher-pass  option. The repo name within the option must match the pgBackRest repo name.

The following example shows the conRguration for S3-compatible storage and the pgBackRest repo
name repo2  (other cloud storages are conRgured similarly).

1. Encode the storage conRguration Rle.

$ openssl rand -base64 48



2. Create the Secrets conRguration Rle and the Secrets object as described in steps 2-3 of the S3-
compatible backup storage conRguration. Follow the instructions relevant to the backup storage
you are using.

3. Update the deploy/cr.yaml  conRguration. Specify the following information:

The Secret name you created in the backups.pgbackrest.configuration  subsection

All storage-related information in the backups.pgbackrest.repos  subsection under the
repository name that you intend to use for backups. This name must match the name you
used when you encoded S3 credentials on step 1.

The cipher type in the pgbackrest.global  subsection

The following example shows the conRguration for the S3-compatible storage and the
pgBackRest repo name repo2 :

 Linux

 macOS

$ cat <<EOF | base64 --wrap=0
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>
EOF

$ cat <<EOF | base64
[global]
repo2-s3-key=<YOUR_AWS_S3_KEY>
repo2-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>
repo2-cipher-pass=<YOUR_ENCRYPTION_KEY>
EOF



4. Apply the changes. Replace the <namespace>  placeholder with your value.

Make a backup

Make an on-demand backup  Make a scheduled backup

backups:
  pgbackrest:
    ...
    configuration:
      - secret:
          name: cluster1-pgbackrest-secrets
    ...
    repos:
    - name: repo2
      s3:
        bucket: "<YOUR_AWS_S3_BUCKET_NAME>"
        endpoint: "<YOUR_AWS_S3_ENDPOINT>"
        region: "<YOUR_AWS_S3_REGION>"
    global:
      cipher-type: aes-256-cbc

$ kubectl apply -f deploy/cr.yaml -n <namespace>



Speed-up backups with pgBackRest
asynchronous archiving
Backing up a database with high write-ahead logs (WAL) generation can be rather slow, because
PostgreSQL archiving process is sequential, without any parallelism or batching. In extreme cases
backup can be even considered unsuccessful by the Operator because of the timeout.

The pgBackRest tool used by the Operator can, if necessary, solve this problem by using the WAL
asynchronous archiving  feature.

You can set up asynchronous archiving in your storage conRguration Rle for pgBackRest. Turn on the
additional archive-async  mag, and set the process-max  value for archive-push  and archive-
get  commands. Your storage conRguration Rle may look as follows:

No modiRcations are needed aside of setting these additional parameters. You can Rnd more
information about WAL asynchronous archiving in gpBackRest oTcial documentation  and in this
blog post .

s3.conf

[global]
repo2-s3-key=REPLACE-WITH-AWS-ACCESS-KEY
repo2-s3-key-secret=REPLACE-WITH-AWS-SECRET-KEY
repo2-storage-verify-tls=n
repo2-s3-uri-style=path
archive-async=y
spool-path=/pgdata

[global:archive-get]
process-max=2

[global:archive-push]
process-max=4

https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://pgbackrest.org/user-guide-centos7.html#async-archiving
https://www.percona.com/blog/how-pgbackrest-is-addressing-slow-postgresql-wal-archiving-using-asynchronous-feature/


Backup retention
The Operator supports setting pgBackRest retention policies for full and differential backups. When
a full backup expires according to the retention policy, pgBackRest cleans up all the Rles related to
this backup and to the write-ahead log. Thus, the expiration of a full backup with some incremental
backups based on it results in expiring of all these incremental backups.

You can control backup retention by the following pgBackRest  options:

--<repo name>-retention-full  number of full backups to retain,

--<repo name>-retention-diff  number of differential backups to retain.

You can also specify retention type for full backups as <repo name>-retention-full-type ,
setting it to either count  (the number of full backups to keep) or time  (the number of days to keep
a backup for).

You can set both backup type and retention policy for each of 4 repositories as follows.

Differential retention can be set in a similar way:

backups:
    pgbackrest:
...
      global:
        repo1-retention-full: "14"
        repo1-retention-full-type: time
        ...

backups:
    pgbackrest:
...
      global:
        repo1-retention-diff: "3"
        ...



Delete the unneeded backup
The maximum amount of stored backups is controlled by the retention policies. Older backups are
automatically deleted.

Manual deleting of a previously saved backup requires not more than the backup name. This name
can be taken from the list of available backups returned by the following command:

When the name is known, backup can be deleted as follows:

Delete backups on cluster deletion
You can enable percona.com/delete-backups  Rnalizer in the Custom Resource (turned off by
default) to ensure that all backups are removed when the cluster is deleted. If the Rnalizer is enabled,
the Operator will delete all the backups from all the conRgured repos on cluster deletion. Besides
removing all the physical backup Rles, Rnalizer will also delete all pg-backup  objects.

This percona.com/delete-backups  Rnalizer is in tech preview state, and it is not yet recommended for
production environments.

$ kubectl get pg-backup

$ kubectl delete pg-backup/<backup-name>

Warning

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-backups


Disable backups
The recommended approach to deploy and run the database is with the disaster recovery strategy in
mind. Therefore, the Operator is designed and running with the backups enabled by default.

There are some speciRc use cases when you may wish to run a database without enabled backups.
Disabling backups should be a conscious decision based on your data’s value and recoverability.
These are example use cases where it is considered acceptable are when the data is fully
disposable:

Ephemeral development/testing environments: For clusters that are frequently torn down and
rebuilt from application code or test data scripts.

CI/CD pipeline jobs: For automated pipeline runs where the cluster’s entire lifecycle is temporary
and tied to a single job.

Key considerations before disabling backups
Before you proceed with disabling backups, here’s what you need to know and carefully assess:

1. Without backups you have no way to restore data. If by mistake you drop a table, that data is lost
as you have no option to recover it.

2. You cannot clone a cluster when you deploy a standby cluster for disaster recovery. This is
because cloning is based on restoring a backup on a new cluster.

3. When you run a cluster without backups, pgBackRest  metrics are unavailable.

Start a new cluster with disabled backups
To deploy a new cluster without backups, do the following:

1. Clone the Operator repository to be able to edit resource manifests.

2. Edit the deploy/cr.yaml  Custom Resource and set the backups.enabled  option to false

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator



3. Apply the Custom Resource to start the cluster creation.

Disable backups for a running cluster

Before you start, read the considerations carefully.

To disable backups for a running cluster, update the deploy/cr.yaml  Custom Resource manifest
with the following conRguration:

Set the backups.enabled  option to false

Add the annotation pgv2.percona.com/authorizeBackupRemoval:"true"

Since it is a running cluster, we will use the kubectl patch  command to update its conRguration:

After you apply this conRguration and disable backups, the Operator deletes the repo-host  PVC. Thus, all data
that was stored in that PVC will be deleted too. The backups stored on the cloud backup storage remain.

Re-enable backups

spec:
  backups:
    enabled: false

$ kubectl apply -f deploy/cr.yaml -n <namespace>

$ kubectl patch pg cluster1 --type merge \
  -p '{
    "metadata": {
      "annotations": {
        "pgv2.percona.com/authorizeBackupRemoval": "true"
      }
    },
    "spec": {
      "backups": {
        "enabled": false
      }
    }
  }' -n <namespace>

Warning



To re-enable backups for a running cluster, do the following:

1. Remove the annotation pgv2.percona.com/authorizeBackupRemoval:"true"

2. Apply the patch to your running cluster and enable backups:

$ kubectl annotate pg cluster1 pgv2.percona.com/authorizeBackupRemoval-

$ kubectl patch pg cluster1 --type merge \
  -p '{
    "spec": {
      "backups": {
        "enabled": true
      }
    }
  }'



Deploy a standby cluster for
Disaster Recovery



How to deploy a standby cluster for Disaster
Recovery
Disaster recovery is not optional for businesses operating in the digital age. With the ever-increasing
reliance on data, system outages or data loss can be catastrophic, causing signiRcant business
disruptions and Rnancial losses.

With multi-cloud or multi-regional PostgreSQL deployments, the complexity of managing disaster
recovery only increases. This is where the Percona Operators come in, providing a solution to
streamline disaster recovery for PostgreSQL clusters running on Kubernetes. With the Percona
Operators, businesses can manage multi-cloud or hybrid-cloud PostgreSQL deployments with ease,
ensuring that critical data is always available and secure, no matter what happens.

Operators automate routine tasks and remove toil. For standby, the Percona Operator for PostgreSQL
version 2 provides the following options:

1. pgBackrest repo based standby. The standby cluster will be connected to a pgBackRest cloud
repo, so it will receive WAL Rles from the repo and apply them to the database.

2. Streaming replication. The standby cluster will use an authenticated network connection to the
primary cluster to receive WAL records directly.

3. Combination of (1) and (2). The standby cluster is conRgured for both repo-based standby and
streaming replicaton. It bootstraps from the pgBackRest repo and continues to receive WAL Rles
as they are pushed to the repo, and can also directly receive them from primary. Using this
approach ensures the cluster will still be up to date with the pgBackRest repo if streaming falls
behind.



Standby cluster deployment based on
pgBackRest
The pgBackRest repo-based standby is the simplest one. The following is the architecture diagram:

DB Pod N

pgBackRest

Operator

cluster1

Backup storageDB Pods

pgBackRest

Operator

cluster2 (standby)

DB Pods

pgBackrest repo based standby

1. This solution describes two Kubernetes clusters in different regions, clouds or running in hybrid
mode (on-premises and cloud). One cluster is Main and the other is Disaster Recovery (DR)

2. Each cluster includes the following components:

a. Percona Operator

b. PostgreSQL cluster

c. pgBackrest

d. pgBouncer

3. pgBackrest on the Main site streams backups and Write Ahead Logs (WALs) to the object
storage

4. pgBackrest on the DR site takes these backups and streams them to the standby cluster



Deploy disaster recovery for PostgreSQL on Kubernetes

Configure Main site

1. Deploy the Operator using your favorite method. Once installed, conRgure the Custom Resource
manifest, so that pgBackrest starts using the Object Storage of your choice. Skip this step if you
already have it conRgured.

2. ConRgure the backups.pgbackrest.repos  section by adding the necessary conRguration. The
below example is for Google Cloud Storage (GCS):

The main-pgbackrest-secrets  value contains the keys for GCS. Read more about the
conRguration in the backup and restore tutorial.

3. Once conRgured, apply the custom resource:

The backups should appear in the object storage. By default pgBackrest puts them into the
pgbackrest folder.

Configure DR site

The conRguration of the disaster recovery site is similar to that of the Main site, with the only
difference in standby settings.

spec:
  backups:
    configuration:
      - secret:
          name: main-pgbackrest-secrets
    pgbackrest:
      repos:
      - name: repo1
        gcs:
          bucket: MY-BUCKET

$ kubectl apply -f deploy/cr.yaml 

Expected output

perconapgcluster.pg.percona.com/standby created



The following manifest has standby.enabled  set to true  and points to the repoName  where
backups are (GCS in our case):

Deploy the standby cluster by applying the manifest:

metadata:
  name: standby
spec: 
...
  backups:
    configuration:
      - secret:
          name: standby-pgbackrest-secrets
    pgbackrest:
      repos:
      - name: repo1
        gcs:
          bucket: MY-BUCKET
  standby:
    enabled: true
    repoName: repo1

$ kubectl apply -f deploy/cr.yaml

Expected output

perconapgcluster.pg.percona.com/standby created



Standby cluster deployment based on
streaming replication
The following diagram explains how the standby based on streaming replication works:

Primary
DB Pod

Operator

Cluster 1 (Main)

Replica
DB Pods

Primary
DB Pod

Operator

Cluster 2 (DR)

Replica
DB Pods

                

1. This solution describes two Kubernetes clusters in different regions, clouds, data centers or even
two namespaces, or running in hybrid mode (on-premises and cloud). One cluster is Main site,
and the other is Disaster Recovery site (DR)

2. Each site supposedly includes Percona Operator and for sure includes PostgreSQL cluster.

3. In the DR site the cluster is in Standby mode

4. We set up streaming replication between these two clusters

Deploy disaster recovery for PostgreSQL on Kubernetes



Configure Main site

1. Deploy the Operator using your favorite method.

2. The Main cluster needs to expose it, so that standby can connect to the primary PostgreSQL
instance. To expose the primary PostgreSQL instance, use the spec.expose  section:

Use here a Service type of your choice. For example, ClusterIP  is suTcient for two clusters in
different Kubernetes namespaces.

3. Once conRgured, apply the custom resource:

The service that you should use for connecting to standby is called -ha (main-ha in my case):

Configure DR site

To get the replication working, the Standby cluster would need to authenticate with the Main one. To
get there, both clusters must have certiRcates signed by the same certiRcate authority (CA). Default
replication user _crunchyrepl  will be used.

In the simplest case you can copy the certiRcates from the Main cluster. You need to look out for two
Rles:

main-cluster-cert

main-replication-cert

spec:
  ...
  expose:
    type: ClusterIP

$ kubectl apply -f deploy/cr.yaml -n main-pg

Expected output

perconapgcluster.pg.percona.com/standby created

main-ha          ClusterIP   10.118.227.214   <none>        5432/TCP   
163m



Copy them to the namespace where DR cluster is going to be running and reference under
spec.secrets  (in the following example they were renamed, replacing “main” with “dr”):

If you are generating your own certiRcates, just remember the following rules:

1. CertiRcates for both Main and Standby clusters must be signed by the same CA

2. customReplicationTLSSecret  must have a Common Name (CN) setting that matches
_crunchyrepl , which is a default replication user.

You can Rnd more about certiRcates in the TLS doc.

Apart from setting certiRcates correctly, you should also set standby conRguration.

standby.enabled  controls if it is a standby cluster or not

standby.host  must point to the primary node of a Main cluster. In this example it is a main-ha
Service in another namespace.

Deploy the standby cluster by applying the manifest:

Once both clusters are up, you can verify that replication is working.

1. Insert some data into Main cluster

2. Connect to the DR cluster

spec:
  secrets:
    customTLSSecret:
      name: dr-cluster-cert
    customReplicationTLSSecret:
      name: dr-replication-cert

  standby:
    enabled: true
    host: main-ha.main-pg.svc

$ kubectl apply -f dr-cr.yaml -n dr-pg

Expected output

perconapgcluster.pg.percona.com/standby created



To connect to the DR cluster, use the credentials that you used to connect to Main. This also veriRes
that the connection is working. You should see whatever data you have in the Main cluster in the
Disaster Recovery.



Failover
In case of the Main site failure or in other cases, you can promote the standby cluster. The promotion
effectively allows writing to the cluster. This creates a net effect of pushing Write Ahead Logs
(WALs) to the pgBackrest repository. It might create a split-brain situation where two primary
instances attempt to write to the same repository. To avoid this, make sure the primary cluster is
either deleted or shut down before trying to promote the standby cluster.

Once the primary is down or inactive, promote the standby through changing the corresponding
section:

Now you can start writing to the cluster.

Split brain
There might be a case, where your old primary comes up and starts writing to the repository. To
recover from this situation, do the following:

1. Keep only one primary with the latest data running

2. Stop the writes on the other one

3. Take the new full backup from the primary and upload it to the repo

Automate the failover
Automated failover consists of multiple steps and is outside of the Operator’s scope. There are a few
steps that you can take to reduce the Recovery Time Objective (RTO). To detect the failover we
recommend having the 3rd site to monitor both DR and Main sites. In this case you can be sure that
Main really failed and it is not a network split situation.

Another aspect of automation is to switch the traTc for the application from Main to Standby after
promotion. It can be done through various Kubernetes conRgurations and heavily depends on how
your networking and application are designed. The following options are quite common:

1. Global Load Balancer - various clouds and vendors provide their solutions

spec:
  standby:
    enabled: false



2. Multi Cluster Services or MCS - available on most of the public clouds

3. Federation or other multi-cluster solutions



Scale Percona Distribution for PostgreSQL on
Kubernetes
One of the great advantages brought by Kubernetes is the ease of an application scaling. Scaling an
application results in adding resources or Pods and scheduling them to available Kubernetes nodes.

Scaling can be vertical and horizontal. Vertical scaling adds more compute or storage resources to
PostgreSQL nodes; horizontal scaling is about adding more nodes to the cluster. High availability
looks technically similar, because it also involves additional nodes, but the reason is maintaining
liveness of the system in case of server or network failures.

This document focuses on vertical scaling. For deploying high-availability, see High-availability guide.

Vertical scaling

Scale compute

There are multiple components that the Operator deploys and manages: PostgreSQL instances,
pgBouncer connection pooler, pgBackRest and others (See Architecture for the full list of
components.)

You can manage compute resources for a speciRc component using the corresponding section in
the Custom Resource manifest. We follow the structure for requests and limits  that Kubernetes
provides.

The most common resources to specify are CPU and memory (RAM).

You can specify a request for CPU or memory for a component’s Pod. In this case, the Kubernetes
scheduler uses these values to decide on which Kubernetes node to place the Pod, ensuring the
node has at least the requested resources available. The Pod will only be scheduled on a node that
can satisfy all its resource requests.

If you specify a limit for the resources, this is the maximum amount of CPU or memory the container
is allowed to use. If the container tries to use more than the limit, it may be throttled (for CPU) or
terminated (for memory).

You can set both requests  and limits  in the resources  section of your Custom Resource. For
example:

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


If you only set limits  and omit requests , Kubernetes will default the request to the limit value.

Use our reference documentation for the Custom Resource options for more details about other
components.

Scale storage

Kubernetes manages storage with a PersistentVolume (PV), a segment of storage supplied by the
administrator, and a PersistentVolumeClaim (PVC), a request for storage from a user. In Kubernetes
v1.11 the feature was added to allow a user to increase the size of an existing PVC object
(considered stable since Kubernetes v1.24). The user cannot shrink the size of an existing PVC
object.

Scaling with Volume Expansion capability

Certain volume types support PVCs expansion (exact details about PVCs and the supported volume
types can be found in Kubernetes documentation ).

You can run the following command to check if your storage supports the expansion capability:

The Operator versions 2.5.0 and higher will automatically expand such storage for you when you
change the appropriate options in the Custom Resource.

spec:
...
  instances:
  - name: instance1
    replicas: 3
    resources:
      requests:
        cpu: 1.0
        memory: 2Gi
      limits:
        cpu: 2.0
        memory: 4Gi

$ kubectl describe sc <storage class name> | grep AllowVolumeExpansion

Expected output

AllowVolumeExpansion: true

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims


For example, you can do it by editing and applying the deploy/cr.yaml  Rle:

Apply changes as usual:

Automated scaling with auto-growable disk

The Operator 2.5.0 and newer is able to detect if the storage usage on the PVC reaches a certain
threshold, and trigger the PVC resize. Such autoscaling needs the upstream “auto-growable disk”
feature turned on when deploying the Operator. This is done via the PGO_FEATURE_GATES
environment variable set in the deploy/operator.yaml  manifest (or in the appropriate part of
deploy/bundle.yaml ):

When the support for auto-growable disks is turned on, the auto grow will be working automatically if
the maximum value available for the Operator to scale up is set in the
spec.instances[].dataVolumeClaimSpec.resources.limits.storage  Custom Resource
option:

spec:
  ...
  instances:
    ...
    dataVolumeClaimSpec:
      resources:
        requests:
          storage: <NEW STORAGE SIZE>

$ kubectl apply -f cr.yaml

...
subjects:
- kind: ServiceAccount
  name: percona-postgresql-operator
  namespace: pg-operator
...
spec:
  containers:
  - env:
    - name: PGO_FEATURE_GATES
      value: "AutoGrowVolumes=true"
...



spec:
  ...
  instances:
    ...
    dataVolumeClaimSpec:
      resources:
        requests:
          storage: 1Gi
        limits:
          storage: 5Gi



High availability
High availability (HA) ensures that your PostgreSQL database remains accessible even in the event
of node or pod failures. With the Percona Operator for PostgreSQL, high availability is achieved by
running multiple PostgreSQL nodes in a cluster, using the Patroni framework for automated failover
and PostgreSQL streaming replication for data consistency.

A PostgreSQL cluster consists of the following members:

A Primary node handles all write operations. The Primary continuously streams changes to its
Standby nodes.

Read-only (Standby in PostgreSQL terminology) replicas that continuously receive and replay
changes from the Primary node. If the Primary fails, one of the Standbys can be automatically
promoted to become the new Primary.

Data replication

Percona Operator leverages PostgreSQL streaming replication to keep Standby nodes up-to-date.

By default, asynchronous replication is used: the Primary sends changes to Standbys, but does not
wait for conRrmation before committing transactions. This offers better performance but presents a
risk of minimal data loss (transactions not yet copied to a Standby could be lost in a failure).

Synchronous replication is also supported. In this replication type the Primary waits for at least one
Standby to acknowledge receipt of data before marking a transaction as committed. This minimizes
the risk of data loss, but can be slightly slower since each transaction must wait for a conRrmation.

Minimum and recommended number of nodes for high availability:

The absolute minimum that can technically work for high availability is 2 nodes. But this does not
provide full high availability or protection against split-brain scenarios since the loss of either node
can impact availability and data safety.

The recommended number of nodes for high availability setups is 3 or more PostgreSQL nodes.

Adding nodes to a cluster
There are two ways how to control the number replicas in your HA cluster:

1. Through changing spec.instances.replicas  value



2. By adding new entry into spec.instances

Using spec.instances.replicas

For example, you have the following Custom Resource manifest:

This will provision a cluster with two nodes - one Primary and one Replica. Add the node by changing
the manifest…

…and applying the Custom Resource:

The Operator will provision a new replica node. It will be ready and available once data is
synchronized from Primary.

Using spec.instances

Each instance’s entry has its own set of parameters, like resources, storage conRguration, sidecars,
etc. When you add a new entry into instances, this creates replica PostgreSQL nodes, but with a new
set of parameters. This can be useful in various cases:

Test or migrate to new hardware

Blue-green deployment of a new conRguration

Try out new versions of your sidecar containers

For example, you have the following Custom Resource manifest:

spec:
...
  instances:
    - name: instance1
      replicas: 2

spec:
...
  instances:
    - name: instance1
      replicas: 3

kubectl apply -f deploy/cr.yaml



Now you have a goal to migrate to new disks, which are coming with the new-ssd  storage class.
You can create a new instance entry. This will instruct the Operator to create additional nodes with
the new conRguration keeping your existing nodes intact.

Using Synchronous replication

spec:
...
  instances:
    - name: instance1
      replicas: 2
      dataVolumeClaimSpec:
        storageClassName: old-ssd
        accessModes:
        - ReadWriteOnce
        resources:
          requests:
            storage: 100Gi

spec:
...
  instances:
    - name: instance1
      replicas: 2
      dataVolumeClaimSpec:
        storageClassName: old-ssd
        accessModes:
        - ReadWriteOnce
        resources:
          requests:
            storage: 100Gi
    - name: instance2
      replicas: 2
      dataVolumeClaimSpec:
        storageClassName: new-ssd
        accessModes:
        - ReadWriteOnce
        resources:
          requests:
            storage: 100Gi



Synchronous replication offers the ability to conRrm that all changes made by a transaction have
been transferred to one or more synchronous standby servers. When requesting synchronous
replication, each commit of a write transaction will wait until conRrmation is received that the
commit has been written to the write-ahead log on disk of both the primary and standby server. The
drawbacks of synchronous replication are increased latency and reduced throughput on writes.

You can turn on synchronous replication by customizing the patroni.dynamicConfiguration
Custom Resource option.

Enable synchronous replication by setting synchronous_mode  option to on .

Use synchronous_node_count  option to set the number of replicas (PostgreSQL standby
servers) which should operate in syncrhonous mode (the default value is 1 ).

The result in your deploy/cr.yaml  manifest may look as follows:

You will have the desired amount of replicas switched to synchronous replication after applying
changes as usual, with kubectl apply -f deploy/cr.yaml  command.

Find more options useful to tune how your database cluster should operate in synchronous mode in
the oTcial Patroni documentation .

...
  patroni:
    dynamicConfiguration:
      synchronous_mode: "on"
      synchronous_node_count: 2
      ...

https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode


Using huge pages with Percona Operator for
PostgreSQL

Overview
Huge Pages (also called large or super pages) are bigger memory blocks that help reduce CPU
overhead. Normally, memory is managed in 4kB chunks, also called “pages”, but when your
PostgreSQL workload grows, the CPU has to juggle a lot of these small pages. By switching to larger
pages like 2MiB or 1GiB, you reduce the number of pages the CPU needs to track, which can improve
eTciency and performance.

For PostgreSQL clusters managed by Percona Operator for PostgreSQL, enabling huge pages is a
recommended optimization, especially for memory-intensive workloads.

Why to use huge pages in PostgreSQL
PostgreSQL uses shared memory extensively for:

Shared buffer pool

WAL buffers

Dynamic shared memory segments

When huge pages are enabled:

PostgreSQL can access memory more eTciently.

The system spends less time managing memory.

Performance improves, especially under heavy load.

Configure huge pages for Percona Operator for
PostgreSQL

Enable huge pages in your Kubernetes environment

Before conRguring your cluster, make sure huge pages are enabled and available on the Kubernetes
nodes. This setup is done outside the Operator and depends on your Kubernetes environment,
whether you use a cloud-based Kubernetes like GKE, EKS, etc or use a bare-metal one.



Consult the Kubernetes environment’s oTcial documentation for how to enable huge pages there.

For the further setup, you need to keep in mind the following:

What page sizes are available (e.g., 2MiB vs 1GiB)

How many pages are preallocated

Will other workloads compete for these pages

Do all nodes that will run PostgreSQL pods have huge pages available

When adding more nodes to your cluster, will they have huge pages available

Request huge pages in your cluster Custom Resource

Once your Kubernetes nodes are ready, you can conRgure your PostgreSQL cluster to use huge
pages.

1. Set the huge pages resource limits in your deploy/cr.yaml  Custom Resource.

This example conRguration tells Kubernetes to allocate 16Mi worth of 2MiB huge pages for this
instance. If you’re using 1GiB pages, change the key to hugepages-1Gi .

Kubernetes requires that requests  and limits  for huge pages match. If you only specify limits ,
Kubernetes will assume the same value for requests .

2. Apply the conRguration

Verify huge pages are reserved

spec:
  instances:
    - name: instance1
      resources:
        limits:
          hugepages-2Mi: 16Mi
          memory: 4Gi

Important

kubectl apply -f deploy/cr.yaml -n <namespace>



After deploying your cluster with huge pages conRgured, you can verify that they’re being used by
checking inside the database container:

You should see values for HugePages_Total , HugePages_Free , and HugePages_Rsvd , conRrming
that huge pages are reserved and in use.

A note on default behavior
To avoid unexpected startup failures, Percona Operator disables huge pages by default ( huge_pages 
= off ). This prevents PostgreSQL from trying to use huge pages when none were requested. Once
you explicitly conRgure huge pages in your spec, the Operator sets huge_pages = try , allowing
PostgreSQL to use them if available.

If huge pages are enabled on your nodes but not requested by your pods, PostgreSQL might fall back
to minimal memory settings. To avoid this, either:

Enable huge pages properly in your pod spec.

Schedule pods on nodes without huge pages.

Or manually set shared_buffers  to a reasonable value:

cat /proc/meminfo | grep HugePages

spec:
  config:
    parameters:
      shared_buffers: 128MB



Using sidecar containers
Sidecar containers are extra containers that run alongside the main container in a Pod. They are
often used for logging, proxying, or monitoring.

The Operator uses a set of “predeRned” sidecar containers to manage the cluster operation:

replica-cert-copy  - is responsible for copying TLS certiRcates needed for replication between
PostgreSQL instances

pgbouncer-config  - handles conRguration management for pgBouncer

pgbackrest  - runs the main backup/restore agent

pgbackrest-config  - handles conRguration management for pgBackRest

The Operator allows you to deploy your own sidecar containers to the Pod. You can use this feature
to run debugging tools, some speciRc monitoring solutions, etc.

Custom sidecar containers can easily access other components of your cluster . Therefore use them with
caution, only when you are sure what you are doing.

Adding a custom sidecar container
You can add sidecar containers to these Pods:

a PostgreSQL instance Pod

a pgBouncer Pod

To add a sidecar container, use the instances.sidecars  or proxy.pgBouncer.sidecars
subsection in the deploy/cr.yaml  conRguration Rle. Specify this minimum required information in
this subsection:

the container name

the container image

a command to run

Note

https://kubernetes.io/docs/concepts/workloads/pods/#resource-sharing-and-communication


Note that you cannot reuse the name of the predeRned containers. For example, PostgreSQL
instance Pods cannot have custom sidecar containers named as database , pgbackrest ,
pgbackrest-config , and replica-cert-copy .

Use the kubectl describe pod  command to check which names are already in use.

Here is the sample conRguration of a sidecar container for a PostgreSQL instance Pod:

Find additional options suitable for the sidecars  subsection in the Custom Resource options
reference and the Kubernetes Workload API reference 

Apply your modiRcations as usual:

Running kubectl describe  command for the appropriate Pod can bring you the information about
the newly created container:

spec:
  instances:
  - name: instance1
    ....
    sidecars:
    - image: busybox:latest
      command: ["sleep", "30d"]
      args: ["-c", "while true; do echo echo $(date -u) 'test' >> /dev/null; 
sleep 5; done"]
      name: my-sidecar-1
    ....

$ kubectl apply -f deploy/cr.yaml

$ kubectl describe pod cluster1-instance1

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#container-v1-core


Getting shell access to a sidecar container
You can login to your sidecar container as follows:

Expected output

Name:            cluster1-instance1-n8v4-0
....
Containers:
....
testcontainer:
Container ID:  
containerd://c2a9dc1057ba30ac25d73e1856d99c04e49fd0942a03501405904510bc15cf5b
Image:         nginx:latest
Image ID:      
docker.io/library/nginx@sha256:dc53c8f25a10f9109190ed5b59bda2d707a3bde0e45857ce9e1efaa32
ff9cbc1
Port:          <none>
Host Port:     <none>
Command:
  sleep
  30d
State:          Running
  Started:      Thu, 26 Jun 2025 18:13:05 +0200
Ready:          True
Restart Count:  0
Environment:    <none>
Mounts:
  /tmp from tmp (rw)
  /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-5l57g (ro)
....

$ kubectl exec -it cluster1-instance1n8v4-0 -c testcontainer -- sh
/ #



Pause/resume and standby mode for a
PostgreSQL cluster

Pause and resume
Sometimes you may need to temporarily shut down (pause) your cluster and restart it later, such as
during maintenance.

The deploy/cr.yaml  Rle contains a special spec.pause  key for this. Setting it to true  gracefully
stops the cluster:

To start the cluster after it was paused, revert the spec.pause  key to false .

Troubleshooting tip

If you’re pausing the cluster when there is a running backup, the Operator won’t pause it for you. It
will print a warning about running backups. In this case delete a running backup job and retry.

Put in standby mode
You can also put the cluster into a standby  (read-only) mode instead of completely shutting it
down. This is done by a special spec.standby  key. Set it to true  for read-only state. To resume the
normal cluster operation, set it to false .

spec:
  .......
  pause: true

```yaml
spec:

 standby: false
```

https://www.postgresql.org/docs/current/warm-standby.html


Monitor with Percona Monitoring and
Management (PMM)
In this section you will learn how to monitor the health of Percona Distribution for PostgreSQL with
Percona Monitoring and Management (PMM) .

The Operator supports both PMM version 2 and PMM version 3.

It determines which PMM server version you are using based on the authentication method you
provide. For PMM 2, the Operator uses API keys for authentication. For PMM 3, it uses service
account tokens.

We recommend to use the latest PMM 3.

PMM is a client/server application. It includes the PMM Server  and the number of PMM Clients 
running on each node with the database you wish to monitor.

A PMM Client collects needed metrics and sends gathered data to the PMM Server. As a user, you
connect to the PMM Server to see database metrics on a number of dashboards. PMM Server and
PMM Client are installed separately.

Considerations
1. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you

are using PMM server version 3, use a PMM client image compatible with PMM 3. Check
Percona certiRed images for the right one.

2. If you speciRed both authentication methods for PMM server conRguration and they have non-
empty values, priority goes to PMM 3.

3. For migration from PMM2 to PMM3, see PMM upgrade documentation . Also check the
Automatic migration of API keys  page.

Install PMM Server
You must have PMM server up and running. You can run PMM Server as a Docker image, a virtual
appliance, or in Kubernetes. Please refer to the oTcial PMM documentation  for the installation
instructions.

https://docs.percona.com/percona-monitoring-and-management/3/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/3/reference/index.html#pmm-client
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html#automatic-migration-of-api-keys
https://docs.percona.com/percona-monitoring-and-management/3/install-pmm/install-pmm-server/index.html


Install PMM Client
PMM Client is installed as a side-car container in the database Pods in your Kubernetes-based
environment. To install PMM Client, do the following:

Configure authentication



Create a secret

PMM3

PMM3 uses Grafana service accounts to control access to PMM server components and resources.
To authenticate in PMM server, you need a service account token. Generate a service account and
token . Specify the Admin role for the service account.

When you create a service account token, you can select its lifetime: it can be either a permanent token that
never expires or the one with the expiration date. PMM server cannot rotate service account tokens after they
expire. So you must take care of reconRguring PMM Client in this case.

PMM2

Get the PMM API key from PMM Server . The API key must have the role “Admin”. You need this
key to authorize PMM Client within PMM Server.

The API key is not rotated.

Warning

 From PMM UI

Generate the PMM API key 

 From command line

You can query your PMM Server installation for the API Key using curl  and jq  utilities. Replace
<login>:<password>@<server_host>  placeholders with your real PMM Server login, password,
and hostname in the following command:

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d 
'{"name":"operator", "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

Warning

https://docs.percona.com/percona-monitoring-and-management/3/api/authentication.html?h=authe#generate-a-service-account-and-token
https://docs.percona.com/percona-monitoring-and-management/2/details/api.%20%20%20%20html#api-keys-and-authentication
https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication


Now you must pass the credentials to the Operator. To do so, create a Secret object.

1. Create a Secret conRguration Rle. You can use the deploy/secrets.yaml  secrets Rle.

2. Create the Secrets object using the deploy/secrets.yaml  Rle.

Deploy a PMM Client

PMM 3

Specify the service account token as the PMM_SERVER_TOKEN  value in the secrets Rle:

PMM 2

Specify the API key as the PMM_SERVER_KEY  value in the secrets Rle:

apiVersion: v1
kind: Secret
metadata:
  name: cluster1-pmm-secret
type: Opaque
stringData:
  PMM_SERVER_TOKEN: ""

apiVersion: v1
kind: Secret
metadata:
  name: cluster1-pmm-secret
type: Opaque
stringData:
  PMM_SERVER_KEY: ""

$ kubectl apply -f deploy/secrets.yaml -n postgres-operator

Expected output

secret/cluster1-pmm-secret created

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/secrets.yaml


1. Update the pmm  section in the deploy/cr.yaml  Rle.

Set pmm.enabled = true .

Specify your PMM Server hostname / an IP address for the pmm.serverHost  option. The
PMM Server IP address should be resolvable and reachable from within your cluster.

Specify the name of the Secret object that you created earlier

2. Update the cluster

3. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if
there are errors on the previous steps:

Update the secrets file
The deploy/secrets.yaml  Rle contains all values for each key/value pair in a convenient plain text
format. But the resulting Secrets Objects contains passwords stored as base64-encoded strings. If
you want to update the password Reld, you need to encode the new password into the base64 format
and pass it to the Secrets Object.

To encode a password or any other parameter, run the following command:

  pmm:
    enabled: true
    image: percona/pmm-client:3.4.1
#    imagePullPolicy: IfNotPresent
    secret: cluster1-pmm-secret
    serverHost: monitoring-service

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

$ kubectl get pods -n postgres-operator
$ kubectl logs <pod_name> -c pmm-client

https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml


For example, to set the new service account token in the my-cluster-name-secrets  object, do the
following:

Check the metrics
Let’s see how the collected data is visualized in PMM.

 Linux

 macOS

$ echo -n "password" | base64 --wrap=0

$ echo -n "password" | base64

 Linux

 macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN": 
'$(echo -n <new-token> | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"PMM_SERVER_TOKEN": 
'$(echo -n <new-token> | base64)'}}'

Log in to PMM server.1

Click  PostgreSQL from the left-hand navigation menu. You land on the Instances Overview
page.

2

Click  PostgreSQL → Other dashboards to see the list of available dashboards that allow you
to drill down to the metrics you are interested in.

3



Upgrade



Upgrade Percona Operator for PostgreSQL
Starting from the version 2.2.0, you can upgrade Percona Operator for PostgreSQL to newer 2.x
versions.

The upgrade process consists of these steps:

Upgrade the Custom Resource DeRnition (CRD) 

Upgrade the Operator deployment

Upgrade the database (Percona Distribution for PostgreSQL)

Update scenarios
You can either upgrade both the Operator and the database, or you can upgrade only the database.
To decide which scenario to choose, read on.

Full upgrade (CRD, Operator, and the database)

When to use this scenario:

The new Operator version has changes that are required for new features of the database to work

The Operator has new features or Rxes that enhance automation and management.

Compatibility improvements between the Operator and the database require synchronized
updates.

When going on with this scenario, make sure to test it in a staging or testing environment Rrst.
Upgrading the Operator may cause performance degradation.

Upgrade only the database

When to use this scenario:

The new version of the database has new features or Rxes that are not related to the Operator or
other components of your infrastructure

You have updated the Operator earlier and now want to proceed with the database update.

When choosing this scenario, consider the following:

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


Check that the current Operator version supports the new database version.

Some features may require an Operator upgrade later for full functionality.

Upgrade from the Operator version 1.x to version 2.x
Upgrades from the Operator version 1.x to 2.x are completely different from the upgrades within 2.x
versions due to substantial changes in the architecture.

There are several ways to do such version 1.x to version 2.x upgrade. Choose the method based on
your downtime preference and roll back strategy:

Pros Cons

Data Volumes migration - re-use the volumes that were
created by the Operator version 1.x

The simplest
method

- Requires downtime
- Impossible to roll back

Backup and restore - take the backup with the Operator
version 1.x and restore it to the cluster deployed by the
Operator version 2.x

Allows you to
quickly test
version 2.x

Provides signiRcant
downtime in case of
migration

Replication - replicate the data from the Operator version
1.x cluster to the standby cluster deployed by the
Operator version 2.x

- Quick test of
v2 cluster
- Minimal
downtime
during
upgrade

Requires signiRcant
computing resources to run
two clusters in parallel



Upgrading the Operator and CRD

Considerations for Kubernetes Cluster versions and
upgrades

1. Before upgrading the Kubernetes cluster, have a disaster recovery plan in place. Ensure that a
backup is taken prior to the upgrade.

2. Plan your Kubernetes cluster or Operator upgrades with version compatibility in mind.

The Operator is supported and tested on speciRc Kubernetes versions. Always refer to the
Operator’s release notes to verify the supported Kubernetes platforms.

Note that while the Operator might run on unsupported or untested Kubernetes versions, this is
not recommended. Doing so can cause various issues, and in some cases, the Operator may fail
if deprecated API versions have been removed.

3. During a Kubernetes cluster upgrade, you must also upgrade the kubelet . It is advisable to
drain the nodes hosting the database Pods during the upgrade process.

4. During the kubelet  upgrade, nodes transition between Ready  and NotReady  states. Also, in
some scenarios, older nodes may be replaced entirely with new nodes. Ensure that nodes
hosting database or proxy pods are functioning correctly and remain in a stable state after the
upgrade.

5. Regardless of the upgrade approach, pods will be rescheduled or recycled. Plan your Kubernetes
cluster upgrade accordingly to minimize downtime and service disruption.

Considerations for the Operator upgrades

1. The Operator version has three digits separated by a dot ( . ) in the format major.minor.patch .
Here’s how you can understand the version 2.6.0 :

2  - major version

6  - minor version

0  - patch version

You can upgrade the Operator only to the nearest major.minor.patch  version. For example, if
the next version is 2.7.1, you can go directly from 2.6.0 to 2.7.1 without any intermediate steps.



To upgrade to a newer version, which differs from the current minor.major  version by more
than one, you need to make several incremental upgrades sequentially.

For example, to upgrade the CRD and Operator from the version 2.4. 0 to 2.6.0, Rrst upgrade it
from 2.4.0 to 2.5.1, and then from 2. 5.1 to 2.6.0.

2. CRD supports the last 3 minor versions of the Operator. This means it is compatible with the
newest Operator version and the two previous minor versions. If the Operator is older than the
CRD by no more than two versions, you should be able to continue using the old Operator
version. But updating the CRD and Operator is the recommended path.

3. Using newer CRD with older Operator is useful to upgrade multiple single-namespace Operator
deployments in one Kubernetes cluster, where each Operator controls a database cluster in its
own namespace. In this case upgrading Operator deployments will look as follows:

upgrade the CRD (not 3 minor versions far from the oldest Operator installation in the
Kubernetes cluster) Rrst

upgrade the Operators in each namespace incrementally to the nearest minor version (e.g.
Rrst 2.4.0 to 2.5.1, then 2.5.1 to 2.6.0)

Manual upgrade
You can upgrade the Operator and CRD as follows, considering the Operator uses postgres-
operator  namespace, and you are upgrading it to the version 2.8.0.

1. Update the CRD for the Operator and the Role-based access control. You must use the server-
side  mag when you update the CRD. Otherwise you can encounter a number of errors caused
by applying the CRD client-side: the command may fail, the built-in PostgreSQL extensions can
be lost during such upgrade, etc.

Take the latest versions of the CRD and Role-based access control manifest from the oTcial
repository on GitHub with the following commands:

$ kubectl apply --server-side -f 
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/crd.yaml
$ kubectl apply --server-side -f 
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/rbac.yaml -n postgres-operator

https://kubernetes.io/docs/reference/using-api/server-side-apply/


In case of cluster-wide installation, use deploy/cw-rbac.yaml  instead of deploy/rbac.yaml .

2. Next, update the Percona Distribution for PostgreSQL Operator Deployment in Kubernetes by
changing the container image of the Operator Pod to the latest version. Find the image name for
the current Operator release in the list of certiRed images. Use the following command to update
the Operator to the 2.8.0  version:

3. The deployment rollout will be automatically triggered by the applied patch. You can track the
rollout process in real time with the kubectl rollout status  command with the name of
your cluster:

Upgrade via Helm
If you have installed the Operator using Helm, you can upgrade the Operator deployment with the
helm upgrade  command.

The helm upgrade  command updates only the Operator deployment. The update mow for the
database management system (Percona Distribution for PostgreSQL) is the same for all installation
methods, whether it was installed via Helm or kubectl .

Note

$ kubectl -n postgres-operator patch deployment percona-postgresql-
operator \
-p'{"spec":{"template":{"spec":{"containers":
[{"name":"operator","image":"docker.io/percona/percona-postgresql-
operator:2.8.0}]}}}}'

$ kubectl rollout status deployments percona-postgresql-operator -n 
postgres-operator

Expected output

deployment "percona-postgresql-operator" successfully rolled out

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-operator-upgrade-percona-distribution-for-postgresql


1. You must have the compatible version of the Custom Resource DeRnition (CRD) in all
namespaces that the Operator manages. Starting with version 2.7.0, you can check it using the
following command:

2. Update the Custom Resource DeRnition  for the Operator, taking it from the oTcial repository
on GitHub.

Refer to the compatibility between CRD and the Operator and how you can update the CRD if it is
too old. Use the following command and replace the version to the required one until you are
safe to update to the latest CRD version.

If you already have the latest CRD version in one of namespaces, don’t re-run intermediate
upgrades for it.

3. Upgrade the Operator deployment

$ kubectl get crd perconapgclusters.pgv2.percona.com --show-labels

$ kubectl apply --server-side --force-conflicts -f 
https://raw.githubusercontent.com/percona/percona-postgresql-
operator/v2.8.0/deploy/crd.yaml

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


During the upgrade, you may see a warning to manually apply the CRD if it has the outdated
version. In this case, refer to step 2 to upgrade the CRD and then step 3 to upgrade the
deployment.

Upgrade via Operator Lifecycle Manager (OLM)
If you have installed the Operator on the OpenShift platform using OLM, you can upgrade the
Operator within it.

1. List installed Operators for your Namespace to see if there are upgradable items.

With default parameters

To upgrade the Operator installed with default parameters, use the following command:

The my-operator  parameter in the above example is the name of a release object  which
you have chosen for the Operator when installing its Helm chart.

With customized parameters

If you installed the Operator with some customized parameters , list these options in the
upgrade command.

a. Get the list of used options in YAML format :

b. Pass these options to the upgrade command as follows:

$ helm upgrade my-operator percona/pg-operator --version 2.8.0

$ helm get values my-operator -a > my-values.yaml

$ helm upgrade my-operator percona/pg-operator --version 2.8.0 -f my-
values.yaml

https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://github.com/percona/percona-helm-charts/tree/main/charts/pg-operator#installing-the-chart


Installed Operators

Installed Operators are represented by ClusterServiceVersions within this Namespace.

Name Search by name...

Name Status

Percona Operator for
PostgreSQL

2.4.0 provided by Percona

Succeeded

/

Upgrade available

2. Click the “Upgrade available” link to see upgrade details, then click “Preview InstallPlan” button,
and Rnally “Approve” to upgrade the Operator.



Upgrade Percona Distribution for PostgreSQL

Considerations

1. Starting from the Operator 2.4.0 you can do a minor upgrade (for example, from 15.5 to 15.7, or
from 16.1 to 16.3) and a major upgrade (for example, upgrade from PostgreSQL 15.5 to
PostgreSQL 16.3) of Percona Distribution for PostgreSQL. Before the Operator version 2.4.0, you
could only do a minor upgrade of Percona Distribution for PostgreSQL.

2. Starting with the Operator 2.6.0, PostgreSQL images are based on Red Hat Universal Base Image
(UBI) 9 instead of UBI 8. UBI 9 has a different version of collation library glibc  and this
introduces a collation mismatch in PostgreSQL. Collation deRnes how text is sorted and
compared based on language-speciRc rules such as case sensitivity, character order and the
like. PostgreSQL stores the collation version used at database creation. When the collation
version changes, this may result in corruption of database objects that use it like text-based
indexes. Therefore, you need to identify and reindex objects affected by the collation mismatch.

3. Upgrading a PostgreSQL cluster may result in downtime, as well as failover caused by updating
the primary instance.

Before you start

1. We recommend to update PMM Server  before upgrading PMM Client.

2. If you are using PMM server version 2, use a PMM client image compatible with PMM 2. If you
are using PMM server version 3, use a PMM client image compatible with PMM 3. See PMM
upgrade documentation  for how to migrate from version 2 to version 3.

Minor version upgrade
To make a minor upgrade of Percona Distribution for PostgreSQL (for example, from 17.5.2 to
17.6.1) , do the following:

Check the version of the Operator you have in your Kubernetes environment. If you need to
update it, refer to the Operator upgrade guide

1

https://docs.percona.com/percona-monitoring-and-management/2/how-to/upgrade.html
https://docs.percona.com/percona-monitoring-and-management/3/pmm-upgrade/migrating_from_pmm_2.html
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-database-upgrading-the-operator-and-crd


Check the current version of the Custom Resource and what versions of the database and
cluster components are compatible with it. Replace the Operator version with your value in the
following command:

You can also Rnd this information in the Versions compatibility matrix.

2

$ curl https://check.percona.com/versions/v1/pg-operator/2.6.0 |jq -r 
'.versions[].matrix'

Update the database, the backup and PMM Client image names with a newer version tag. Find
the image names in the list of certiRed images.

We recommend to update the PMM Server before the upgrade of PMM Client. If you haven’t
done it yet, exclude PMM Client from the list of images to update.

Since this is a working cluster, the way to update the Custom Resource is to apply a patch 
with the kubectl patch pg  command.

This example command updates the cluster with the name cluster1  in the namespace
postgres-operator  to the 2.8.0  version:

3

https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/


With PMM Client

The following image names in the above example were taken from the list of certiRed images:

docker.io/percona/percona-distribution-postgresql:17.6-1 ,

docker.io/percona/percona-pgbouncer:1.24.1-1 ,

docker.io/percona/percona-pgbackrest:2.56.0-1 ,

docker.io/percona/pmm-client:3.4.1 .

Without PMM Client

The following image names in the above example were taken from the list of certiRed images:

docker.io/percona/percona-distribution-postgresql:17.6-1 ,

docker.io/percona/percona-pgbouncer:1.24.1-1 ,

docker.io/percona/percona-pgbackrest:2.56.0-1 ,

$ kubectl -n postgres-operator patch pg cluster1 --type=merge --patch '{
   "spec": {
      "crVersion":"2.8.0",
      "image": "docker.io/percona/percona-distribution-postgresql:17.6-1,
      "proxy": { "pgBouncer": { "image": "docker.io/percona/percona-
pgbouncer:1.24.1-1" } },
      "backups": { "pgbackrest":  { "image": "docker.io/percona/percona-
pgbackrest:2.56.0-1" } },
      "pmm": { "image": "docker.io/percona/pmm-client:3.4.1" }
   }}'

→

→

→

→

$ kubectl patch pg cluster1 -n postgres-operator --type=merge --patch '{
   "spec": {
      "crVersion":"2.8.0",
      "image": "docker.io/percona/percona-distribution-postgresql:17.6-1",
      "proxy": { "pgBouncer": { "image": "docker.io/percona/percona-
pgbouncer:1.24.1-1" } },
      "backups": { "pgbackrest":  { "image": "docker.io/percona/percona-
pgbackrest:2.56.0-1" } }
   }}'

→

→

→

After you applied the patch, the deployment rollout will be triggered automatically. The update
process is successfully Rnished when all Pods have been restarted.

4



Expected output

NAME                                           READY   STATUS      RESTARTS   AGE
cluster1-backup-4vwt-p5d9j                     0/1     Completed   0          97m
cluster1-instance1-b5mr-0                      4/4     Running     0          99m
cluster1-instance1-b8p7-0                      4/4     Running     0          99m
cluster1-instance1-w7q2-0                      4/4     Running     0          99m
cluster1-pgbouncer-79bbf55c45-62xlk            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9g4cb            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9nrmd            2/2     Running     0          99m
cluster1-repo-host-0                           2/2     Running     0          99m
percona-postgresql-operator-79cd8586f5-2qzcs   1/1     Running     0          120m

Scan for indexes that rely on collations other than C  or POSIX  and whose collations were
provided by the operating system ( c ) or dynamic libraries ( d ). Connect to PostgreSQL and run
the following query:

5

SELECT DISTINCT
    indrelid::regclass::text,
    indexrelid::regclass::text,
    collname,
    pg_get_indexdef(indexrelid)
FROM (
    SELECT
        indexrelid,
        indrelid,
        indcollation[i] coll
    FROM
        pg_index,
        generate_subscripts(indcollation, 1) g(i)
) s
JOIN pg_collation c ON coll = c.oid
WHERE
    collprovider IN ('d', 'c')
    AND collname NOT IN ('C', 'POSIX');

If you see the list of affected images, Rnd the database names where indexes use a different
collation version:

6

SELECT * FROM pg_database;



Major version upgrade
Major version upgrade allows you to jump from one database major version to another (for example,
upgrade from PostgreSQL 15.x to PostgreSQL 16.x).

Major version upgrades feature is currently a tech preview, and it is not recommended for
production environments.

The upgrade is triggered by applying the YAML Rle which refers to the special Operator upgrade
image and contains the information about the existing and desired major versions. An example of
this Rle is present in deploy/upgrade.yaml :

```{.text .no-copy} oid | datname | datdba | encoding | datlocprovider | datistemplate | datallowconn |
datconnlimit | datfrozenxid | datminmxid | dattablespace | datcollate | datctype | daticulocale | daticurules |
datcollversion | datacl

-------+-----------+--------+----------+----------------+---------------+--------------+--------------+--------------+------------+---------------+-------------
+-------------+--------------+-------------+----------------+--

5 | postgres | 10 | 6 | c | f | t | -1 | 722 | 1 | 1663 | en_US.utf-8 | en_US.utf-8 | | | 2.28 | 1 | template1 | 10 | 6 | c | t
| t | -1 | 722 | 1 | 1663 | en_US.utf-8 | en_US.utf-8 | | | 2.28 | {=c/postgres,postgres=CTc/postgres} 4 |
template0 | 10 | 6 | c | t | f | -1 | 722 | 1 | 1663 | en_US.utf-8 | en_US.utf-8 | | | |
{=c/postgres,postgres=CTc/postgres} 16466 | cluster1 | 10 | 6 | c | f | t | -1 | 722 | 1 | 1663 | en_US.utf-8 |
en_US.utf-8 | | | 2.28 | {=Tc/postgres,postgres=CTc/postgres,cluster1=CTc/postgres} (4 rows)

Sample output

Refresh collection metadata and rebuild affected indexes. This command requires the privileges
of a superuser or a database owner:

7

ALTER DATABASE cluster1 REFRESH COLLATION VERSION;

As you can see, the manifest includes image names for the database cluster components
(PostgreSQL, pgBouncer, and pgBackRest). You can Rnd them in the list of certiRed images for the
current Operator release. For older versions, please refer to the old releases documentation archive

).

After you apply the YAML manifest as usual (by running kubectl apply -f
deploy/upgrade.yaml command), the actual upgrade takes place:

1. The Operator pauses the cluster, so the cluster will be unavailable for the duration of the
upgrade,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade :
<PerconaPGUpgrade.Name> annotation,

3. Jobs are created to migrate the data,

4. The cluster starts up after the upgrade Rnishes.

5. Scan for indexes that rely on collations other than C or POSIX and whose collations were
provided by the operating system (c) or dynamic libraries (d). Connect to PostgreSQL and run
the following query:

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
 name: cluster1-15-to-16
spec:
 postgresClusterName: cluster1
 image: docker.io/percona/percona-postgresql-operator:2.8.0-upgrade
 fromPostgresVersion: 15
 toPostgresVersion: 16
 toPostgresImage: docker.io/percona/percona-distribution-postgresql:16.10-1
 toPgBouncerImage: docker.io/percona/percona-pgbouncer:1.24.1-1
 toPgBackRestImage: docker.io/percona/percona-pgbackrest:2.56.0-1

https://docs.percona.com/legacy-documentation/

u. If you see the list of affected images, Rnd the database names where indexes use a different
collation version:

```{.text .no-copy} oid | datname | datdba | encoding | datlocprovider | datistemplate | datallowconn |
datconnlimit | datfrozenxid | datminmxid | dattablespace | datcollate | datctype | daticulocale | daticurules |
datcollversion | datacl

-------+-----------+--------+----------+----------------+---------------+--------------+--------------+--------------+------------+---------------+-------------
+-------------+--------------+-------------+----------------+------------------------------------------------------------

5 | postgres | 10 | 6 | c | f | t | -1 | 722 | 1 | 1663 | en_US.utf-8 | en_US.utf-8 | | | 2.28 | 1 | template1 | 10 | 6 | c | t
| t | -1 | 722 | 1 | 1663 | en_US.utf-8 | en_US.utf-8 | | | 2.28 | {=c/postgres,postgres=CTc/postgres} 4 |
template0 | 10 | 6 | c | t | f | -1 | 722 | 1 | 1663 | en_US.utf-8 | en_US.utf-8 | | | |
{=c/postgres,postgres=CTc/postgres} 16466 | cluster1 | 10 | 6 | c | f | t | -1 | 722 | 1 | 1663 | en_US.utf-8 |
en_US.utf-8 | | | 2.28 | {=Tc/postgres,postgres=CTc/postgres,cluster1=CTc/postgres} (4 rows)

7. Refresh collection metadata and rebuild affected indexes. This command requires the privileges
of a superuser or a database owner:

SELECT DISTINCT
    indrelid::regclass::text,
    indexrelid::regclass::text,
    collname,
    pg_get_indexdef(indexrelid)
FROM (
    SELECT
        indexrelid,
        indrelid,
        indcollation[i] coll
    FROM
        pg_index,
        generate_subscripts(indcollation, 1) g(i)
) s
JOIN pg_collation c ON coll = c.oid
WHERE
    collprovider IN ('d', 'c')
    AND collname NOT IN ('C', 'POSIX');

SELECT * FROM pg_database;

Sample output

ALTER DATABASE cluster1 REFRESH COLLATION VERSION;



If the upgrade fails for some reason, the cluster will stay in paused mode. Resume the cluster manually to check
what went wrong with upgrade (it will start with the old version). You can check the PerconaPGUpgrade resource
with kubectl get perconapgupgrade -o yaml  command, and check the logs of the upgraded Pods to debug
the issue.

During the upgrade data are duplicated in the same PVC for each major upgrade, and old version
data are not deleted automatically. Make sure your PVC has enough free space to store data. You
can remove data at your discretion by executing into containers and running the following
commands (example for PostgreSQL 15):

You can also delete the PerconaPGUpgrade  resource (this will clean up the jobs and Pods created
during the upgrade):

Note

$ rm -rf /pgdata/pg15
$ rm -rf /pgdata/pg15_wal

$ kubectl delete perconapgupgrade cluster1-15-to-16



Upgrade PostgreSQL extensions

Upgrade pg_stat_monitor  (for Operator earlier than
2.6.0)
pg_stat_monitor  is the built-in extension, which is used to provide query analytics for Percona
Monitoring and Management (PMM). If you enabled it in the Custom Resource ( deploy/cr.yaml
manifest), you need to manually update it after the database upgrade (this manual step is not
required for the Operator versions 2.6.0 and newer):

1. Find the primary instance of your PostgreSQL cluster. You can do this using Kubernetes Labels
as follows (replace the <namespace>  placeholder with your value):

PostgreSQL primary is labeled as master , while other PostgreSQL instances are labeled as
replica .

2. Log in to a primary instance ( cluster1-instance1-ttm9-0  in the above example) as an
administrative user:

3. Execute the following SQL statement:

$ kubectl get pods -n <namespace> -l postgres-
operator.crunchydata.com/cluster=cluster1 \ 
    -L postgres-operator.crunchydata.com/instance \
    -L postgres-operator.crunchydata.com/role | grep instance1

Sample output

cluster1-instance1-bmdp-0             4/4     Running   0          2m23s   
cluster1-instance1-bmdp   replica
cluster1-instance1-fm7w-0             4/4     Running   0          2m22s   
cluster1-instance1-fm7w   replica
cluster1-instance1-ttm9-0             4/4     Running   0          2m22s   
cluster1-instance1-ttm9   master

kubectl exec  -n <namespace> -ti cluster1-instance1-ttm9-0 -c database -- 
psql postgres

postgres=# alter extension pg_stat_monitor update;

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#custom-extensions-enabling-or-disabling-built-in-extensions


Upgrade custom PostgreSQL extensions
If you have installed custom PostgreSQL extensions, you need to build and package each custom
extension for the new PostgreSQL major version. During the upgrade, the Operator will install
extensions into the upgrade container.

Refer to the Update custom extensions section for step-by-step instructions.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#custom-extensions-adding-custom-extensions


Upgrade from version 1 to version 2



Upgrade using data volumes

Prerequisites:
The following conditions should be met for the Volumes-based migration:

You have a version 1.x cluster with spec.keepData: true  in the Custom Resource

You have both Operators deployed and allow them to control resources in the same namespace

Old and new clusters must be of the same PostgreSQL major version

This migration method has two limitations. First of all, this migration method introduces a downtime.
Also, you can only reverse such migration by restoring the old cluster from the backup. See other
migration methods if you need lower downtime and a roll back plan.

Prepare version 1.x cluster for the migration

Remove all Replicas from the cluster, keeping only primary running. It is required to assure that
Volume of the primary PVC  does not change. The deploy/cr.yaml  conRguration Rle should
have it as follows:

1

...
pgReplicas:
    hotStandby:
      size: 0

Apply the Custom Resource in a usual way:2

$ kubectl apply -f deploy/cr.yaml

When all Replicas are gone, proceed with removing the cluster. Double check that
spec.keepData  is in place, otherwise the Operator will delete the volumes!

3

$ kubectl delete perconapgcluster cluster1

Find PVC for the Primary and pgBackRest :4

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

https://kubernetes.io/docs/concepts/storage/persistent-volumes/


A third PVC used to store write-ahead logs (WAL) may also be present if external WAL volumes
were enabled for the cluster.

Expected output

NAME                 STATUS   VOLUME                                     CAPACITY   
ACCESS MODES   STORAGECLASS   AGE
cluster1             Bound    pvc-940cdc23-cd4c-4f62-ac3a-dc69850042b0   1Gi        
RWO            standard-rwo   57m
cluster1-pgbr-repo   Bound    pvc-afb00490-5a45-45cb-a1cb-10af8e48bb13   1Gi        
RWO            standard-rwo   57m

Permissions for pgBackRest  repo folders are managed differently in version 1 and version 2.
We need to change the ownership of the backrest  folder on the Persistent Volume to avoid
errors during migration. Running a chown  command within a container Rxes this problem. You
can use the following manifest to execute it:

Apply it as follows:

5

chown-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: chown-pod
spec:
  volumes:
    - name: backrestrepo
      persistentVolumeClaim:
        claimName: cluster1-pgbr-repo
  containers:
    - name: task-pv-container
      image: ubuntu
      command:
      - chown
      - -R
      - 26:26
      - /backrestrepo/cluster1-backrest-shared-repo
      volumeMounts:
        - mountPath: "/backrestrepo"
          name: backrestrepo

$ kubectl apply -f chown-pod.yaml -n pgo



Execute the migration to version 2.x
The old cluster is shut down, and Volumes are ready to be used to provision the new cluster
managed by the Operator version 2.x.

Install the Operator version 2 (if not done yet). Pick your favorite method from our
documentation.

1

Run the following command to show the names of PVC belonging to the old cluster:2

$ kubectl get pvc --selector=pg-cluster=cluster1 -n pgo

Expected output

NAME                 STATUS   VOLUME                                     CAPACITY   
ACCESS MODES   STORAGECLASS   AGE
cluster1             Bound    pvc-db9bf618-04d5-4807-948d-e32e81098575   1Gi        
RWO            standard-rwo   87m
cluster1-pgbr-repo   Bound    pvc-37d93aa9-bf02-4295-bbbc-c1f834ed6045   1Gi        
RWO            standard-rwo   87m

Now edit the Custom Resource manifest ( deploy/cr.yaml  conRguration Rle) of the version 2.x
cluster: add Relds to the dataSource.volumes  subsection, pointing to the PVCs of the version
1.x cluster:

3

...
dataSource:
  volumes:
      pgDataVolume:
        pvcName: cluster1
        directory: cluster1
      pgBackRestVolume:
        pvcName: cluster1-pgbr-repo
        directory: cluster1-backrest-shared-repo

Do not forget to set the proper PostgreSQL major version. It must be the same version that was
used in version 1 cluster. You can set the version in the corresponding image  sections and
postgresVersion . The following example sets version 14:

4



The new cluster will be provisioned shortly using the volume of the version 1.x cluster. You should
remove the spec.datasource.volumes  section from your manifest.

spec:
  image: percona/percona-postgresql-operator:2.8.0-ppg14-postgres
  postgresVersion: 14
  proxy:
    pgBouncer:
      image: percona/percona-postgresql-operator:2.8.0-ppg14-pgbouncer
  backups:
    pgbackrest:
      image: percona/percona-postgresql-operator:2.8.0-ppg14-pgbackrest

Apply the manifest:5

$ kubectl apply -f deploy/cr.yaml



Upgrade using backup and restore
This method allows you to migrate from the version 1.x to version 2.x cluster by restoring (actually
creating) a new version 2.x PostgreSQL cluster using a backup from the version 1.x cluster.

To make sure that all transactions are captured in the backup, you need to stop the old cluster. This brings
downtime to the application.

Prepare the backup

Restore the backup as a version 2.x cluster
Restore from S3 / Google Cloud Storage for backups repository

Note

Create the backup on the version 1.x cluster, following the oTcial guide for manual (on-demand)
backups. This involves preparing the manifest in YAML and applying it in the usual way:

1

$ kubectl apply -f deploy/backup/backup.yaml

Pause or delete the version 1.x cluster to ensure that you have the latest data.

Before deleting the cluster, make sure that the spec.keepBackups Custom Resource option is set to true .
When it’s set, local backups will be kept after the cluster deletion, so you can proceed with deleting your
cluster as follows:

2

Warning

$ kubectl delete perconapgcluster cluster1

https://docs.percona.com/percona-operator-for-postgresql/1.0/backups.html#making-on-demand-backup
https://docs.percona.com/percona-operator-for-postgresql/1.0/pause.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/operator.html#spec-keepbackups


To restore from the S3 or Google Cloud Storage for backups (GCS) repository, you should Rrst
conRgure the spec.backups.pgbackrest.repos  subsection in your version 2.x cluster
Custom Resource to point to the backup storage system. Just follow the repository
documentation instruction for S3 or GCS. For example, for GCS you can deRne the repository
similar to the following:

1

spec:
  backups:
    pgbackrest:
      repos:
      - name: repo1
        gcs:
          bucket: MY-BUCKET
          region: us-central1

Create and conRgure any required Secrets or desired custom pgBackrest conRguration as
described in the backup documentation for te Operator version 2.x.

2

Set the repository path in the backups.pgbackrest.global  subsection. By default it is
/backrestrepo/&lt;clusterName>-backrest-shared-repo :

3

  spec:
  backups:
    pgbackrest:
      global:
        repo1: /backrestrepo/cluster1-backrest-shared-repo

Set the spec.dataSource  option to create the version 2.x cluster from the speciRc repository:

You can also provide other pgBackRest restore options, e.g. if you wish to restore to a speciRc
point-in-time (PITR).

4

spec:
  dataSource:
    postgresCluster:
      repoName: repo1

Create the version 2.x cluster:5

$ kubectl apply -f cr.yaml

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#backups-storage-configuring-the-s3-compatible-backup-storage
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#backups-storage-use-google-cloud-storage-for-backups


Migrate using Standby
This method allows you to migrate from version 1.x to version 2.x by creating a new version 2.x
PostgreSQL cluster in a “standby” mode, mirroring the version 1.x cluster to it continuously. This
method can provide minimal downtime, but requires additional computing resources to run two
clusters in parallel.

This method only works if the version 1.x cluster uses Amazon S3 or S3-compatible storage , or
Google Cloud storage (GCS)  for backups. For more information on standby clusters, please refer
to this article .

Migrate to version 2
There is no need to perform any additional conRguration on version 1.x cluster, you will only need to
conRgure the version 2.x one.

ConRgure spec.backups.pgbackrest.repos  Custom Resource option to point to the backup
storage system. For example, for GCS, the repository would be deRned similar to the following:

1

spec:
  backups:
    pgbackrest:
      repos:
      - name: repo1
        gcs:
          bucket: MY-BUCKET
          region: us-central1

Create and conRgure any required secrets or desired custom pgBackrest conRguration as
described in the backup documentation for the version 2.x.

2

Set the repository path in backups.pgbackrest.global  section of the Custom Resource
conRguration Rle. By default it will be /backrestrepo/&lt;clusterName>-backrest-shared-
repo :

3

      spec:
      backups:
        pgbackrest:
          global:
            repo1: /backrestrepo/cluster1-backrest-shared-repo

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://www.postgresql.org/docs/current/warm-standby.html


Promote version 2.x cluster
Once the standby cluster is up and running, you can promote it.

You can use version 2.x cluster now. Also the 2.x version is now managing the object storage with
backups, so you should not start your old cluster.

Create the replication user
Right after disabling standby, run the following SQL commands as a PostgreSQL superuser. For
example, you can login as the postgres  user, or exec into the Pod and use psql :

add the managed replication user

Enable the standby mode in spec.standby  and point to the repository:4

spec:
  standby:
    enabled: true
    repoName: repo1

Create the version 2.x cluster:5

$ kubectl apply -f deploy/cr.yaml

Delete version 1.x cluster, but ensure that spec.keepBackups  is set to true .1

$ kubectl delete perconapgcluster cluster1

Promote version 2.x cluster by disabling the standby mode:2

spec:
  standby:
    enabled: false

CREATE ROLE _crunchyrepl WITH LOGIN REPLICATION;



allow for the replication user to execute the functions required as part of “rewinding”

The above step will be automated in upcoming releases.

GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO 
_crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO 
_crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO 
_crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, 
bigint, boolean) TO _crunchyrepl;



How-to



Install Percona Distribution for PostgreSQL
with customized parameters
You can customize the conRguration of Percona Distribution for PostgreSQL and install it with
customized parameters.

To check available conRguration options, see deploy/cr.yaml  and Custom Resource Options.

 kubectl

To customize the conRguration when installing with kubectl , do the following:

1. Clone the repository with all manifests and source code by executing the following command:

2. Edit the required options and apply your modiRed deploy/cr.yaml  Rle as follows:

 Helm

To install Percona Distribution for PostgreSQL with custom parameters using Helm, use the
following command:

You can pass any of the Operator’s Custom Resource options as a --set key=value[,key=value]
argument.

The following example deploys a PostgreSQL 17.6-1 based cluster in the my-namespace
namespace, with enabled Percona Monitoring and Management (PMM) :

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator

$ kubectl apply -f deploy/cr.yaml -n postgres-operator        

$ helm install --set key=value

$ helm install my-db percona/pg-db --version 2.8.0 --namespace my-namespace \
  --set postgresVersion=17.6-1 \
  --set pmm.enabled=true

https://raw.githubusercontent.com/percona/percona-postgresql-operator/v2.8.0/deploy/cr.yaml
https://docs.percona.com/percona-monitoring-and-management/2/index.html


How to run initialization SQL commands at
cluster creation time
The Operator can execute a custom sequence of PostgreSQL commands when creating the
database cluster. This sequence can include both SQL commands and meta-commands of the
PostgreSQL interactive shell (psql). This feature may be useful to push any customizations to the
cluster: modify user roles, change error handling, set and use variables, etc.

psql interactive terminal will execute  these initialization statements when the cluster is created,
after creating custom users and databases speciRed in the Custom Resource.

To set SQL initialization sequence you need creating a special ConRgMap  with it, and reference
this ConRgMap in the databaseInitSQL  subsection of your Custom Resource options.

The following example uses initialization SQL command to add a new role to a PostgreSQL database
cluster:

1. Create YAML manifest for the ConRgMap as follows:

The namespace  Reld should point to the namespace of your database cluster, and the
init.sql  key contains the sequence of commands, which will be passed to the psql.

Create the ConRgMap by applying your manifest:

2. Update the databaseInitSQL  part of the deploy/cr.yaml  Custom Resource manifest as
follows:

my_init.yaml

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster1-init-sql
  namespace: postgres-operator
data:
  init.sql: CREATE ROLE someonenew WITH createdb superuser login password 
'someonenew'; 

$ kubectl apply -f my_init.yaml

https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-OPTION-FILE
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap


Now, SQL commands will be executed when you create the cluster by apply the manifest:

The psql command is executed the standard input and the Rle mag ( psql -f - ). If the command
returns 0  exit code, SQL will not be run again. When psql returns with an error exit code, the Operator
will continue attempting to execute it as part of its reconcile loop until success. You can Rx errors in
the SQL sequence, for example by interactive kubectl edit configmap cluster1-init-sql -n 
postgres-namespace  command.

You can use following psql meta-command to make sure that any SQL errors would make psql to return the error
code:

...
databaseInitSQL:
  key: init.sql
  name: cluster1-init-sql
...

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

Note

\set ON_ERROR_STOP
\echo Any error will lead to exit code 3



Change the PostgreSQL primary instance
The Operator uses PostgreSQL high-availability implementation based on the Patroni template .
This means that each PostgreSQL cluster includes one member available for read/write transactions
(PostgreSQL primary instance, or leader in terms of Patroni) and a number of replicas which can
serve read requests only (standby members of the cluster).

You may wish to manually change the primary instance in your PostgreSQL cluster to achieve more
control and meet speciRc requirements in various scenarios like planned maintenance, testing
failover procedures, load balancing and performance optimization activities. Primary instance is re-
elected during the automatic failover (Patroni’s “leader race” mechanism), but still there are use
cases to control this process manually.

In Percona Operator, the primary instance election can be controlled by the patroni.switchover
section of the Custom Resource manifest. It allows you to enable switchover targeting a speciRc
PostgreSQL instance as the new primary, or just running a failover if PostgreSQL cluster has entered
a bad state.

This document provides instructions how to change the primary instance manually.

For the following steps, we assume that you have the PostgreSQL cluster up and running. The cluster
name is cluster1 .

1. Check the information about the cluster instances. Cluster instances are deRned in the
spec.instances  Custom Resource section. By default you have one cluster instance named
instance1  with 3 PostgreSQL instances in it. You can check which cluster instances you have.
Do this using Kubernetes Labels as follows (replace the <namespace>  placeholder with your
value):

$ kubectl get pods -n <namespace> -l postgres-
operator.crunchydata.com/cluster=cluster1 \ 
    -L postgres-operator.crunchydata.com/instance \
    -L postgres-operator.crunchydata.com/role | grep instance1

https://patroni.readthedocs.io/en/latest/faq.html#concepts-and-requirements
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-operator-instances-section


PostgreSQL primary is labeled as master , while other PostgreSQL instances are labeled as
replica .

2. Now update the following options in the patroni.switchover  subsection of the Custom
Resource:

You can do it with kubectl patch  command, specifying the name of the instance that you
want to be the new primary. For example, let’s set the cluster1-instance1-bmdp  as a new
PostgreSQL primary:

3. Trigger the switchover by adding the annotation to your Custom Resource. The recommended
way is to set the annotation with the timestamp, so you know when switchover took place.
Replace the <namespace>  placeholder with your value:

Sample output

cluster1-instance1-bmdp-0             4/4     Running   0          2m23s   
cluster1-instance1-bmdp   replica
cluster1-instance1-fm7w-0             4/4     Running   0          2m22s   
cluster1-instance1-fm7w   replica
cluster1-instance1-ttm9-0             4/4     Running   0          2m22s   
cluster1-instance1-ttm9   master

patroni:
  switchover:
    enabled: true
    targetInstance: <instance-name>

$ kubectl -n <namespace> patch pg cluster1 --type=merge --patch '{
  "spec": {
    "patroni": {
      "switchover": {
        "enabled": true,
        "targetInstance": "cluster1-instance1-bmdp"
      }
    }
  }
}'

$ kubectl annotate --overwrite -n <namespace> pg cluster1 postgres-
operator.crunchydata.com/trigger-switchover="$(date)"



The --overwrite  mag in the above command allows you to overwrite the annotation if it
already exists (useful if that’s not the Rrst switchover you do).

4. Verify that the cluster was annotated (replace the <namespace>  placeholder with your value, as
usual):

5. Now, check instances of your cluster once again to make sure the switchover took place:

u. Set patroni.switchover.enabled  Custom Resource option to false  once the switchover is
done:

$ kubectl get pg cluster1 -o yaml -n <namespace>

Sample output

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      {....
      "patroni":{"switchover":{"enabled":true,"targetInstance":"cluster1-instance1-
bmdp"}},}

$ kubectl get pods -n <namespace> -l postgres-
operator.crunchydata.com/cluster=cluster1 \ 
    -L postgres-operator.crunchydata.com/instance \
    -L postgres-operator.crunchydata.com/role | grep instance1

Sample output

cluster1-instance1-bmdp-0             4/4     Running     0          24m   
cluster1-instance1-bmdp   master
cluster1-instance1-fm7w-0             4/4     Running     0          24m   
cluster1-instance1-fm7w   replica
cluster1-instance1-ttm9-0             4/4     Running     0          23m   
cluster1-instance1-ttm9   replica



$ kubectl -n <namespace> patch pg cluster1 --type=merge --patch '{
  "spec": {
    "patroni": {
      "switchover": {
        "enabled": false
      }
    }
  }
}'



Use Docker images from a private registry
Using images from a private Docker registry may be required for privacy, security or other reasons. In
these cases, Percona Operator for PostgreSQL allows the use of a custom registry. The following
example illustrates how this can be done by the example of the Operator deployed in the OpenShift
environment.

Prerequisites

1. First of all login to the OpenShift and create project.

2. There are two things you will need to conRgure your custom registry access:

the token for your user,

your registry IP address.

The token can be found with the following command:

And the following one tells you the registry IP address:

3. Use the user token and the registry IP address to login to the registry:

$ oc login
Authentication required for https://192.168.1.100:8443 (openshift)
Username: admin
Password:
Login successful.
$ oc new-project pg
Now using project "pg" on server "https://192.168.1.100:8443".

$ oc whoami -t
ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s

$ kubectl get services/docker-registry -n default
NAME              TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    
AGE
docker-registry   ClusterIP   172.30.162.173   <none>        5000/TCP   1d

$ docker login -u admin -p ADO8CqCDappWR4hxjfDqwijEHei31yXAvWg61Jg210s 
172.30.162.173:5000



4. Use the Docker commands to pull the needed image by its SHA digest:

You can Rnd correct names and SHA digests in the current list of the Operator-related images
oTcially certiRed by Percona.

5. The following method can push an image to the custom registry for the example OpenShift pg
project:

u. Verify the image is available in the OpenShift registry with the following command:

Expected output

Login Succeeded

$ docker pull docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46
f26bf0

Expected output

Trying to pull repository docker.io/perconalab/percona-postgresql-operator ...
sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0: Pulling 
from docker.io/perconalab/percona-server-mongodb
Digest: sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0
Status: Image is up to date for docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46f26bf0

$ docker tag \
    docker.io/perconalab/percona-postgresql-
operator@sha256:991d6049059e5eb1a74981290d829a5fb4ab0554993748fde1e67b2f46
f26bf0 \
    172.30.162.173:5000/psmdb/percona-postgresql-operator:17.6-1
$ docker push 172.30.162.173:5000/pg/percona-postgresql-operator:17.6-1

$ oc get is



7. When the custom registry image is available, edit the the image:  option in
deploy/operator.yaml  conRguration Rle with a Docker Repo + Tag string (it should look like
docker-registry.default.svc:5000/pg/percona-postgresql-operator:17.6-1 )

If the registry requires authentication, you can specify the imagePullSecrets  option for all images.

~. Repeat steps 3-5 for other images, and update corresponding options in the deploy/cr.yaml
Rle.

9. Now follow the standard Percona Operator for PostgreSQL installation instruction.

Expected output

NAME                              DOCKER REPO                                                             
TAGS             UPDATED
percona-postgresql-operator       docker-registry.default.svc:5000/pg/percona-
postgresql-operator  17.6-1  2 hours ago

Note



Manage PostgreSQL extensions
One of the speciRc PostgreSQL features is the ability to provide it with additional functionality via
Extensions . Percona Distribution for PostgreSQL comes with a number of extensions . These
extensions are available for the database cluster managed by the Operator as well.

Built-in extensions
You can enable or disable built-in extensions in the extensions.builtin  section of your
deploy/cr.yaml  Rle. Set an option to true  to enable an extension, or to false  to disable it. To
see which extensions are enabled by default, check the deploy/cr.yaml  Custom Resource
manifest.

Apply changes after editing with kubectl apply -f deploy/cr.yaml  command. This causes the
Operator to restart the Pods of your cluster.

Add custom extensions
The needed extension may not be in the list of extensions supplied with Percona Distribution for
PostgreSQL, or it’s a custom extension developed by the end-user. To add such a custom extension
is not straightforward in a containerized database in a Kubernetes environment. It requires building a
custom PostgreSQL image.

Starting with version 2.3, the Operator provides an alternative way to extend Percona Distribution for
PostgreSQL by downloading pre-packaged extensions from and external storage on the my.

extensions:
  ...
  builtin:
    pg_stat_monitor: true
    pg_audit: true
    pgvector: false
    pg_repack: false

https://www.postgresql.org/download/products/6-postgresql-extensions/
https://docs.percona.com/postgresql/latest/extensions.html
https://github.com/percona/percona-postgresql-operator/blob/v2.8.0/deploy/cr.yaml


Custom extensions conRguration is an advanced feature that requires careful consideration. Adding custom
extensions may violate the immutability of Pod images, which can lead to unexpected behavior and maintenance
challenges. Use this feature only if you are certain what you are doing and understand the implications. Or reach
out to our experts for assistance with adding custom extensions into your infrastructure.

Here’s how it works:

1. You build and package a custom extension. The package must have a strict structure. See
Packaging requirements for details.

2. You upload the extension to a cloud storage.

3. In the extensions  section of the Custom Resource, specify the storage conRguration and the
extension information.

4. The Operator downloads the extension and installs it.

5. In PostgreSQL, you create the extension for every database where you want to use it.

Understanding which Rles are required for a given extension may not be easy. To Rgure this out, you
can spin up a Docker container or a virtual machine, install Percona Distribution for PostgreSQL and
developer tools there, then build and install the extension from source. Then copy all the installed
Rles to the archive.

Check the Example conRguration for the steps that can help you in building and adding your own
custom extension.

Packaging requirements

Custom extensions require speciRc packaging for the Operator to use them. The package must be a
.tar.gz  archive that follows this naming format:

${EXTENSION}-pg${PG_MAJOR}-${EXTENSION_VERSION}

The archive must be created with usr  at the root and must include all the required Rles in the correct
directory structure:

1. The control Rle and any shared library must be in the LIBDIR  directory

2. All required SQL script Rles must be in the SHAREDIR/extension  directory. At least one SQL
script is required.

Advanced conYguration



The SHAREDIR  corresponds to /usr/pgsql-${PG_MAJOR}/share  and LIBDIR  to /usr/pgsql-
${PG_MAJOR}/lib .

For example, the directory for pg_cron  extension should look as follows:

The resulting .tar  archive has the name pg_cron-pg17-1.6.7.tar.gz .

Example configuration

The following is an example work[ow showing how to build and package the pg_cron  extension.
This example is intended to illustrate the general process and give you an idea of the required steps.
However, the exact workmow and speciRcs may differ for your custom extension. Always review your
extension’s build and packaging requirements and adapt accordingly.

Considerations

1. You must build your extension on a host with the same operating system and architecture as
the one used for Percona Distribution for PostgreSQL images to prevent library incompatibility.
Otherwise, your extension may not load or may not function correctly.

To check the operating system, do the following:

a. Connect to one of the database Pods:

$ tree ~/pg_cron-1.6.7/
/home/user/pg_cron-1.6.7/
└── usr
    └── pgsql-17
        ├── lib
        │   └── pg_cron.so
        └── share
            └── extension
                ├── pg_cron--1.0--1.1.sql
                ├── pg_cron--1.0.sql
                ├── pg_cron--1.1--1.2.sql
                ├── pg_cron--1.2--1.3.sql
                ├── pg_cron--1.3--1.4.sql
                ├── pg_cron--1.4--1.4-1.sql
                ├── pg_cron--1.4-1--1.5.sql
                ├── pg_cron--1.5--1.6.sql
                └── pg_cron.control

kubectl exec -it cluster1-instance1-xrcf-0 -n <namespace> -c database -
- bash



b. List the installed packages:

c. Check the operating system version:

2. Your extension must be compatible with PostgreSQL version you are running. To check the
version, run the following command:

rpm -qa|grep percona

Sample output

percona-release-1.0-32.noarch
percona-postgresql17-libs-17.6-1.el9.x86_64
percona-postgresql17-17.6-1.el9.x86_64
percona-postgresql-client-common-280-1.el9.noarch
percona-telemetry-agent-1.0.5-1.el9.x86_64
percona-pg-telemetry17-1.1.3-1.el9.x86_64
percona-postgresql17-server-17.6-1.el9.x86_64
percona-pgbackrest-2.56.0-1.el9.x86_64
percona-pg_stat_monitor17-2.2.0-1.el9.x86_64
percona-pgaudit17-17.1-1.el9.x86_64
percona-pgvector_17-0.8.0-3.el9.x86_64
percona-wal2json17-2.6-1.el9.x86_64
percona-postgresql17-contrib-17.6-1.el9.x86_64
percona-postgresql-common-280-1.el9.noarch
percona-pg_repack17-1.5.2-2.el9.x86_64
percona-pgaudit17_set_user-4.1.0-3.el9.x86_64
percona-patroni-4.0.6-1.el9.x86_64

cat /etc/redhat-release

Sample output

Red Hat Enterprise Linux release 9.6 (Plow)

kubectl -n <namespace> get pg cluster1 -o go-template='{{.spec.image}}'

Sample output

docker.io/perconalab/percona-postgresql-operator:main-ppg17-postgres



3. In this example conRguration, we use a Docker container to build the pg_cron  extension.
However, you can use any environment that matches the distribution’s operating system, such as
a virtual machine or a Kubernetes Pod, not just Docker.

4. We assume you have deployed a Percona Distribution for PostgreSQL cluster in Kubernetes. If
not, use the Quickstart guide to deploy it.

Prepare your build environment

Run the following commands as the root user or with sudo  privileges.

1. Start a Docker container and establish a shell session inside. In this example we use a Red Hat
Universal Base Image 9 on x86_64  architecture.

2. Install basic tools:

1. Install additional PostgreSQL packages:

Add the Extra Packages for Enterprise Linux by installing the epel-release  package:

Add the codeready builder repository that contains additional packages for use by developers:

Import GPG keys

Install perl-IPC-Run  to run and interact with child processes:

2. Install build tools:

docker run -it --name pg redhat/ubi9:latest /bin/bash

dnf install git make 'dnf-command(config-manager)'

dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-
9.noarch.rpm

dnf config-manager --add-repo 
https://dl.rockylinux.org/pub/rocky/9/CRB/x86_64/os/

rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-9

dnf install perl-IPC-Run -y



Troubleshooting tip: If development tools fail to install, add BaseOS and AppStream repos:

Then retry the installation.

3. Install PostgreSQL developer packages from Percona repositories:

Install percona-release  repository management tool:

Enable PostgreSQL repository:

Disable the potsgresql  module supplied with the operating system:

Install PostgreSQL developer packages:

Build the extension

1. Download the extension source:

2. Navigate to the cloned extension and switch to the desired version. In this example we use
version 1.6.7 :

dnf groupinstall "Development tools"

dnf config-manager --add-repo 
https://dl.rockylinux.org/pub/rocky/9/BaseOS/aarch64/os/
dnf config-manager --add-repo 
https://dl.rockylinux.org/pub/rocky/9/AppStream/aarch64/os/
dnf clean all && dnf makecache

dnf install https://repo.percona.com/yum/percona-release-latest.noarch.rpm

percona-release setup ppg17

dnf -qy module disable postgresql

dnf install percona-postgresql17-devel percona-postgresql17-libs percona-
postgresql17

git clone https://github.com/citusdata/pg_cron.git



1. Ensure pg_config  is in your path:

2. Build and install the extension

As the result you should see the binaries in the following paths: /usr/pgsql-
17/share/extension/pg_cron  and /usr/pgsql-17/lib/ .

Package the extension

1. Create a .tar  archive of the extension:

2. Check that the package structure follows the requirements.

3. Copy the archive to the local machine. Run this command on the local machine:

Upload a custom extension to the cloud storage

After packaging the extension, upload it to a cloud storage. In our example we use AWS S3 storage.
You can upload the extension via the Amazon web interface or using the aws  command line tool as
shown below:

1. Export the AWS S3 access credentials as the environment variables:

cd pg_cron
git checkout v1.6.7

export PATH=/usr/pgsql-17/bin:$PATH

make && sudo PATH=$PATH make install

tar -czvf pg_cron-pg17-1.6.7.tar.gz \
  /usr/pgsql-17/lib/pg_cron.so \
  /usr/pgsql-17/share/extension/pg_cron*

docker cp pg:/pg_cron-pg17-1.6.7.tar.gz ./

export AWS_ACCESS_KEY_ID=<your-access-key-id-here> 
export AWS_SECRET_ACCESS_KEY=<your-secret-key-here>



2. Upload the extension to your storage. Use your value for the bucket and specify your path to the
archive:

Create a Secret with the storage credentials

After the upload is complete, place the access credentials for the cloud storage in a Secret.

1. Create a Secrets Rle with the credentials that the Operator needs to access extensions stored on
Amazon S3:

The metadata.name  key is the name you will use to refer to your Kubernetes Secret.

The data.AWS_ACCESS_KEY_ID  and data.AWS_SECRET_ACCESS_KEY  keys contain base64-
encoded credentials used to access the storage.

To encode credentials, use this command:

Here’s the example Secrets Rle extensions-secret.yaml :

aws s3 cp path/to/pg_cron-pg17-1.6.7.tar.gz s3://my-bucket

in Linux

For GNU/Linux:

in macOS

For Apple macOS:

$ echo -n 'plain-text-string' | base64 --wrap=0

$ echo -n 'plain-text-string' | base64

extensions-secret.yaml



2. Create the Secrets object from this Rle:

Configure the Operator to load and install the custom extension

Specify both the storage and extension details in the Custom Resource so the Operator can
download and install it.

1. In the extensions.storage  subsection of the Custom Resource, specify the following
information:

storage details such as the bucket where your extension resides, region and endpoint to
access the storage

the Secret name with the storage credentials that you created before.

2. In the extensions.custom  subsection, specify the extension name and version:

apiVersion: v1
kind: Secret
metadata:
  name: cluster1-extensions-secret
type: Opaque
data:
  AWS_ACCESS_KEY_ID: <base64 encoded secret>
  AWS_SECRET_ACCESS_KEY: <base64 encoded secret>

kubectl apply -f extensions-secret.yaml -n <namespace>

extensions:
  ...
  storage:
    type: s3
    bucket: pg-extensions
    region: eu-central-1
    endpoint: s3.eu-central-1.amazonaws.com
    secret:
      name: cluster1-extensions-secret

extensions:
  ...
  custom:
  - name: pg_cron
    version: 1.6.1



3. Some extensions (such as pg_cron  in our example) may require additional shared memory. If
this is the case, you need to conRgure PostgreSQL to preload it at startup:

```yaml … patroni: dynamicConRguration: postgresql: parameters: shared_preload_libraries:
pg_cron …

4. Apply the conRguration:

This causes the Operator to restart the Pods of your cluster.

Enable custom extension in PostgreSQL

The installed extension is not enabled by default. You need to explicitly enable it in PostgreSQL for all
databases where you want to use it.

Here’s how to do it:

1. Connect to the primary Pod:

2. Connect to the required database in PostgreSQL and create the extension for this database
using the CREATE EXTENSION statement:

Update custom extensions
To update your custom extension inside the Operator, do the following:

1. Prepare the *.tar archive of the extension’s new version. See the Packaging requirements
section for the archive’s structure and naming format

2. Reference the new version of the extension in the Custom Resource. For example, you update
pg_cron extension to version 1.6.8. Then your conRguration looks like this:

$ kubectl apply -f deploy/cr.yaml -n <namespace>

$ kubectl exec -it cluster1-instance1-69r8-0 -c database -n <namespace> --
bash

CREATE EXTENSION pg_cron;

3. Apply the conRguration for the changes to come into place:

extensions:
 ...
 custom:
 - name: pg_cron
 version: 1.6.8

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Percona Operator for PostgreSQL single-
namespace and multi-namespace
deployment
There are two design patterns that you can choose from when deploying Percona Operator for
PostgreSQL and PostgreSQL clusters in Kubernetes:

Namespace-scope - one Operator per Kubernetes namespace,

Cluster-wide - one Operator can manage clusters in multiple namespaces.

This how-to explains how to conRgure Percona Operator for PostgreSQL for each scenario.

Namespace-scope
By default, Percona Operator for PostgreSQL functions in a speciRc Kubernetes namespace. You can
create one during the installation (like it is shown in the installation instructions) or just use the
default namespace. This approach allows several Operators to co-exist in one Kubernetes-based
environment, being separated in different namespaces:

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Kubernetes API

OperatorOperator

DB Pod 1 DB Pod N

CSI

Storage
Area

Network

percona-db-2 Namespacepercona-db-1 Namespace

Normally this is a recommended approach, as isolation minimizes impact in case of various failure
scenarios. This is the default conRguration of our Operator.

Let’s say you will use a Kubernetes Namespace called percona-db-1 .

1. Clone percona-postgresql-operator repository:

2. Create your percona-db-1 Namespace (if it doesn’t yet exist) as follows:

3. Deploy the Operator using the following command:

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

$ kubectl create namespace percona-db-1

https://kubernetes.io/docs/reference/using-api/server-side-apply/

4. Once Operator is up and running, deploy the database cluster itself:

You can deploy multiple clusters in this namespace.

Add more namespaces

What if there is a need to deploy clusters in another namespace? The solution for namespace-scope
deployment is to have more than one Operator. We will use the percona-db-2 namespace as an
example.

1. Create your percona-db-2 namespace (if it doesn’t yet exist) as follows:

2. Deploy the Operator:

3. Once Operator is up and running deploy the database cluster itself:

Cluster names may be the same in different namespaces.

Install the Operator cluster-wide
Sometimes it is more convenient to have one Operator watching for Percona Distribution for
PostgreSQL custom resources in several namespaces.

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-1

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

$ kubectl create namespace percona-db-2

$ kubectl apply --server-side -f deploy/bundle.yaml -n percona-db-2

$ kubectl apply -f deploy/cr.yaml -n percona-db-2

Note

We recommend running Percona Operator for PostgreSQL in a traditional way, limited to a speciRc
namespace, to limit the blast radius. But it is possible to run it in so-called cluster-wide mode, one
Operator watching several namespaces, if needed:

Kubernetes API

Percona Operator for PostgreSQL

DB Pod 1 DB Pod 2

CSI

Storage
Area

Network

api

DB Pod DB Pod

Operator Namespace (pg-operator)

Percona-db-1
Namespace

Percona-db-2
Namespace

percona-db-3
Namespace

To use the Operator in such cluster-wide mode, you should install it with a different set of
conRguration YAML Rles, which are available in the deploy folder and have Rlenames with a special
cw- preRx: e.g. deploy/cw-bundle.yaml .

While using this cluster-wide versions of conRguration Rles, you should set the following information
there:

subjects.namespace option should contain the namespace which will host the Operator,

WATCH_NAMESPACE key-value pair in the env section should have value equal to a comma-
separated list of the namespaces to be watched by the Operator, and the namespace in which the
Operator resides. If this key is set to a blank string, the Operator will watch only the namespace it
runs in, which would be the same as single-namespace deployment.

Installing the Operator cluster-wide on OpenShift via the the Operator Lifecycle Manager (OLM) requires making
different selections in the OLM web-based UI instead of patching YAML Rles.

The following simple example shows how to install Operator cluster-wide on Kubernetes.

1. Clone percona-postgresql-operator repository:

2. Let’s say you will use pg-operator namespace for the Operator, and percona-db-1
namespace for the cluster. Create these namespaces, if needed:

3. Edit the deploy/cw-bundle.yaml conRguration Rle to make sure it contains proper namespace
name for the Operator:

4. Apply the deploy/cw-bundle.yaml Rle with the following command:

Right now the operator deployed in cluster-wide mode will monitor all namespaces in the cluster,
either already existing or newly created ones.

Note

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

$ kubectl create namespace pg-operator
$ kubectl create namespace percona-db-1

...
subjects:
- kind: ServiceAccount
 name: percona-postgresql-operator
 namespace: pg-operator
...
spec:
 containers:
 - env:
 - name: WATCH_NAMESPACE
 value: "pg-operator,percona-db-1"
...

$ kubectl apply --server-side -f deploy/cw-bundle.yaml -n pg-operator

5. Deploy the cluster in the namespace of your choice:

Verifying the cluster operation
When creation process is over, you can try to connect to the cluster.

During the installation, the Operator has generated several secrets , including the one with
password for default PostgreSQL user. This default user has the same login name as the cluster
name.

$ kubectl apply -f deploy/cr.yaml -n percona-db-1

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you
are interested in is named as <cluster_name>-pguser-<cluster_name> (substitute
<cluster_name> with the name of your Percona Distribution for PostgreSQL Cluster). The
default variant will be cluster1-pguser-cluster1 .

1

Use the following command to get the password of this user. Replace the <cluster_name> and
<namespace> placeholders with your values:

2

$ kubectl get secret <cluster_name>-<user_name>-<cluster_name> -n
<namespace> --template='{{.data.password | base64decode}}{{"\n"}}'

Create a pod and start Percona Distribution for PostgreSQL inside. The following command will
do this, naming the new Pod pg-client :

Executing it may require some time to deploy the corresponding Pod.

3

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-
distribution-postgresql:17.6-1 --restart=Never -- bash -il

Run a container with psql tool and connect its console output to your terminal. The following
command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL
interactive terminal.

4

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-
pgbouncer.postgres-operator.svc -p 5432 -U cluster1 cluster1

https://kubernetes.io/docs/concepts/configuration/secret/
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name

Sample output

psql (17.6-1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
Type "help" for help.
pgdb=>

Using PostgreSQL tablespaces with Percona
Operator for PostgreSQL
Tablespaces allow DBAs to store a database on multiple Rle systems within the same server and to
control where (on which Rle systems) speciRc parts of the database are stored. You can think about
it as if you were giving names to your disk mounts and then using those names as additional
parameters when creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory, and
Percona Operator for PostgreSQL is a good option to bring this to your Kubernetes environment
when needed.

Possible use cases
The most obvious use case for tablespaces is performance optimization. You place appropriate
parts of the database on fast but expensive storage and engage slower but cheaper storage for
lesser-used database objects. The classic example would be using an SSD for heavily-used indexes
and using a large slow HDD for archive data.

Of course, the Operator already provides you with traditional Kubernetes approaches to achieve this
on a per-Pod basis (Tolerations, etc.). But if you would like to go deeper and make such
differentiation at the level of your database objects (tables and indexes), tablespaces are exactly
what you would need for that.

Another well-known use case for tablespaces is quickly adding a new partition to the database
cluster when you run out of space on the initially used one and cannot extend it (which may look less
typical for cloud storage). Finally, you may need tablespaces when migrating your existing
architecture to the cloud.

Each tablespace created by Percona Operator for PostgreSQL corresponds to a separate Persistent
Volume, mounted in a container to the /tablespaces directory.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage
Area

Network

Kubernetes API

Operator

Percona Operator for PostgreSQL
Namespace

CSI

Tablespace Storages
for DB Pod N

Creating a new tablespace
Providing a new tablespace for your database in Kubernetes involves two parts:

1. ConRgure the new tablespace storage with the Operator,

2. Create database objects in this tablespace with PostgreSQL.

The Rrst part is done in the traditional way of Percona Operators, by modifying Custom Resource via
the deploy/cr.yaml conRguration Rle. It has a special spec.tablespaceStorages section for
tablespaces.

The example already present in deploy/cr.yaml shows how to create tablespace storage 1Gb in
size (you can see oTcial Kubernetes documentation on Persistent Volumes for details):

After you apply this by running the kubectl apply -f deploy/cr.yaml command, the new
/tablespaces/user/ mountpoint will appear for your database. Please take into account that if
you add your new tablespace to the already existing PostgreSQL cluster, it may take time for the
Operator to create Persistent Volume Claims and get Persistent Volumes actually mounted.

Now you should actually create your tablespace on this volume with the CREATE TABLESPACE
<tablespace name> LOCATION <mount point> command, and then create objects in it (of course,
your user should have appropriate CREATE privileges to make it possible):

Now when the tablespace is created you can append TABLESPACE <tablespace_name> to your
CREATE SQL statements to implicitly create tables, indexes, or even entire databases in speciRc
tablespace.

Let’s create an example table in the already mentioned user121 tablespace:

spec:
 instances:
 ...
 tablespaceVolumes:
 - name: user
 dataVolumeClaimSpec:
 accessModes:
 - 'ReadWriteOnce'
 resources:
 requests:
 storage: 1Gi

CREATE TABLESPACE user121
LOCATION '/tablespaces/user/data';

CREATE TABLE products (
 product_sku character(10),
 quantity int,
 manufactured_date timestamptz)
TABLESPACE user121;

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

It is also possible to set a default tablespace with the SET default_tablespace =
<tablespace_name>; statement. It will affect all further CREATE TABLE and CREATE INDEX
commands without an explicit tablespace speciRer, until you unset it with an empty string.

As you can see, Percona Operator for PostgreSQL simpliRes tablespace creation by carrying on all
necessary modiRcations with Persistent Volumes and Pods. The same would not be true for the
deletion of an already existing tablespace, which is not automated, neither by the Operator nor by
PostgreSQL.

Deleting an existing tablespace
Deleting an existing tablespace from your database in Kubernetes also involves two parts:

Delete related database objects and tablespace with PostgreSQL,

Delete tablespace storage in Kubernetes.

To make tablespace deletion with PostgreSQL possible, you should make this tablespace empty (it is
impossible to drop a tablespace until all objects in all databases using this tablespace have been
removed). Tablespaces are listed in the pg_tablespace table, and you can use it to Rnd out which
objects are stored in a speciRc tablespace. The example command for the lake tablespace will look
as follows:

When your tablespace is empty, you can log in to the PostgreSQL Primary instance as a superuser,
and then execute the DROP TABLESPACE <tablespace_name>; command.

Now, when the PostgreSQL part is Rnished, you can remove the tablespace entry from the
tablespaceStorages section (don’t forget to run the kubectl apply -f deploy/cr.yaml
command to apply changes).

SELECT relname FROM pg_class WHERE reltablespace=(SELECT oid FROM
pg_tablespace WHERE spcname='user121');

Monitor Kubernetes
Monitoring the state of the database is crucial to timely identify and react to performance issues.
Percona Monitoring and Management (PMM) solution enables you to do just that.

However, the database state also depends on the state of the Kubernetes cluster itself. Hence it’s
important to have metrics that can depict the state of the Kubernetes cluster.

This document describes how to set up monitoring of the Kubernetes cluster health. This setup has
been tested with the PMM Server as the centralized data storage and the Victoria Metrics
Kubernetes monitoring stack as the metrics collector. These steps may also apply if you use another
Prometheus-compatible storage.

Pre-requisites
To set up monitoring of Kubernetes, you need the following:

1. PMM Server up and running. You can run PMM Server as a Docker image, a virtual appliance, or
on an AWS instance. Please refer to the oTcial PMM documentation for the installation
instructions.

2. Helm v3 .

3. kubectl .

4. The PMM Server API key. The key must have the role “Admin”.

Get the PMM API key:

https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-server
https://docs.percona.com/percona-monitoring-and-management/2/setting-up/server/index.html
https://docs.helm.sh/using_helm/#installing-helm
https://kubernetes.io/docs/tasks/tools/

Install the Victoria Metrics Kubernetes monitoring stack

 From PMM UI

Generate the PMM API key

 From command line

You can query your PMM Server installation for the API Key using curl and jq utilities. Replace
<login>:<password>@<server_host> placeholders with your real PMM Server login,
password, and hostname in the following command:

The API key is not rotated.

$ API_KEY=$(curl --insecure -X POST -H "Content-Type: application/json" -d
{"name":"operator", "role": "Admin"}' "https://<login>:
<password>@<server_host>/graph/api/auth/keys" | jq .key)

Note

 Quick install

1. To install the Victoria Metrics Kubernetes monitoring stack with the default parameters, use the
quick install command. Replace the following placeholders with your values:

API-KEY - The API key of your PMM Server

PMM-SERVER-URL - The URL to access the PMM Server

UNIQUE-K8s-CLUSTER-IDENTIFIER - IdentiRer for the Kubernetes cluster. It can be the name
you deRned during the cluster creation.

You should use a unique identiRer for each Kubernetes cluster. The use of the same identiRer for
more than one Kubernetes cluster will result in the conmicts during the metrics collection.

NAMESPACE - The namespace where the Victoria metrics Kubernetes stack will be installed. If
you haven’t created the namespace before, it will be created during the command execution.

We recommend to use a separate namespace like monitoring-system .

https://docs.percona.com/percona-monitoring-and-management/2/details/api.html#api-keys-and-authentication

The Prometheus node exporter is not installed by default since it requires privileged containers with the
access to the host Rle system. If you need the metrics for Nodes, add the --node-exporter-enabled mag
as follows:

 Install manually

You may need to customize the default parameters of the Victoria metrics Kubernetes stack.

Since we use the PMM Server for monitoring, there is no need to store the data in Victoria Metrics
Operator. Therefore, the Victoria Metrics Helm chart is installed with the vmsingle.enabled and
vmcluster.enabled parameters set to false in this setup.

Check all the role-based access control (RBAC) rules of the victoria-metrics-k8s-stack
chart and the dependencies chart, and modify them based on your requirements.

Configure authentication in PMM

To access the PMM Server resources and perform actions on the server, conRgure authentication.

1. Encode the PMM Server API key with base64.

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-install.sh | bash
-s -- --api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-
id <UNIQUE-K8s-CLUSTER-IDENTIFIER> --namespace <NAMESPACE>

Note

$ curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/quick-install.sh | bash -s -- --
api-key <API-KEY> --pmm-server-url <PMM-SERVER-URL> --k8s-cluster-id <UNIQUE-K8s-
CLUSTER-IDENTIFIER> --namespace <NAMESPACE> --node-exporter-enabled

 Linux

 macOS

$ echo -n <API-key> | base64 --wrap=0

$ echo -n <API-key> | base64

https://helm.sh/docs/topics/rbac/

2. Create the Namespace where you want to set up monitoring. The following command creates
the Namespace monitoring-system . You can specify a different name. In the latter steps,
specify your namespace instead of the <namespace> placeholder.

3. Create the YAML Rle for the Kubernetes Secrets and specify the base64-encoded API key
value within. Let’s name this Rle pmm-api-vmoperator.yaml .

4. Create the Secrets object using the YAML Rle you created previously. Replace the <filename>
placeholder with your value.

5. Check that the secret is created. The following command checks the secret for the resource
named pmm-token-vmoperator (as deRned in the metadata.name option in the secrets Rle). If
you deRned another resource name, specify your value.

Create a ConfigMap to mount for kube-state-metrics

The kube-state-metrics (KSM) is a simple service that listens to the Kubernetes API server
and generates metrics about the state of various objects - Pods, Deployments, Services and Custom
Resources.

To deRne what metrics the kube-state-metrics should capture, create the ConRgMap and
mount it to a container.

Use the example configmap.yaml conRguration Rle to create the ConRgMap.

$ kubectl create namespace monitoring-system

pmm-api-vmoperator.yaml

apiVersion: v1
data:
 api_key: <base-64-encoded-API-key>
kind: Secret
metadata:
 name: pmm-token-vmoperator
 #namespace: default
type: Opaque

$ kubectl apply -f pmm-api-vmoperator.yaml -n <namespace>

$ kubectl get secret pmm-token-vmoperator -n <namespace>

https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/customresourcestate-metrics.md#configuration
https://github.com/Percona-Lab/k8s-monitoring/blob/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml

As a result, you have the customresource-config-ksm ConRgMap created.

Install the Victoria Metrics Kubernetes monitoring stack

1. Add the dependency repositories of victoria-metrics-k8s-stack chart.

2. Add the Victoria Metrics Kubernetes monitoring stack repository.

3. Update the repositories.

4. Install the Victoria Metrics Kubernetes monitoring stack Helm chart. You need to specify the
following conRguration:

the URL to access the PMM server in the externalVM.write.url option in the format
<PMM-SERVER-URL>/victoriametrics/api/v1/write . The URL can contain either the IP
address or the hostname of the PMM server.

the unique name or an ID of the Kubernetes cluster in the
vmagent.spec.externalLabels.k8s_cluster_id option. Ensure to set different values if
you are sending metrics from multiple Kubernetes clusters to the same PMM Server.

the <namespace> placeholder with your value. The Namespace must be the same as the
Namespace for the Secret and ConRgMap

$ kubectl apply -f https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/ksm-configmap.yaml -n
<namespace>

$ helm repo add grafana https://grafana.github.io/helm-charts
$ helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

$ helm repo add vm https://victoriametrics.github.io/helm-charts/

$ helm repo update

https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-k8s-stack

Validate the successful installation

What Pods are running depends on the conRguration chosen in values used while installing
victoria-metrics-k8s-stack chart.

Verify metrics capture
1. Connect to the PMM server.

{.bash data-prompt="$" }

 $ helm install vm-k8s vm/victoria-metrics-k8s-stack \

 -f https://raw.githubusercontent.com/Percona-Lab/k8s-

monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/values.yaml \

 --set externalVM.write.url=<PMM-SERVER-URL>/victoriametrics/api/v1/write

\

 --set vmagent.spec.externalLabels.k8s_cluster_id=<UNIQUE-CLUSTER-

IDENTIFIER/NAME> \

 -n <namespace>

To illustrate, say your PMM Server URL is https://pmm-example.com , the cluster ID is test-
cluster and the Namespace is monitoring-system . Then the command would look like this:

```{.bash .no-copy } $ helm install vm-k8s vm/victoria-metrics-k8s-stack \ -f
https://raw.githubusercontent.com/Percona-Lab/k8s-monitoring/refs/tags/v0.1.1/vm-operator-
k8s-stack/values.yaml \ –set externalVM.write.url=https://pmm-
example.com/victoriametrics/api/v1/write \ –set
vmagent.spec.externalLabels.k8s_cluster_id=test-cluster \ -n monitoring-system

$ kubectl get pods -n <namespace>

Sample output

vm-k8s-stack-kube-state-metrics-d9d85978d-9pzbs                   1/1     Running   0          
28m
vm-k8s-stack-victoria-metrics-operator-844d558455-gvg4n           1/1     Running   0          
28m
vmagent-vm-k8s-stack-victoria-metrics-k8s-stack-55fd8fc4fbcxwhx   2/2     Running   0          
28m



2. Click Explore and switch to the Code mode.

3. Check that the required metrics are captured, type the following in the Metrics browser
dropdown:

cadvisor :

kubelet:

https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md


kube-state-metrics  metrics that also include Custom resource metrics for the Operator and
database deployed in your Kubernetes cluster:

https://github.com/kubernetes/kube-state-metrics/tree/main/docs


Uninstall Victoria metrics Kubernetes stack
To remove Victoria metrics Kubernetes stack used for Kubernetes cluster monitoring, use the
cleanup script. By default, the script removes all the Custom Resource DeRnitions(CRD)  and
Secrets associated with the Victoria metrics Kubernetes stack. To keep the CRDs, run the script with
the --keep-crd  mag.

Check that the Victoria metrics Kubernetes stack is deleted:

The output should provide the empty list.

If you face any issues with the removal, uninstall the stack manually:

 Remove CRDs

Replace the <NAMESPACE>  placeholder with the namespace you speciRed during the Victoria metrics
Kubernetes stack installation:

 Keep CRDs

Replace the <NAMESPACE>  placeholder with the namespace you speciRed during the Victoria metrics
Kubernetes stack installation:

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace 
<NAMESPACE>

$ bash <(curl -fsL https://raw.githubusercontent.com/Percona-Lab/k8s-
monitoring/refs/tags/v0.1.1/vm-operator-k8s-stack/cleanup.sh) --namespace 
<NAMESPACE> --keep-crd 

$ helm list -n <namespace>

$ helm uninstall vm-k8s-stack -n < namespace> 

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/


Use PostGIS extension with Percona
Distribution for PostgreSQL
PostGIS  is a PostgreSQL extension that adds GIS capabilities to this database.

Starting from the Operator version 2.3.0 it became possible to deploy and manage PostGIS-enabled
PostgreSQL.

Due to the large size and domain speciRcs of this extension, Percona provides separate PostgreSQL
Distribution images with it.

Deploy the Operator with PostGIS-enabled database
cluster
Following steps will allow you to deploy PostgreSQL cluster with these images.

1. Clone the percona-postgresql-operator repository:

It is crucial to specify the right branch with -b  option while cloning the code on this step. Please be careful.

2. The Custom Resource DeRnition for Percona Distribution for PostgreSQL should be created from
the deploy/crd.yaml  Rle. Custom Resource DeRnition extends the standard set of resources
which Kubernetes “knows” about with the new items (in our case ones which are the core of the
Operator). Apply it  as follows:

3. Create the Kubernetes namespace for your cluster if needed (for example, let’s name it
postgres-operator ):

$ git clone -b v2.8.0 https://github.com/percona/percona-postgresql-
operator
$ cd percona-postgresql-operator

Note

$ kubectl apply --server-side -f deploy/crd.yaml

$ kubectl create namespace postgres-operator

https://postgis.net/
https://kubernetes.io/docs/reference/using-api/server-side-apply/


4. The role-based access control (RBAC) for Percona Distribution for PostgreSQL is conRgured with
the deploy/rbac.yaml  Rle. Role-based access is based on deRned roles and the available
actions which correspond to each role. The role and actions are deRned for Kubernetes
resources in the yaml Rle. Further details about users and roles can be found in Kubernetes
documentation .

Setting RBAC requires your user to have cluster-admin role privileges. For example, those using Google
Kubernetes Engine can grant user needed privileges with the following command:

5. Start the Operator within Kubernetes:

u. After the Operator is started, modify the deploy/cr.yaml  conRguration Rle with PostGIS-
enabled image - use docker.io/percona/percona-postgresql-operator:2.8.0-ppg17.6-
postgres-gis3.3.8  instead of docker.io/percona/percona-postgresql-
operator:2.8.0-ppg17.6-postgres

When done, Percona Distribution for PostgreSQL cluster can be created at any time with the
following command:

$ kubectl apply -f deploy/rbac.yaml -n postgres-operator

Note

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-
admin --user=$(gcloud config get-value core/account)

$ kubectl apply -f deploy/operator.yaml -n postgres-operator

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
  name: cluster1
spec:
  ...
  image: docker.io/percona/percona-postgresql-operator:2.8.0-ppg17.6-
postgres-gis3.3.8
  ...

$ kubectl apply -f deploy/cr.yaml -n postgres-operator

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings


The creation process may take some time. When the process is over your cluster will obtain the
ready  status. You can check it with the following command:

Check PostGIS extension
To use PostGIS extension you should enable it for a speciRc database.

For example, you can create the new database named mygisdata  with the psql  tool as follows:

Next, enable the postgis  extension. Make sure you are connected to the database you created
earlier and run the following command:

Finally, check that the extension is enabled:

The output should resemble the following:

$ kubectl get pg -n postgres-operator

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE
cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

CREATE database mygisdata;
\c mygisdata;
CREATE SCHEMA gis;

CREATE EXTENSION postgis;

SELECT postgis_full_version();

postgis_full_version
    -------------------------------------------------------------------------
-----------------------------------------------------------------------------
-----------
 POSTGIS="3.3.3" [EXTENSION] PGSQL="140" GEOS="3.10.2-CAPI-1.16.0" 
PROJ="8.2.1" LIBXML="2.9.13" LIBJSON="0.15" LIBPROTOBUF="1.3.3" WAGYU="0.5.0 
(Internal)"



You can Rnd more about using PostGIS in the oTcial Percona Distribution for PostgreSQL
documentation , as well as in this blogpost .

https://docs.percona.com/postgresql/11/solutions/postgis-deploy.html
https://www.percona.com/blog/working-with-postgresql-and-postgis-how-to-become-a-gis-expert/


Delete Percona Operator for PostgreSQL
When cleaning up your Kubernetes environment (e.g., moving from a trial deployment to a production
one, or testing experimental conRgurations), you may need to remove some (or all) of the following
objects:

Percona Distribution for PosgreSQL cluster managed by the Operator

Percona Operator for PostgreSQL itself

Custom Resource DeRnition deployed with the Operator

Resources like PVCs and Secrets

Delete a database cluster
You can delete the Percona Distribution for PosgreSQL cluster managed by the Operator by deleting
the appropriate Custom Resource.

There are two Rnalizers  deRned in the Custom Resource, which deRne whether TLS-related objects and data
volumes should be deleted or preserved when the cluster is deleted.

finalizers.percona.com/delete-ssl : if present, deletes objects, created for SSL (Secret, certiRcate, and
issuer) when the cluster deletion occurs.

finalizers.percona.com/delete-pvc : if present, deletes Persistent Volume Claims  for the database
cluster Pods and user Secrets when the cluster deletion occurs.

Both Rnalizers are off by default in the deploy/cr.yaml  conRguration Rle, and this allows you to recreate the
cluster without losing data, credentials for the system users, etc.

Here’s a sequence of steps to follow:

Note

List Custom Resources, replacing the <namespace>  placeholder with your namespace.1

$ kubectl get pg -n <namespace>

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/


Delete the Operator
You can uninstall the Operator by deleting the Deployments  related to it.

Sample output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE
cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

Delete the Custom Resource with the name of your cluster (for example, let’s use the default
cluster1  name).

2

$ kubectl delete pg cluster1 -n <namespace>

Sample output

perconapgcluster.pgv2.percona.com "cluster1" deleted

Check that the cluster is deleted by listing the available Custom Resources once again.3

$ kubectl get pg -n <namespace>

Sample output

No resources found in <namespace> namespace.

List the deployments. Replace the <namespace>  placeholder with your namespace.1

$ kubectl get deploy -n <namespace>

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/


Delete Custom Resource Definition
If you are not just deleting the Operator and PostgreSQL cluster from a speciRc namespace, but want
to clean up your entire Kubernetes environment, you can also delete the CustomResourceDeRnitions
(CRDs) .

CRDs in Kubernetes are non-namespaced but are available to the whole environment. This means that you
shouldn’t delete CRD if you still have the Operator and database cluster in some namespace.

You can delete CRD as follows:

Sample output

NAME                          READY   UP-TO-DATE   AVAILABLE   AGE
percona-postgresql-operator   1/1     1            1           13m

Delete the percona-*  deployment2

$ kubectl delete deploy percona-postgresql-operator -n <namespace>

Check that the Operator is deleted by listing the Pods. As a result you should have no Pods
related to it.

3

$ kubectl get pods -n <namespace>

Sample output

No resources found in <namespace> namespace.

Warning

List the CRDs:1

$ kubectl get crd

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions


Clean up resources
By default, TLS-related objects and data volumes remain in Kubernetes environment after you delete
the cluster to allow you to recreate it without losing the data.

Sample output

allowlistedv2workloads.auto.gke.io                   2023-09-07T14:15:30Z
allowlistedworkloads.auto.gke.io                     2023-09-07T14:15:29Z
audits.warden.gke.io                                 2023-09-07T14:15:32Z
backendconfigs.cloud.google.com                      2023-09-07T14:15:41Z
capacityrequests.internal.autoscaling.gke.io         2023-09-07T14:15:25Z
frontendconfigs.networking.gke.io                    2023-09-07T14:15:41Z
managedcertificates.networking.gke.io                2023-09-07T14:15:41Z
memberships.hub.gke.io                               2023-09-07T14:15:30Z
perconapgbackups.pgv2.percona.com                    2023-09-07T14:28:59Z
perconapgclusters.pgv2.percona.com                   2023-09-07T14:29:02Z
perconapgrestores.pgv2.percona.com                   2023-09-07T14:29:03Z
postgresclusters.postgres-operator.crunchydata.com   2023-09-07T14:29:06Z
serviceattachments.networking.gke.io                 2023-09-07T14:15:44Z
servicenetworkendpointgroups.networking.gke.io       2023-09-07T14:15:43Z
storagestates.migration.k8s.io                       2023-09-07T14:15:53Z
storageversionmigrations.migration.k8s.io            2023-09-07T14:15:53Z
updateinfos.nodemanagement.gke.io                    2023-09-07T14:15:55Z
volumesnapshotclasses.snapshot.storage.k8s.io        2023-09-07T14:15:52Z
volumesnapshotcontents.snapshot.storage.k8s.io       2023-09-07T14:15:52Z
volumesnapshots.snapshot.storage.k8s.io              2023-09-07T14:15:52Z

Now delete the percona*.pgv2.percona.com  CRDs:2

$ kubectl delete crd perconapgbackups.pgv2.percona.com 
perconapgclusters.pgv2.percona.com perconapgrestores.pgv2.percona.com

Sample output

customresourcedefinition.apiextensions.k8s.io "perconapgbackups.pgv2.percona.com" 
deleted
customresourcedefinition.apiextensions.k8s.io "perconapgclusters.pgv2.percona.com" 
deleted
customresourcedefinition.apiextensions.k8s.io "perconapgrestores.pgv2.percona.com" 
deleted



You can automate resource cleanup by turning on percona.com/delete-pvc  and/or
percona.com/delete-ssl  Rnalizers). You can also delete TLS-related objects and PVCs manually.

To manually clean up resources, do the following:

Delete Persistent Volume Claims.1

List PVCs. Replace the <namespace>  placeholder with your namespace:1

$ kubectl get pvc -n <namespace>

Sample output

NAME                             STATUS   VOLUME                                     
CAPACITY   ACCESS MODES   STORAGECLASS   VOLUMEATTRIBUTESCLASS   AGE
cluster1-instance1-mkwh-pgdata   Bound    pvc-c22220e9-c5e9-40b8-91b5-
3d437b40bdec   1Gi        RWO            standard-rwo   <unset>                 
4m17s
cluster1-instance1-nvh4-pgdata   Bound    pvc-61a64aca-5165-4d25-b055-
efc455d545b8   1Gi        RWO            standard-rwo   <unset>                 
4m17s
cluster1-instance1-qknb-pgdata   Bound    pvc-87bc6549-ee49-47f5-9f5e-
83a315f78fd9   1Gi        RWO            standard-rwo   <unset>                 
4m18s
cluster1-repo1                   Bound    pvc-380e1100-b679-4716-ae8f-
78372448b5f0   1Gi        RWO            standard-rwo   <unset>                 
4m15s

Delete PVCs related to your cluster. The following command deletes PVCs for the
cluster1  cluster:

2

kubectl delete pvc cluster1-instance1-mkwh-pgdata cluster1-instance1-
nvh4-pgdata cluster1-instance1-qknb-pgdata cluster1-repo1 -n 
<namespace>

Sample output

persistentvolumeclaim "cluster1-instance1-mkwh-pgdata" deleted
persistentvolumeclaim "cluster1-instance1-nvh4-pgdata" deleted
persistentvolumeclaim "cluster1-instance1-qknb-pgdata" deleted
persistentvolumeclaim "cluster1-repo1" deleted

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-metadata-name


Note that if your Custom Resource manifest includes the percona.com/delete-pvc
Rnalizer, all user Secrets will be automatically deleted when you delete the PVCs. To
prevent this from happening, disable the Rnalizer.

Delete the Secrets3

List Secrets:1

$ kubectl get secrets -n <namespace>

Delete the Secret:2

$ kubectl delete secret <secret_name> -n <namespace>



Retrieve Percona certified images
When preparing for the upgrade, you must have the list of compatible images for a speciRc Operator
version and the database version you wish to update to. You can either manually Rnd the images in
the list of certiRed images or you can get this list by querying the Version Service server.

What is the Version Service?

The Version Service is a centralized repository that the Percona Operator for PostgreSQL connects
to at scheduled times to get the latest information on compatible versions and valid image paths.
This service is a crucial part of the automatic upgrade process, and it is enabled by default. Its
landing page, check.percona.com , provides more details about the service itself.

How to query the Version Service

You can manually query the Version Service using the curl  command. The basic syntax is:

where:

<operator-version>  is the version of the Percona Operator for PostgreSQL you are using.

<pg-version>  is the version of PostgreSQL you want to get images for. This part is optional and
helps Rlter the results. It can be a speciRc PostgreSQL version (e.g.16.3), a recommended version
(e.g. 16-recommended), or the latest available version (e.g. 16-latest).

For example, to retrieve the list of images for Operator version 2.4.0  for PostgreSQL version 16.3 ,
use the following command:

$ curl https://check.percona.com/versions/v1/pg-operator/<operator-
version>/<pg-version> | jq -r '.versions[].matrix'

$ curl https://check.percona.com/versions/v1/pg-operator/2.4.0/16.3 | jq -r 
'.versions[].matrix'

Sample output

{
"pmm": {
    "2.42.0": {
        "imagePath": "percona/pmm-client:2.42.0",
        "imageHash": "14cb96de47e3bc239bf285f22ec6f170b4a1181301b19100f5b7dc22c210bf8c",



        "imageHashArm64": "",
        "status": "recommended",
        "critical": false
    }
},
"operator": {
    "2.4.0": {
        "imagePath": "percona/percona-postgresql-operator:2.4.0",
        "imageHash": "3012437bcfe793eaf34258aa44bb3bc404e7702711aefe4183324ee2d6928240",
        "imageHashArm64": "",
        "status": "recommended",
        "critical": false
    }
},
"postgresql": {
    "16.3": {
        "imagePath": "percona/percona-postgresql-operator:2.4.0-ppg16.3-postgres",
        "imageHash": "8248b290a88b881f1871fbca0de7da1acace31f94f795d1990e3ca3ca5dd3636",
        "imageHashArm64": "",
        "status": "recommended",
        "critical": false
    }
},
"pgbackrest": {
    "16.3": {
        "imagePath": "percona/percona-postgresql-operator:2.4.0-ppg16.3-pgbackrest2.51-
1",
        "imageHash": "3e59b19b619e5580292c4fa8f9efedea3e9d05b79af8e186643490b13a6f83a5",
        "imageHashArm64": "",
        "status": "recommended",
        "critical": false
    }
},
"pgbackrestRepo": {},
"pgbadger": {},
"pgbouncer": {
    "16.3": {
        "imagePath": "percona/percona-postgresql-operator:2.4.0-ppg16.3-
pgbouncer1.22.1",
        "imageHash": "37f466cea2330939f16c890a327b1d88b16cd85063ce45aff8255b8108accb08",
        "imageHashArm64": "",
        "status": "recommended",
        "critical": false
    }
},
"postgis": {
    "16.3": {
        "imagePath": "percona/percona-postgresql-operator:2.4.0-ppg16.3-postgres-
gis3.3.6",
        "imageHash": "7ca3172329ade3be97b9bd837a3315fcb87179357e420f76662a9d0e9a4a74d3",
        "imageHashArm64": "",
        "status": "recommended",
        "critical": false
    }
}
}



To narrow down the results to the recommended version of PostgreSQL 16, you can use:

This command helps you retrieve the PostgreSQL images available for a speciRc Operator version
( 2.4.0  in the following example):

$ curl https://check.percona.com/versions/v1/pg-operator/2.4.0/16-recommended 
| jq -r '.versions[].matrix'

$ curl -s https://check.percona.com/versions/v1/pg-operator/2.4.0 | jq -r 
'.versions[0].matrix.postgresql | to_entries[] | "\(.key)\t\
(.value.imagePath)\t\(.value.status)"'

Sample output

12.19   percona/percona-postgresql-operator:2.4.0-ppg12.19-postgres recommended
13.15   percona/percona-postgresql-operator:2.4.0-ppg13.15-postgres recommended
14.12   percona/percona-postgresql-operator:2.4.0-ppg14.12-postgres recommended
15.7    percona/percona-postgresql-operator:2.4.0-ppg15.7-postgres  recommended
16.3    percona/percona-postgresql-operator:2.4.0-ppg16.3-postgres  recommended



Troubleshooting



Percona Operator troubleshooting
This section provides information on how to troubleshoot issues when you install Percona Operator
for PostgreSQL.

Make sure you have CLI tool kubectl  installed to interact with Kubernetes API.

Check connection to Kubernetes cluster
It may happen that kubectl  you installed locally is not connected to your Kubernetes cluster.

To check connectivity to your Kubernetes API, run the following command:

If you see the output similar to the following, it means that kubectl  is connected to your
Kubernetes cluster:

If multiple Kubernetes conRgurations are present in kubeconfig ,check if you have set the correct
context. If the context is wrong, switch it. Here’s how:

1. Check the current context:

2. Switch the context :

3. Run the kubectl cluster-info  command again to verify that kubectl  is connected to your
Kubernetes cluster.

kubectl cluster-info

Sample output

Kubernetes control plane is running at https://<control-plane-ip>:49475
CoreDNS is running at https://<control-plane-ip>:49475/api/v1/namespaces/kube-
system/services/kube-dns:dns/proxy 

kubectl config current-context # Get the current Context

kubectl config use-context <Context-To-Be-Used>



If you are still running into issues, check with your Kubernetes cluster administrator to resolve the
connectivity or conRguration issues.

Troubleshoot Operator installation issues

1. Check the Operator logs

2. Installing the Operator requires speciRc privileges, such as the ability to create custom resource
deRnitions and other Kubernetes objects.

To verify that you have the necessary privileges, run the following script:

If you have insuTcient permissions, the script will show you which ones are missing for
installing a particular Operator. In this case, contact the Kubernetes cluster administrator.

kubectl logs deploy/<operator-deployment-name>

bash <(curl -s 
https://gist.githubusercontent.com/cshiv/6048bdd0174275b48f633549c69d0844/
raw/fd547b783a30b827362ee9f9ec03436f9bc79524/check_priviliges.sh)

Sample output

Checking privileges to install Percona Operators in kubernetes cluster...
Warning: Unable to check the privileges for resource 'issuers', check if the 
resource 'issuers' is present in the cluster
Warning: Unable to check the privileges for resource 'certificates', check if the 
resource 'certificates' is present in the cluster    

Warning: Some resources are not found in the kubernetes cluster.Check the Warning 
messages before you proceed
-----------------------------------------------------------------------------------
-------
GOOD TO INSTALL: Percona Operator for PostgreSQL
https://docs.percona.com/percona-operator-for-postgresql/index.html
-----------------------------------------------------------------------------------
-------
GOOD TO INSTALL: Percona Operator for MySQL based on Percona XtraDB Cluster
https://docs.percona.com/percona-operator-for-postgresql/index.html
-----------------------------------------------------------------------------------
-------
GOOD TO INSTALL: Percona Operator for MongoDB
https://docs.percona.com/percona-operator-for-mongodb/index.html



3. If you have the necessary privileges but the installation is still failing, review the Kubernetes
Events for more details. Keep in mind that Kubernetes Events are retained for only 60 minutes.

Events provide good information about aTnity issues, resource issues etc.

Troubleshooting database cluster issues

1. The Operator deployment must be in the Running  state for the database cluster to function
properly. Check the Operator Pod for restarts to identify potential issues.

2. Check the status of the database cluster

The cluster should typically be in the Running  state. It may briemy enter the initializing
state while reconciling changes. If the cluster remains in the initializing  state for an
extended period, investigate further to identify any underlying issues.

Additionally, you can describe the database cluster and search for the information in the State
and State Description  Relds:

3. Check the Operator logs

4. Check the events

Events can provide information like storage class issues, PVC binding issues etc

5. Check for the PVC, PV. Both of them should be in Bound  status

kubectl get events --sort-by=".lastTimestamp"

kubectl get pod <operator-pod-name>

kubectl get pg <database-cluster-name>

kubectl describe pg <database-cluster-name>

kubectl logs deploy/<operator-deployment-name>

kubectl get events --sort-by=".lastTimestamp"



u. Check for logs of database pods / Proxy pods

To check logs of init  containers or other sidecar containers, use the option -c  with the
container name:

7. Check for error details. Run the kubectl describe  command:

bash

   kubectl describe <database-pod-name>

1. To run commands inside a container, use the kubectl exec  command:

If you need an interactive shell to run multiple commands, use the -it  mag for an interactive
terminal:

2. If the pods are not running, it may not be possible to execute commands or open an interactive
shell. In such cases, consider using a sleep-forever  script to prevent the containers from
restarting repeatedly.

kubectl get pvc

kubectl get pv

kubectl logs <database-pod-name>

kubectl logs <proxy-pod-name>

kubectl logs <proxy-pod-name> -c postgres-startup

```bash
kubectl describe <proxy-pod-name>
```

Check the information in the `Status` section. The `State` and `State 
Description` fields explain why the Pod reports errors.

kubectl exec <pod-name> -- <command>

kubectl exec -it <pod-name> -- sh



See the Disable health check probes for maintenance section for steps.



Initial troubleshooting
Percona Operator for PostgreSQL uses Custom Resources  to manage options for the various
components of the cluster.

PerconaPGCluster  Custom Resource with Percona PostgreSQL Cluster options (it has handy
pg  shortname also),

PerconaPGBackup  and PerconaPGRestore  Custom Resources contain options for pgBackRest
used to backup PostgreSQL Cluster and to restore it from backups ( pg-backup  and pg-restore
shortnames are available for them).

The Rrst thing you can check for the Custom Resource is to query it with kubectl get  command:

The Custom Resource should have Ready  status.

You can check which Percona’s Custom Resources are present and get some information about them as follows:

$ kubectl get pg

Expected output

NAME       ENDPOINT                         STATUS   POSTGRES   PGBOUNCER   AGE
cluster1   cluster1-pgbouncer.default.svc   ready    3          3           30m

Note

$ kubectl api-resources | grep -i percona

Expected output

perconapgbackups          pg-backup    pgv2.percona.com/v2            true         
PerconaPGBackup
perconapgclusters         pg           pgv2.percona.com/v2            true         
PerconaPGCluster
perconapgrestores         pg-restore   pgv2.percona.com/v2            true         
PerconaPGRestore

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/


Check the Pods
If Custom Resource is not getting Ready  status, it makes sense to check individual Pods. You can
do it as follows:

The above command provides the following insights:

READY  indicates how many containers in the Pod are ready to serve the traTc. In the above
example, cluster1-repo-host-0  container has all two containers ready (2/2). For an
application to work properly, all containers of the Pod should be ready.

STATUS  indicates the current status of the Pod. The Pod should be in a Running  state to conRrm
that the application is working as expected. You can Rnd out other possible states in the oTcial
Kubernetes documentation .

RESTARTS  indicates how many times containers of Pod were restarted. This is impacted by the
Container Restart Policy . In an ideal world, the restart count would be zero, meaning no issues
from the beginning. If the restart count exceeds zero, it may be reasonable to check why it
happens.

AGE : Indicates how long the Pod is running. Any abnormality in this value needs to be checked.

You can Rnd more details about a speciRc Pod using the kubectl describe pods <pod-name>
command.

$ kubectl get pods

Expected output

NAME                                           READY   STATUS      RESTARTS   AGE
cluster1-backup-4vwt-p5d9j                     0/1     Completed   0          97m
cluster1-instance1-b5mr-0                      4/4     Running     0          99m
cluster1-instance1-b8p7-0                      4/4     Running     0          99m
cluster1-instance1-w7q2-0                      4/4     Running     0          99m
cluster1-pgbouncer-79bbf55c45-62xlk            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9g4cb            2/2     Running     0          99m
cluster1-pgbouncer-79bbf55c45-9nrmd            2/2     Running     0          99m
cluster1-repo-host-0                           2/2     Running     0          99m
percona-postgresql-operator-79cd8586f5-2qzcs   1/1     Running     0          120m

$ $ kubectl describe pods cluster1-instance1-b5mr-0

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-phase
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy


This gives a lot of information about containers, resources, container status and also events. So,
describe output should be checked to see any abnormalities.

Expected output

...
Name:         cluster1-instance1-b5mr-0
Namespace:    default
...
Controlled By:  StatefulSet/cluster1-instance1-b5mr
Init Containers:
 postgres-startup:
...
Containers:
 database:
...
 pgbackrest:
...
   Restart Count:  0
   Liveness:   http-get https://:8008/liveness delay=3s timeout=5s period=10s #success=1 
#failure=3
   Readiness:  http-get https://:8008/readiness delay=3s timeout=5s period=10s 
#success=1 #failure=3
   Environment:
...
   Mounts:
...
Volumes:
...
Events:
...



Check Storage-related objects
Storage-related objects worth to check in case of problems are the following ones:

Persistent Volume Claims (PVC) and Persistent Volumes (PV) , which are playing a key role in
stateful applications.

Storage Class , which automates the creation of Persistent Volumes and the underlying
storage.

It is important to remember that PVC is namespace-scoped, but PV and Storage Class are cluster-
scoped.

Check the PVC
You can check all the PVC with the following command (use different namespace name instead of
postgres-operator , if needed):

STATUS: shows the state  of the PVC:

For normal working of an application, the status should be Bound .

If the status is not Bound , further investigation is required.

VOLUME: is the name of the Persistent Volume with which PVC is Bound to. Obviously, this Reld
will be occupied only when a PVC is Bound.

CAPACITY: it is the size of the volume claimed.

$ kubectl get pvc -n postgres-operator

Expected output

NAME                             STATUS   VOLUME                                     
CAPACITY   ACCESS MODES   STORAGECLASS   AGE
cluster1-instance1-4xkv-pgdata   Bound    pvc-2d20abb7-5350-4810-a098-fbdfbffda041   1Gi        
RWO            standard       11h
cluster1-instance1-njt9-pgdata   Bound    pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b   1Gi        
RWO            standard       11h
cluster1-instance1-qhh6-pgdata   Bound    pvc-7228300b-81de-4a60-a615-8ca935c95139   1Gi        
RWO            standard       11h
cluster1-repo1                   Bound    pvc-b2e0bac3-993d-499e-b311-3aa7b9851bc2   1Gi        
RWO            standard       11h

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#phase


STORAGECLASS: it indicates the Kubernetes storage class  used for dynamic provisioning of
Volume.

ACCESS MODES: Access mode  indicates how Volume is used with the Pods. Access modes
should have write permission if the application needs to write data, which is obviously true in case
of databases.

Now you can check a speciRc PVC for more details using its name as follows:

You can use a number of Custom Resource options to tweaking PVC for the components of your
cluster:

options under instances.walVolumeClaimSpec  allow you to set access modes and requested
storage size for PostgreSQL Write-ahead Log storage,

options under instances.dataVolumeClaimSpec  allow you to set access modes and also
requests and limits for PostgreSQL database storage,

options under instances.tablespaceVolumes.dataVolumeClaimSpec  allow you to set access

$ kubectl get pvc cluster1-instance1-4xkv-pgdata -n postgres-operator -oyaml 
# output stripped for brevity, name of PVC may vary

Expected output

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  ...
  name: cluster1-instance1-4xkv-pgdata
  namespace: postgres-operator
  ...
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 1G
  storageClassName: standard
  volumeMode: Filesystem
  volumeName: pvc-2d20abb7-5350-4810-a098-fbdfbffda041
status:
  accessModes:
  - ReadWriteOnce
  capacity:
    storage: 24Gi
  phase: Bound

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes


modes and requested storage size for PostgreSQL tablespace volumes,

options under backups.pgbackrest.repos.volume.volumeClaimSpec  allow you to set access
modes and requested storage size for the pgBackRest storage.

Check the PV
It is important to remember that PV is a cluster-scoped Object. If you see any issues with attaching a
Volume to a Pod, PV and PVC might be looked upon.

Check all the PV present in the Kubernetes cluster as follows:

Now you can check a speciRc PV for more details using its name as follows:

$ kubectl get pv

Expected output

NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   
STATUS   CLAIM                                              STORAGECLASS   REASON   AGE
pvc-2d20abb7-5350-4810-a098-fbdfbffda041   1Gi        RWO            Delete           
Bound    postgres-operator/cluster1-instance1-4xkv-pgdata   standard                11h
pvc-7228300b-81de-4a60-a615-8ca935c95139   1Gi        RWO            Delete           
Bound    postgres-operator/cluster1-instance1-qhh6-pgdata   standard                11h
pvc-b2e0bac3-993d-499e-b311-3aa7b9851bc2   1Gi        RWO            Delete           
Bound    postgres-operator/cluster1-repo1                   standard                11h
pvc-f2e9a722-fd30-435b-ade4-9edf20b2104b   1Gi        RWO            Delete           
Bound    postgres-operator/cluster1-instance1-njt9-pgdata   standard                11h

$ kubectl get pv pvc-2d20abb7-5350-4810-a098-fbdfbffda041 -oyaml



Fields to check if there are any issues in binding with PVC, are the claimRef  and nodeAffinity .

The claimRef  one indicates to which PVC this volume is bound to. This means that if by any
chance PVC is deleted (e.g. by the appropriate Rnalizer), this section needs to be modiRed so that it
can bind to a new PVC.

The spec.nodeAffinity  Reld may inmuence the PV availability as well: for example, it can make
Volume accessed in one availability zone only.

Expected output

apiVersion: v1
kind: PersistentVolume
metadata:
  ...
  name: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b
  ...
spec:
  accessModes:
  - ReadWriteOnce
  capacity:
    storage: 1Gi
  claimRef:
    apiVersion: v1
    kind: PersistentVolumeClaim
    name: cluster1-instance1-4xkv-pgdata
    namespace: postgres-operator
    resourceVersion: "912868"
    uid: f3e7097f-accd-4f5d-9c9d-6f29b54a368b
 gcePersistentDisk:
    fsType: ext4
    pdName: pvc-f3e7097f-accd-4f5d-9c9d-6f29b54a368b
 nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: topology.kubernetes.io/zone
          operator: In
          values:
          - us-central1-a
        - key: topology.kubernetes.io/region
          operator: In
          values:
          - us-central1
  persistentVolumeReclaimPolicy: Delete
  storageClassName: standard
  volumeMode: Filesystem
status:
  phase: Bound



Check the StorageClass
StorageClass is also a cluster-scoped object, and it indicates what type of underlying storage is used
for the Volumes.

You can set StorageClass in instances.dataVolumeClaimSpec.storageClassName ,
instances.walVolumeClaimSpec.storageClassName , and
backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName  Custom Resource
options.

The following command checks all the storage class present in the Kubernetes cluster, and allows to
see which storage class is the default one:

If some PVC does not refer any storage class explicitly, it means that the default storage class is
used. Ensure there is only one default Storage class.

You can check a speciRc storage class as follows:

$ kubectl get sc

Expected output

NAME                 PROVISIONER             RECLAIMPOLICY   VOLUMEBINDINGMODE      
ALLOWVOLUMEEXPANSION   AGE
premium-rwo          pd.csi.storage.gke.io   Delete          WaitForFirstConsumer   true                   
44d
standard (default)   kubernetes.io/gce-pd    Delete          Immediate              true                   
44d
standard-rwo         pd.csi.storage.gke.io   Delete          WaitForFirstConsumer   true                   
44d

$ kubectl get sc standard -oyaml



Important things to observe here are the following ones:

Check if the provisioner and parameters are indicating the type of storage you intend to provision.

Check the volumeBindingMode  especially if the storage cannot be accessed across availability
zones. “WaitForFirstConsumer” volumeBindingMode ensures volume is provisioned only after a
Pod requesting the Volume is created.

If you are going to rely on the Operator storage scaling functionality, ensure the storage class
supports PVC expansion (it should have allowVolumeExpansion: true  in the output of the
above command).

You can set PVC storage class with the following Custom Resource options:

instances.walVolumeClaimSpec.storageClassName  allows you to set storage class for
PostgreSQL Write-ahead Log storage,

instances.dataVolumeClaimSpec.storageClassName  allows you to set storage class for
PostgreSQL database storage,

instances.tablespaceVolumes.dataVolumeClaimSpec.storageClassName  allows you to set
storage class for PostgreSQL tablespace volumes,

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName  allows you to set
storage class for the pgBackRest storage.

Expected output

allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
   storageclass.kubernetes.io/is-default-class: "true"
 creationTimestamp: "2022-10-09T06:28:03Z"
 labels:
   addonmanager.kubernetes.io/mode: EnsureExists
 name: standard
 resourceVersion: "906"
 uid: 933d37db-990b-4b2d-bf3a-dd091d0b00ae
parameters:
 type: pd-standard
provisioner: kubernetes.io/gce-pd
reclaimPolicy: Delete
volumeBindingMode: Immediate

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode


Exec into the containers
If you want to examine the contents of a container “in place” using remote access to it, you can use
the kubectl exec  command. It allows you to run any command or just open an interactive shell
session in the container. Of course, you can have shell access to the container only if container
supports it and has a “Running” state.

In the following examples we will access the container database  of the cluster1-instance1-
b5mr-0  Pod.

Run date  command:

You will see an error if the command is not present in a container. For example, trying to run the
time  command, which is not present in the container, by executing kubectl exec -ti 
cluster1-instance1-b5mr-0 -c database -- time  would show the following result:

Print log Rles to a terminal:

Similarly, opening an Interactive terminal, executing a pair of commands in the container, and
exiting it may look as follows:

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- date

Expected output

Wed Jun 14 11:18:47 UTC 2023

OCI runtime exec failed: exec failed: unable to start container process: 
exec: "time": executable file not found in $PATH: unknown command 
terminated with exit code 126

$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- cat 
/pgdata/pg16/log/postgresql-*.log



$ kubectl exec -ti cluster1-instance1-b5mr-0 -c database -- bash
bash-4.4$ hostname
cluster1-pxc-0
bash-4.4$ ls /pgdata/pg16/log/
postgresql-Wed.log
bash-4.4$ exit
exit
$



Check the logs
Logs provide valuable information. It makes sense to check the logs of the database Pods and the
Operator Pod. Following mags are helpful for checking the logs with the kubectl logs  command:

Flag Description

-c , --
container

=

<containe

r-name>

Print log of a speciRc container in case of multiple containers in a Pod

-f , --
follow

Follows the logs for a live output

--since=

<time>

Print logs newer than the speciRed time, for example: --since="10s"

--

timestamp

s

Print timestamp in the logs (timezone is taken from the container)

-p , --
previous

Print previous instantiation of a container. This is extremely useful in case of container
restart, where there is a need to check the logs on why the container restarted. Logs of
previous instantiation might not be available in all the cases.

In the following examples we will access containers of the cluster1-instance1-b5mr-0  Pod.

Check logs of the database  container:

Check logs of the pgbackrest  container:

Filter logs of the database  container which are not older than 600 seconds:

$ kubectl logs cluster1-instance1-b5mr-0 --container database

$ kubectl logs cluster1-instance1-b5mr-0 --container pgbackrest

$ kubectl logs cluster1-instance1-b5mr-0 --container database --since=600s



Check logs of a previous instantiation of the database  container, if any:

Increase pgBackRest log verbosity
The pgBackRest tool used for backups supports different log verbosity levels . By default, it logs
warnings and errors, but sometimes Rxing backup/restore issues can be simpler when you get more
debugging information from it.

Log verbosity is controlled by pgBackRest –log-level-stderr  option.

You can add it to the deploy/backup.yaml  Rle to use it with on-demand backups as follows:

$ kubectl logs cluster1-instance1-b5mr-0 --container database --previous

apiVersion: pgv2.percona.com/v2
kind: PerconaPGBackup
metadata:
  name: backup1
spec:
  pgCluster: cluster1
  repoName: repo1
  options:
  - --log-level-stderr=debug

https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr
https://pgbackrest.org/configuration.html#section-log/option-log-level-stderr


Manual management of database clusters
deployed with Percona Operator for
PostgreSQL
The purpose of the Operator is to automate database management tasks for you. However, you may
need to manage the database cluster manually. For example, to troubleshoot issues or for
maintenance.

The following sections explain how you can manage your cluster manually.

Disable health check probes for maintenance
Probes are tasks Kubernetes runs to gather information about the health and status of containers
running within Pods. They serve as a mechanism to ensure the system is running smoothly by
periodically checking the state of applications and services.

Kubernetes has various types of probes:

Startup probe veriRes whether the application within a container is started

Liveness probe determines when to restart a Pod

Readiness probe checks that the container is ready to start accepting traTc

Sometimes it’s necessary to take a manual control over the postgres  process for maintenance.
This means you need to disable a Kubernetes liveness probe so that it doesn’t restart the database
container during the maintenance period.

Here’s what you need to do:

1. Create a sleep-forever  Rle in the data directory with the following command:

2. Delete the Pod:

3. After the Pod restarts, it won’t start PostgreSQL. You can check it with the following command:

$ kubectl exec cluster1-instance1-24b8-0 -- touch /pgdata/sleep-forever

$ kubectl delete pod cluster1-instance1-24b8-0



4. Now you can start PostgreSQL manually:

5. When you are done with the maintenance, remove the sleep-forever  Rle to re-enable the
liveness probe.

Stop reconciliation by putting a cluster into an
unmanaged mode
The Operator reconciles the database cluster to ensure its current state doesn’t differ from the state
deRned in the conRguration. It can automatically install, update, or repair the cluster when needed.

By doing this, the Operator might interfere with your operations during the maintenance. Therefore,
you can put a cluster in an unmanaged mode to stop the Operator from reconciling the cluster at all.

Edit the deploy/cr.yaml  Custom Resource manifest and set the spec.unmanaged  option to true :

$ kubectl logs cluster1-instance1-24b8-0 database

Expected output

The pgdata/sleep-forever file is detected, node entered an infinite sleep
If you want to exit from the infinite sleep, remove the pgdata/sleep-forever file

$ kubectl exec cluster1-instance1-24b8-0 -- pg_ctl -D /pgdata/pg17 start

Expected output

2025-04-01 16:27:41.850 UTC [1434] LOG:  pgaudit extension initialized
2025-04-01 16:27:42.075 UTC [1434] LOG:  redirecting log output to logging 
collector process
2025-04-01 16:27:42.075 UTC [1434] HINT:  Future log output will appear in 
directory "log".
 done
server started

$ kubectl exec cluster1-instance1-24b8-0 -- rm /pgdata/sleep-forever



Apply the changes:

Putting a cluster in an unmanaged mode doesn’t disable any of the health check probes already conRgured for
containers. The Operator is only responsible for conRguring the probes, not for running them. Refer to the
Disabling health check probes for maintenance section for the steps.

Override Patroni configuration

For a whole cluster

The Operator creates a ConRgMap called <cluster-name>-config  to store a Patroni cluster
conRguration. If you just edit the ConRgMap contents, the Operator will immediately rewrite and
remove your changes. To override anything in this ConRgMap and keep the changes, you need to
annotate it using a special annotation pgv2.percona.com/override-config .

Here is the example command for the cluster named cluster1 :

As long as the ConRgMap has this pgv2.percona.com/override-config  annotation, the Operator
doesn’t rewrite your changes. You can edit the ConRgMap’s contents however you want.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
  name: cluster1
spec:
  unmanaged: true
  ...

$ kubectl apply -f deploy/cr.yaml -n <namespace>

Warning

$ kubectl annotate cm cluster1-config pgv2.percona.com/override-config=true

Expected output

configmap/cluster1-config annotated



The Operator does not validate your conRguration changes.

Before applying any changes, consult the Patroni documentation  to ensure your conRguration is correct. This
will help you avoid issues caused by invalid settings.

It takes some time for your changes of ConRgMap to propagate to running containers. You can verify
if changes are propagated by checking the mounted Rle in containers. For example:

Operator doesn’t apply a new conRguration for Patroni automatically. You must run patronictl 
reload <cluster_name> <pod-name>  to apply it after your changes are propagated to the
container.

Don’t forget to remove this annotation once you’ve Rnished. It’s not recommended to use this feature to
permanently override Patroni conRguration. As long as this annotation exists, the Operator won’t touch the
ConRgMap and you might have problems with your cluster.

To remove the annotation, use the following command:

For an individual Pod

Operator creates a ConRgMap called <pod-name>-config  to store Patroni instance conRguration
for each Pod. If you just edit the ConRgMap contents, the Operator will immediately rewrite and
remove your changes. To override anything in these ConRgMaps and keep the changes, you need to
annotate them using a special annotation:

Warning

$ kubectl exec -it cluster1-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_cluster.yaml

Warning

$ kubectl annotate cm cluster1-config pgv2.percona.com/override-config-

$ kubectl annotate cm cluster1-instance1-24b8-config 
pgv2.percona.com/override-config=true

https://patroni.readthedocs.io/en/latest/patroni_configuration.html


As long as the ConRgMap has the pgv2.percona.com/override-config  annotation, the Operator
doesn’t rewrite your changes. You can edit the ConRgMap’s contents however you want.

The Operator does not validate your conRguration changes.

Before applying any changes, consult the Patroni documentation  to ensure your conRguration is correct. This
will help you avoid problems caused by invalid settings.

It takes some time for your changes of ConRgMap to propagate to running containers. You can verify
if changes are propagated by checking the mounted Rle in containers for a Pod. For example:

Operator doesn’t apply a new conRguration automatically. You must run patronictl reload 
<cluster_name> <pod_name>  to apply it after your changes are propagated to the container.

To Rnd the cluster name, run:

Expected output

configmap/cluster1-instance1-24b8-config annotated

Warning

$ kubectl exec -it cluster1-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_cluster.yaml

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl list

https://patroni.readthedocs.io/en/latest/patroni_configuration.html


Don’t forget to remove this annotation once you’ve Rnished. It’s not recommended to use this feature to
permanently override Patroni conRguration. As long as this annotation exists, the Operator won’t touch the
ConRgMap and you might have problems with your cluster.

To remove the annotation, use the following command:

Override PostgreSQL parameters
Use the patronictl show-config  command to print PostgreSQL parameters used in the cluster.
For example:

Expected output

Cluster: cluster1-ha (7523193408153182293) -------------------------+---------+---------
--+----+-----------+
| Member                    | Host                                    | Role    | State     
| TL | Lag in MB |
+---------------------------+-----------------------------------------+---------+-------
----+----+-----------+
| cluster1-instance1-24b8-0 | cluster1-instance1-bw58-0.cluster1-pods | Replica | 
streaming |  3 |         0 |
| cluster1-instance1-tmqj-0 | cluster1-instance1-tmqj-0.cluster1-pods | Leader  | 
running   |  3 |           |
| cluster1-instance1-xf85-0 | cluster1-instance1-xf85-0.cluster1-pods | Replica | 
streaming |  3 |         0 |
+---------------------------+-----------------------------------------+---------+-------
----+----+-----------+

Warning

$ kubectl annotate cm cluster1-instance1-24b8-0 pgv2.percona.com/override-config-

$ kubectl exec cluster1-instance1-24b8-0 -- patronictl show-config



Use the patronictl edit-config  command to change any PostgreSQL parameter.

For example, run the following command to change the restore_command  parameter:

Expected output

loop_wait: 10
postgresql:
  parameters:
    archive_command: 'pgbackrest --stanza=db archive-push "%p" && timestamp=$(pg_waldump 
"%p" | grep -oP "COMMIT \K[^;]+" | sed -E "s/([0-9]{4}-[0-9]{2}-[0-9]{2}) ([0-9]{2}:[0-
9]{2}:[0-9]{2}\.[0-9]{6}) (UTC|[\\+\\-][0-9]{2})/\1T\2\3/" | sed "s/UTC/Z/" | tail -n 1 
| grep -E "^[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{6}(Z|[\+\-][0-
9]{2})$"); if [ ! -z ${timestamp} ]; then echo ${timestamp} > 
/pgdata/latest_commit_timestamp.txt; fi'
    archive_mode: 'on'
    archive_timeout: 60s
    huge_pages: 'off'
    jit: 'off'
    password_encryption: scram-sha-256
    restore_command: pgbackrest --stanza=db archive-get %f "%p"
    ssl: 'on'
    ssl_ca_file: /pgconf/tls/ca.crt
    ssl_cert_file: /pgconf/tls/tls.crt
    ssl_key_file: /pgconf/tls/tls.key
    track_commit_timestamp: 'true'
    unix_socket_directories: /tmp/postgres
    wal_level: logical
  pg_hba:
  - local all "postgres" peer
  - hostssl replication "_crunchyrepl" all cert
  - hostssl "postgres" "_crunchyrepl" all cert
  - host all "_crunchyrepl" all reject
  - host all "monitor" "127.0.0.0/8" scram-sha-256
  - host all "monitor" "::1/128" scram-sha-256
  - host all "monitor" all reject
  - hostssl all "_crunchypgbouncer" all scram-sha-256
  - host all "_crunchypgbouncer" all reject
  - hostssl all all all md5
  use_pg_rewind: true
  use_slots: false
ttl: 30

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl edit-config --pg 
restore_command=/bin/true



This command changes the shared_preload_libraries  parameter:

If you update any object controlled by the Operator, it’ll reconcile the cluster and your conRguration changes will
be reverted. You can put the cluster in an unmanaged mode to prevent this.

Override pg_hba  entries

Expected output

---
+++
@@ -9,7 +9,7 @@
     huge_pages: 'off'
     jit: 'off'
     password_encryption: scram-sha-256
-    restore_command: pgbackrest --stanza=db archive-get %f "%p"
+    restore_command: /bin/true
     ssl: 'on'
     ssl_ca_file: /pgconf/tls/ca.crt
     ssl_cert_file: /pgconf/tls/tls.crt    

Apply these changes? [y/N]:

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl edit-config --pg 
shared_preload_libraries=""

Expected output

---
+++
@@ -11,7 +11,6 @@
     password_encryption: scram-sha-256
     pg_stat_monitor.pgsm_query_max_len: '2048'
     restore_command: pgbackrest --stanza=db archive-get %f "%p"
-    shared_preload_libraries: pg_stat_monitor
     ssl: 'on'
     ssl_ca_file: /pgconf/tls/ca.crt
     ssl_cert_file: /pgconf/tls/tls.crt    

Apply these changes? [y/N]:

Warning



You may want to append entries to pg_hba . You can use the spec.patroni.postgresl.pg_hba
Reld to add your rules.

The order of parameters matters in pg_hba.conf , so consider overriding the list completely. For
this, you can use the patronictl edit-config  command:

If you update any object controlled by the Operator, it’ll reconcile the cluster and your conRguration changes will
be reverted. You can put the cluster in an unmanaged mode to prevent this.

  patroni:
    dynamicConfiguration:
      postgresql:
        pg_hba:
        - local all all trust
        - reject all all all

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl edit-config --set 
postgresql.pg_hba='[
  "local all all trust",
  "reject all all all"
]'

Warning



Reinitialize replicas
When you create a new Percona PostgreSQL cluster, the Operator uses the basebackup  method to
create replicas for it. After the database instances are ready, the Operator automatically creates a full
backup. Once this backup Rnishes successfully, the Operator updates the Patroni conRguration and
prepends (puts as the Rrst method) pgBackRest  in the create_replica_methods  list so that new
replicas are created using it.

The Operator doesn’t run patronictl reload  in old replicas even if Patroni instance conRgurations are updated
to put pgBackRest  as the Rrst method in the create_replica_methods  list. For this conRguration to run into
force, you need to either restart the Pods or manually run patronictl reload <cluster_name>  on all old
replicas.

You may need to reinitialize cluster replicas. For example, if the data on the replica becomes
corrupted or inconsistent with the primary node. Reinitialization ensures the replica is rebuilt with the
correct data. Or, if the replica falls signiRcantly behind the primary or encounters issues that prevent
successful synchronization, reinitialization can reset the replica to match the current state of the
primary.

This document provides the ways how to do it.

Reinitialize by deleting replica Pod and its
PersistentVolumeClaim
You can force reinitialization by deleting the Pod and its PersistentVolumeClaim:

Warning

$ kubectl delete pvc/cluster1-instance1-24b8-pgdata pod/cluster1-instance1-
24b8-0

Expected output

persistentvolumeclaim "cluster1-instance1-24b8-pgdata" deleted
pod "cluster1-instance1-24b8-0" deleted



The Operator will reinitialize a replica using the method conRgured in this instance’s Patroni
conRguration. This conRguration is stored within the ConRgMap for the instance. Use the following
command to Rnd it:

Reinitialize with patronictl reinit
You can reinitialize a replica using the patronictl reinit  command. Note that conRguration in
ConRgMap might not have been applied to a running Patroni instance. The recommended approach
is to Rrst run patronictl reload <cluster_name>  and then run patronictl reinit .

For example:

1. List and verify Patroni conRguration:

2. Find the cluster name:

$ kubectl get cm cluster1-instance1-24b8-config

Expected output

NAME                             DATA   AGE
cluster1-instance1-24b8-config   1      95m

$ kubectl exec -it cluster1-instance1-24b8-0 -- cat 
/etc/patroni/~postgres-operator_instance.yaml

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl list



3. Reload the conRguration:

4. Reinitialize the replica:

Expected output

Cluster: cluster1-ha (7523193408153182293) -------------------------+---------+----
-------+----+-----------+
| Member                    | Host                                    | Role    | 
State     | TL | Lag in MB |
+---------------------------+-----------------------------------------+---------+--
---------+----+-----------+
| cluster1-instance1-24b8-0 | cluster1-instance1-bw58-0.cluster1-pods | Replica | 
streaming |  3 |         0 |
| cluster1-instance1-84xm-0 | cluster1-instance1-tmqj-0.cluster1-pods | Leader  | 
running   |  3 |           |
| cluster1-instance1-nv28-0 | cluster1-instance1-xf85-0.cluster1-pods | Replica | 
streaming |  3 |         0 |
+---------------------------+-----------------------------------------+---------+--
---------+----+-----------+

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl reload 
cluster1-ha cluster1-instance1-24b8-0

Expected output

+ Cluster: cluster1-ha (7487948770079264836) -------------------------+---------+--
---------+----+-----------+
| Member                    | Host                                    | Role    | 
State     | TL | Lag in MB |
+---------------------------+-----------------------------------------+---------+--
---------+----+-----------+
| cluster1-instance1-24b8-0 | cluster1-instance1-24b8-0.cluster1-pods | Replica | 
streaming |  1 |         0 |
| cluster1-instance1-84xm-0 | cluster1-instance1-84xm-0.cluster1-pods | Leader  | 
running   |  1 |           |
| cluster1-instance1-nv28-0 | cluster1-instance1-nv28-0.cluster1-pods | Replica | 
streaming |  1 |         0 |
+---------------------------+-----------------------------------------+---------+--
---------+----+-----------+
Are you sure you want to reload members cluster1-instance1-24b8-0? [y/N]: y
Reload request received for member cluster1-instance1-24b8-0 and will be processed 
within 10 seconds

$ kubectl exec -it cluster1-instance1-24b8-0 -- patronictl reinit 
cluster1-ha cluster1-instance1-24b8-0



Configure create_replica_methods
The Operator uses basebackup  and pgBackRest  methods to create replicas by default. These
methods are deRned within the create_replica_methods  conRguration block of a Patroni
instance.

If you want to change create_replica_methods  list for any reason, you can use the
spec.patroni.create_replica_methods  option in the deploy/cr.yaml  Custom Resource
manifest:

Apply this conRguration:

Expected output

+ Cluster: cluster1-ha (7487948770079264836) -------------------------+---
------+-----------+----+-----------+
| Member                    | Host                                    | 
Role    | State     | TL | Lag in MB |
+---------------------------+-----------------------------------------+---
------+-----------+----+-----------+
| cluster1-instance1-24b8-0 | cluster1-instance1-24b8-0.cluster1-pods | 
Replica | streaming |  1 |         0 |
| cluster1-instance1-84xm-0 | cluster1-instance1-84xm-0.cluster1-pods | 
Leader  | running   |  1 |           |
| cluster1-instance1-nv28-0 | cluster1-instance1-nv28-0.cluster1-pods | 
Replica | streaming |  1 |         0 |
+---------------------------+-----------------------------------------+---
------+-----------+----+-----------+
Are you sure you want to reinitialize members cluster1-instance1-24b8-0? 
[y/N]: y
Success: reinitialize for member cluster1-instance1-24b8-0

apiVersion: pgv2.percona.com/v2
kind: PerconaPGCluster
metadata:
  name: cluster1
spec:
  patroni:
    createReplicaMethods:
    - basebackup
    - pgbackrest
  ...



The Operator updates Patroni instances’ ConRgMaps. You can check their conRguration with this
command:

After the ConRgMap is updated, it takes some time for changes to appear in mounted Rles in
containers. You can verify the updates by manually checking the Rle:

$ kubectl apply -f deploy/cr.yaml

$ kubectl get configmap cluster1-instance1-24b8-config -o yaml

Expected output

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster1-instance1-24b8-config
data:
  patroni.yaml: |
    # Generated by postgres-operator. DO NOT EDIT UNLESS YOU KNOW WHAT YOU'RE DOING.
    # If you want to override the config, annotate this ConfigMap with 
pgv2.percona.com/override-config=true
    kubernetes: {}
    postgresql:
      basebackup:
      - waldir=/pgdata/pg17_wal
      create_replica_methods:
      - basebackup
      - pgbackrest
      pgbackrest:
        command: '''bash'' ''-ceu'' ''--'' ''install --directory --mode=0700 
"${PGDATA?}"
          && exec "$@"'' ''-'' ''pgbackrest'' ''restore'' ''--delta'' ''--stanza=db''
          ''--repo=1'' ''--link-map=pg_wal=/pgdata/pg17_wal'' ''--type=standby'''
        keep_data: true
        no_leader: true
        no_params: true
      pgpass: /tmp/.pgpass
      use_unix_socket: true
    restapi: {}
    tags: {}

$ kubectl exec -it cluster1-instance1-24b8-0 -- cat /etc/patroni/~postgres-
operator_instance.yaml



Though the Operator updates the ConRgMaps, it doesn’t automatically apply the new conRguration
for Patroni. To make Patroni aware of the changes, reload its conRguration on every instance with
the patronictl reload <cluster_name> <pod-name>  command.

Expected output

# Generated by postgres-operator. DO NOT EDIT UNLESS YOU KNOW WHAT YOU'RE DOING.
# If you want to override the config, annotate this ConfigMap with 
pgv2.percona.com/override-config=true
kubernetes: {}
postgresql:
  basebackup:
  - waldir=/pgdata/pg17_wal
  create_replica_methods:
  - basebackup
  - pgbackrest
  pgbackrest:
    command: '''bash'' ''-ceu'' ''--'' ''install --directory --mode=0700 "${PGDATA?}"
      && exec "$@"'' ''-'' ''pgbackrest'' ''restore'' ''--delta'' ''--stanza=db''
      ''--repo=1'' ''--link-map=pg_wal=/pgdata/pg17_wal'' ''--type=standby'''
    keep_data: true
    no_leader: true
    no_params: true
  pgpass: /tmp/.pgpass
  use_unix_socket: true
restapi: {}
tags: {}



Reference



Custom Resource options
The Cluster is conRgured via the deploy/cr.yaml  Rle.

metadata

The metadata part of this Rle contains the following keys:

name  ( cluster1  by default) sets the name of your Percona Distribution for PostgreSQL Cluster;
it should include only URL-compatible characters , not exceed 22 characters, start with an
alphabetic character, and end with an alphanumeric character;

annotations.pgv2.percona.com/custom-patroni-version  Kubernetes annotation  which
allows turning off automatic Patroni version detection by the Operator. You can use this
annotation to set the version manually (“3” for Patroni 3.x, “4” for Patroni 4.x).

finalizers.percona.com/delete-ssl  if present, activates the Finalizer  which deletes
objects, created for SSL (Secret, certiRcate, and issuer) after the cluster deletion event (off by
default).

finalizers.percona.com/delete-pvc  if present, activates the Finalizer  which deletes
Persistent Volume Claims  for the database cluster Pods and user Secrets after the deletion
event (off by default).

finalizers.percona.com/delete-backups  if present, activates the Finalizer  which deletes
all the backups of the database cluster from all conRgured repos on cluster deletion event (off by
default). delete-backups  Lnalizer is in tech preview state, and it is not yet recommended for
production environments.

Top level spec  elements
The spec part of the deploy/cr.yaml  Rle contains the following:

crVersion

Version of the Operator the Custom Resource belongs to.

Value type Example

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#finalizers
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


 string 2.8.0

metadata.annotations

The Kubernetes annotations  metadata to be set at a global level for all resources created by the
Operator.

Value type Example

 label example-annotation: value

metadata.labels

The Kubernetes labels  metadata to be set at a global level for all resources created by the
Operator.

Value type Example

 label example-label: value

tlsOnly

Enforce the Operator to use only Transport Layer Security (TLS) for both internal and external
communications.

Value type Example

 boolean false

standby.enabled

Enables or disables running the cluster in a standby mode (read-only copy of an existing cluster,
useful for disaster recovery, etc).

Value type Example

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


 boolean false

standby.host

Host address of the primary cluster this standby cluster connects to.

Value type Example

 string "<primary-ip>"

standby.port

Port number used by a standby copy to connect to the primary cluster.

Value type Example

 string "<primary-port>"

openshift

Set to true  if the cluster is being deployed on OpenShift, set to false  otherwise, or unset it for
auto-detection.

Value type Example

 boolean true

autoCreateUserSchema

If set to true , the cluster will have automatically created schemas for the custom user deRned in
the spec.users  subsection for all of the databases listed for this speciRc user.

Value type Example

 boolean true



standby.repoName

Name of the pgBackRest repository in the primary cluster this standby cluster connects to.

Value type Example

 string repo1

secrets.customRootCATLSSecret.name

Name of the secret with the custom root CA certiRcate and key for secure connections to the
PostgreSQL server, see Transport Layer Security (TLS) for details.

Value type Example

 string cluster1-ca-cert

secrets.customRootCATLSSecret.items

Key-value pairs of the key  (a key from the secrets.customRootCATLSSecret.name  secret) and
the path  (name on the Rle system) for the custom root certiRcate and key. See Transport Layer
Security (TLS) for details.

Value type Example

 subdoc

secrets.customTLSSecret.name

A secret with TLS certiRcate generated for external communications, see Transport Layer Security
(TLS) for details.

Value type Example

 string cluster1-cert

- key: “tls.crt”
  path: “root.crt”
- key: “tls.key”
  path: “root.key”



secrets.customReplicationTLSSecret.name

A secret with TLS certiRcate generated for internal communications, see Transport Layer Security
(TLS) for details.

Value type Example

 string replication1-cert

users.name

The name of the PostgreSQL user.

Value type Example

 string rhino

users.databases

Databases accessible by a speciRc PostgreSQL user with rights to create objects in them (the option
is ignored for postgres  user; also, modifying it can’t be used to revoke the already given access).

Value type Example

 string zoo

users.password.type

The set of characters used for password generation: can be either ASCII  (default) or
AlphaNumeric .

Value type Example

 string ASCII



users.options

The ALTER ROLE  options other than password (the option is ignored for postgres  user).

Value type Example

 string "SUPERUSER"

users.secretName

The custom name of the user’s Secret; if not speciRed, the default <clusterName>-pguser-
<userName>  variant will be used.

Value type Example

 string "rhino-credentials"

users.grantPublicSchemaAccess

Grants access to the public  schema to the user for all databases associated with this user.

Value type Example

 string false

databaseInitSQL.key

Data key for the Custom conRguration options ConRgMap  with the init SQL Rle, which will be
executed at cluster creation time.

Value type Example

 string init.sql

databaseInitSQL.name

https://kubernetes.io/docs/concepts/configuration/configmap/


Name of the ConRgMap  with the init SQL Rle, which will be executed at cluster creation time.

Value type Example

 string cluster1-init-sql

pause

Setting it to true  gracefully stops the cluster, scaling workloads to zero and suspending CronJobs;
setting it to false  after shut down starts the cluster back.

Value type Example

 string false

unmanaged

Setting it to true  stops the Operator’s activity including the rollout and reconciliation of changes
made in the Custom Resource; setting it to false  starts the Operator’s activity back.

Value type Example

 string false

dataSource.postgresCluster.clusterName

Name of an existing cluster to use as the data source when restoring backup to a new cluster.

Value type Example

 string cluster1

dataSource.postgresCluster.clusterNamespace

https://kubernetes.io/docs/concepts/configuration/configmap/


Namespace of an existing cluster used as a data source (is needed if the new cluster will be created
in a different namespace; needs the Operator deployed in multi-namespace/cluster-wide mode).

Value type Example

 string cluster1-namespace

dataSource.postgresCluster.repoName

Name of the pgBackRest repository in the source cluster that contains the backup to be restored to a
new cluster.

Value type Example

 string repo1

dataSource.postgresCluster.options

The pgBackRest command-line options for the pgBackRest restore command.

Value type Example

 string

dataSource.postgresCluster.tolerations.effect

The Kubernetes Pod tolerations  effect for data migration.

Value type Example

 string NoSchedule

dataSource.postgresCluster.tolerations.key

The Kubernetes Pod tolerations  key for data migration.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Value type Example

 string role

dataSource.postgresCluster.tolerations.operator

The Kubernetes Pod tolerations  operator for data migration.

Value type Example

 string Equal

dataSource.postgresCluster.tolerations.value

The Kubernetes Pod tolerations  value for data migration.

Value type Example

 string connection-poolers

dataSource.pgbackrest.stanza

Name of the pgBackRest stanza  to use as the data source when restoring backup to a new
cluster.

Value type Example

 string db

dataSource.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object  with custom pgBackRest conRguration, which will be
added to the pgBackRest conRguration generated by the Operator.

Value type Example

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://pgbackrest.org/command.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


 string pgo-s3-creds

dataSource.pgbackrest.global

Settings, which are to be included in the global  section of the pgBackRest conRguration generated
by the Operator.

Value type Example

 subdoc /pgbackrest/postgres-operator/hippo/repo1

dataSource.pgbackrest.repo.name

Name of the pgBackRest repository.

Value type Example

 string repo1

dataSource.pgbackrest.repo.s3.bucket

The Amazon S3 bucket  or Google Cloud Storage bucket  name used for backups. Bucket name
should follow Amazon naming rules or Google naming rules, and additionally, it can’t contain dots.

Value type Example

 string "my-bucket"

dataSource.pgbackrest.repo.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original
Amazon S3 cloud).

Value type Example

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://cloud.google.com/storage/docs/buckets


 string "s3.ca-central-1.amazonaws.com"

dataSource.pgbackrest.repo.s3.region

The AWS region  to use for Amazon and all S3-compatible storages.

Value type Example

 boolean "ca-central-1"

dataSource.pgbackrest.tolerations.effect

The Kubernetes Pod tolerations  effect for pgBackRest at data migration.

Value type Example

 string NoSchedule

dataSource.pgbackrest.tolerations.key

The Kubernetes Pod tolerations  key for pgBackRest at data migration.

Value type Example

 string role

dataSource.pgbackrest.tolerations.operator

The Kubernetes Pod tolerations  operator for pgBackRest at data migration.

Value type Example

 string Equal

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


dataSource.pgbackrest.tolerations.value

The Kubernetes Pod tolerations  value for pgBackRest at data migration.

Value type Example

 string connection-poolers

dataSource.volumes.pgDataVolume.pvcName

The PostgreSQL data volume name for the Persistent Volume Claim  used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgDataVolume.directory

The mount point for PostgreSQL data volume used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgDataVolume.tolerations.effect

The Kubernetes Pod tolerations  effect for PostgreSQL data volume used for data migration.

Value type Example

 string NoSchedule

dataSource.volumes.pgDataVolume.tolerations.key

The Kubernetes Pod tolerations  key for PostgreSQL data volume used for data migration.

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Value type Example

 string role

dataSource.volumes.pgDataVolume.tolerations.operator

The Kubernetes Pod tolerations  operator for PostgreSQL data volume used for data migration.

Value type Example

 string Equal

dataSource.volumes.pgDataVolume.tolerations.value

The Kubernetes Pod tolerations  value for PostgreSQL data volume used for data migration.

Value type Example

 string connection-poolers

dataSource.volumes.pgDataVolume.annotations

The Kubernetes annotations  metadata for PostgreSQL data volume used for data migration.

Value type Example

 label test-annotation: value

dataSource.volumes.pgDataVolume.labels

The Kubernetes labels  for PostgreSQL data volume used for data migration.

Value type Example

 label test-label: value

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


dataSource.volumes.pgWALVolume.pvcName

The PostgreSQL write-ahead logs volume name for the Persistent Volume Claim  used for data
migration.

Value type Example

 string cluster1

dataSource.volumes.pgWALVolume.directory

The mount point for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgWALVolume.tolerations.effect

The Kubernetes Pod tolerations  effect for PostgreSQL write-ahead logs volume used for data
migration.

Value type Example

 string NoSchedule

dataSource.volumes.pgWALVolume.tolerations.key

The Kubernetes Pod tolerations  key for PostgreSQL write-ahead logs volume used for data
migration.

Value type Example

 string role

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


dataSource.volumes.pgWALVolume.tolerations.operator

The Kubernetes Pod tolerations  operator for PostgreSQL write-ahead logs volume used for data
migration.

Value type Example

 string Equal

dataSource.volumes.pgWALVolume.tolerations.value

The Kubernetes Pod tolerations  value for PostgreSQL write-ahead logs volume used for data
migration.

Value type Example

 string connection-poolers

dataSource.volumes.pgWALVolume.annotations

The Kubernetes annotations  metadata for PostgreSQL write-ahead logs volume used for data
migration.

Value type Example

 label test-annotation: value

dataSource.volumes.pgWALVolume.labels

The Kubernetes labels  for PostgreSQL write-ahead logs volume used for data migration.

Value type Example

 label test-label: value

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


dataSource.volumes.pgBackRestVolume.pvcName

The pgBackRest volume name for the Persistent Volume Claim  used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgBackRestVolume.directory

The mount point for pgBackRest volume used for data migration.

Value type Example

 string cluster1

dataSource.volumes.pgBackRestVolume.tolerations.effect

The Kubernetes Pod tolerations  effect pgBackRest volume used for data migration.

Value type Example

 string NoSchedule

dataSource.volumes.pgBackRestVolume.tolerations.key

The Kubernetes Pod tolerations  key for pgBackRest volume used for data migration.

Value type Example

 string role

dataSource.volumes.pgBackRestVolume.tolerations.operator

The Kubernetes Pod tolerations  operator for pgBackRest volume used for data migration.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Value type Example

 string Equal

dataSource.volumes.pgBackRestVolume.tolerations.value

The Kubernetes Pod tolerations  value for pgBackRest volume used for data migration.

Value type Example

 string connection-poolers

dataSource.volumes.pgBackRestVolume.annotations

The Kubernetes annotations  metadata for pgBackRest volume used for data migration.

Value type Example

 label test-annotation: value

dataSource.volumes.pgBackRestVolume.labels

The Kubernetes labels  for pgBackRest volume used for data migration.

Value type Example

 label test-label: value

image

The PostgreSQL Docker image to use.

Value type Example

 string perconalab/percona-postgresql-operator:2.8.0-ppg17.6-1-postgres

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


imagePullPolicy

This option is used to set the policy  for updating PostgreSQL images.

Value type Example

 string Always

postgresVersion

The major version of PostgreSQL to use.

Value type Example

 int 16

port

The port number for PostgreSQL.

Value type Example

 int 5432

expose.annotations

The Kubernetes annotations  metadata for PostgreSQL primary.

Value type Example

 label my-annotation: value1

expose.labels

Set labels  for the PostgreSQL primary.

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


Value type Example

 label my-label: value2

expose.type

SpeciRes the type of Kubernetes Service  for PostgreSQL primary.

Value type Example

 string LoadBalancer

expose.loadBalancerClass

DeRne the implementation of the load balancer you want to use. This setting enables you to select a
custom or speciRc load balancer class instead of the default one provided by the cloud provider.

Value type Example

 string eks.amazonaws.com/nlb

expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there
is no limitations).

Value type Example

 string "10.0.0.0/8"

exposeReplicas.annotations

The Kubernetes annotations  metadata for PostgreSQL replicas.

Value type Example

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/


 label my-annotation: value1

exposeReplicas.labels

Set labels  for the PostgreSQL replicas.

Value type Example

 label my-label: value2

exposeReplicas.type

SpeciRes the type of Kubernetes Service  for PostgreSQL replicas.

Value type Example

 string LoadBalancer

exposeReplicas.loadBalancerClass

DeRne the implementation of the load balancer you want to use. This setting enables you to select a
custom or speciRc load balancer class instead of the default one provided by the cloud provider.

Value type Example

 string eks.amazonaws.com/nlb

exposeReplicas.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there
is no limitations).

Value type Example

 string "10.0.0.0/8"

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types


Instances section
The instances  section in the deploy/cr.yaml  Rle contains conRguration options for PostgreSQL
instances. This section contains at least one cluster instance with a number of PostgreSQL instances
in it (cluster instances are groups of PostgreSQL instances used for Rne-grained resources
assignment).

instances.metadata.labels

Set labels  for PostgreSQL Pods.

Value type Example

 label pg-cluster-label: cluster1

instances.name

The name of the PostgreSQL instance.

Value type Example

 string rs 0

instances.replicas

The number of Replicas to create for the PostgreSQL instance.

Value type Example

 int 3

instances.env.name

Name of an environment variable for PostgreSQL Pods. Read more about deRning environment
variables in Kubernetes documentation .

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


Value type Example

 string MY_ENV

instances.env.value

The value for an environment variable.

Value type Example

 string 1000

instances.envFrom.secretRefName

Name of a Secret or a ConRgMap, key/values of which are used as environment variables for
PostgreSQL Pods.

Value type Example

 string instance-env-secret

instances.initContainer.image

DeRnes an image for an init container to run before the main container in the Pod. The init container
is typically used for setup tasks such as initializing Rlesystems, setting permissions, or preparing
conRguration.

Value type Example

 string perconalab/percona-postgresql-operator:2.8.0

instances.initContainer.resources.limits.cpu

Kubernetes CPU limits  for an init container.

Value type Example

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


 string 2.0

instances.initContainer.resources.limits.memory

The Kubernetes memory limits  for an init container.

Value type Example

 string 4Gi

instances.initContainer.securityContext

Security settings for the init container. These settings control privileges, user/group IDs, and other
security-related options. For more details, see the Kubernetes documentation on SecurityContext 

Value type Example

 subdoc

instances.resources.requests.cpu

Kubernetes CPU requests  for a PostgreSQL instance. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 1.0

instances.resources.requests.memory

runAsUser: 1001
runAsGroup: 1001
runAsNonRoot: true 
privileged: false
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true 

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Kubernetes memory requests  for a PostgreSQL instance. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 3Gi

instances.resources.limits.cpu

Kubernetes CPU limits  for a PostgreSQL instance.

Value type Example

 string 2.0

instances.resources.limits.memory

The Kubernetes memory limits  for a PostgreSQL instance.

Value type Example

 string 4Gi

instances.containers.replicaCertCopy.resources.requests.cpu

Kubernetes CPU requests  for a replica-cert-copy  sidecar container. It must not exceed the
limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 100m

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


instances.containers.replicaCertCopy.resources.requests.memory

Kubernetes memory requests  for a replica-cert-copy  sidecar container. It must not exceed
the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

instances.containers.replicaCertCopy.resources.limits.cpu

Kubernetes CPU limits  for replica-cert-copy  sidecar container.

Value type Example

 string 200m

instances.containers.replicaCertCopy.resources.limits.memory

The Kubernetes memory limits  for replica-cert-copy  sidecar container.

Value type Example

 string 128Mi

instances.topologySpreadConstraints.maxSkew

The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread
Constraints .

Value type Example

 int 1

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


instances.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string my-node-label

instances.topologySpreadConstraints.whenUnsatisfiable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string DoNotSchedule

instances.topologySpreadConstraints.labelSelector.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label postgres-operator.crunchydata.com/instance-set: instance1

instances.tolerations.effect

The Kubernetes Pod tolerations  effect for the PostgreSQL instance.

Value type Example

 string NoSchedule

instances.tolerations.key

The Kubernetes Pod tolerations  key for the PostgreSQL instance.

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Value type Example

 string role

instances.tolerations.operator

The Kubernetes Pod tolerations  operator for the PostgreSQL instance.

Value type Example

 string Equal

instances.tolerations.value

The Kubernetes Pod tolerations  value for the PostgreSQL instance.

Value type Example

 string connection-poolers

instances.priorityClassName

The Kubernetes Pod priority class  for PostgreSQL instance Pods.

Value type Example

 string high-priority

instances.securityContext

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

Value type Example

 subdoc

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


instances.walVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the PostgreSQL Write-ahead Log
storage.

Value type Example

 string ReadWriteOnce

instances.walVolumeClaimSpec.storageClassName

Set the Kubernetes storage class  to use with the PostgreSQL Write-ahead Log storage
PersistentVolumeClaim .

Value type Example

 string standard

instances.walVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the storage the PostgreSQL instance will use.

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Value type Example

 string 1Gi

instances.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the PostgreSQL storage.

Value type Example

 string ReadWriteOnce

instances.dataVolumeClaimSpec.storageClassName

Set the Kubernetes storage class  to use with PostgreSQL Cluster PersistentVolumeClaim  for
the PostgreSQL storage.

Value type Example

 string standard

instances.dataVolumeClaimSpec.resources.requests.storage

The Kubernetes storage requests  for the storage the PostgreSQL instance will use.

Value type Example

 string 1Gi

instances.dataVolumeClaimSpec.resources.limits.storage

The Kubernetes storage limits  for the storage the PostgreSQL instance will use.

Value type Example

 string 5Gi

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


instances.tablespaceVolumes.name

Name for the custom tablespace volume.

Value type Example

 string user

instances.tablespaceVolumes.dataVolumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the tablespace volume.

Value type Example

 string ReadWriteOnce

instances.tablespaceVolumes.dataVolumeClaimSpec.resources.requests
.storage

The Kubernetes storage requests  for the tablespace volume.

Value type Example

 string 1Gi

instances.sidecars  subsection
The instances.sidecars  subsection in the deploy/cr.yaml  Rle contains conRguration options
for custom sidecar containers which can be added to PostgreSQL Pods.

instances.sidecars.image

Image for the custom sidecar container for PostgreSQL Pods.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Value type Example

 string busybox:latest

instances.sidecars.name

Name of the custom sidecar container for PostgreSQL Pods.

Value type Example

 string testcontainer

instances.sidecars.imagePullPolicy

This option is used to set the policy  for the PostgreSQL Pod sidecar container.

Value type Example

 string Always

instances.sidecars.env

The environment variables set as key-value pairs  for the custom sidecar container for PostgreSQL
Pods.

Value type Example

 subdoc

instances.sidecars.envFrom

The environment variables set as key-value pairs in ConRgMaps  for the custom sidecar container
for PostgreSQL Pods.

Value type Example

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


 subdoc

instances.sidecars.command

Command for the custom sidecar container for PostgreSQL Pods.

Value type Example

 array ["/bin/sh"]

instances.sidecars.args

Command arguments for the custom sidecar container for PostgreSQL Pods.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Backup section
The backup  section in the deploy/cr.yaml  Rle contains the following conRguration options for the
regular Percona Distribution for PostgreSQL backups.

backups.enabled

Enables to turn on/off backups for the cluster. Use this option with caution. Read more in Disable
backups.

Value type Example

 string true

backups.trackLatestRestorableTime

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Enables or disables tracking the latest restorable time for latest successful backup (on by default). It
can be turned off to reduced S3 API usage.

Value type Example

 boolean true

backups.pgbackrest.metadata.labels

Set labels  for pgBackRest Pods.

Value type Example

 label pg-cluster-label: cluster1

backups.pgbackrest.image

The Docker image for pgBackRest.

Value type Example

 string docker.io/percona/percona-pgbackrest:2.56.0-1

backups.pgbackrest.env.name

Name of an environment variable for pgBackRest Pods. Read more about deRning environment
variables in Kubernetes documentation .

Value type Example

 string MY_ENV

backups.pgbackrest.env.value

The value for an environment variable.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#backups-restore-backups-latest-restorable-time
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


Value type Example

 string 1000

backups.pgbackrest.envFrom.secretRefName

Name of a Secret or a ConRgMap, key/values of which are used as environment variables for
pgBouncer Pods.

Value type Example

 string repo-host-env-secret

backups.pgbackrest.containers.pgbackrest.resources.requests.cpu

Kubernetes CPU requests  for a pgBackRest  container. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 150m

backups.pgbackrest.containers.pgbackrest.resources.requests.memory

Kubernetes memory requests  for a pgBackRest  container. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

backups.pgbackrest.containers.pgbackrest.resources.limits.cpu

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Kubernetes CPU limits  for a pgBackRest container.

Value type Example

 string 1.0

backups.pgbackrest.containers.pgbackrest.resources.limits.memory

The Kubernetes memory limits  for a pgBackRest container.

Value type Example

 string 1Gi

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.cp
u

Kubernetes CPU limits  for pgbackrest-config  sidecar container.

Value type Example

 string 1.0

backups.pgbackrest.containers.pgbackrestConfig.resources.limits.me
mory

The Kubernetes memory limits  for pgbackrest-config  sidecar container.

Value type Example

 string 1Gi

backups.pgbackrest.containers.pgbackrestConfig.resources.requests.
cpu

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


Kubernetes CPU requests  for a pgbackrest-config  sidecar container. It must not exceed the
limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 150m

backups.pgbackrest.containers.pgbackrestConfig.resources.requests.
memory

Kubernetes memory requests  for a pgbackrest-config  sidecar container. It must not exceed
the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

backups.pgbackrest.configuration.secret.name

Name of the Kubernetes Secret object  with custom pgBackRest conRguration, which will be
added to the pgBackRest conRguration generated by the Operator.

Value type Example

 string cluster1-pgbackrest-secrets

backups.pgbackrest.jobs.backoffLimit

The number of retries to make a backup with incremental pauses of 10 seconds, 20 seconds, etc.
between retries. By default it’s 0 , which means that pgBackRest job Pod fails after Rrst unsuccessful
attempt (causing creation of a new Pod on failure).

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


Value type Example

 int 2

backups.pgbackrest.jobs.restartPolicy

The Kubernetes Pod restart policy  for pgBackRest jobs.

Value type Example

 string OnFailure

backups.pgbackrest.jobs.priorityClassName

The Kubernetes Pod priority class  for pgBackRest jobs.

Value type Example

 string high-priority

backups.pgbackrest.jobs.resources.limits.cpu

Kubernetes CPU limits  for a pgBackRest job.

Value type Example

 int 200

backups.pgbackrest.jobs.resources.limits.memory

The Kubernetes memory limits  for a pgBackRest job.

Value type Example

 string 128Mi

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#restart-policy
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


backups.pgbackrest.jobs.resources.requests.cpu

Kubernetes CPU requests  for a pgBackRest job. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 150m

backups.pgbackrest.jobs.resources.requests.memory

Kubernetes memory requests  for pgBackRest job. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

backups.pgbackrest.jobs.tolerations.effect

The Kubernetes Pod tolerations  effect for a backup job.

Value type Example

 string NoSchedule

backups.pgbackrest.jobs.tolerations.key

The Kubernetes Pod tolerations  key for a backup job.

Value type Example

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


 string role

backups.pgbackrest.jobs.tolerations.operator

The Kubernetes Pod tolerations  operator for a backup job.

Value type Example

 string Equal

backups.pgbackrest.jobs.tolerations.value

The Kubernetes Pod tolerations  value for a backup job.

Value type Example

 string connection-poolers

backups.pgbackrest.jobs.securityContext

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

Value type Example

 subdoc

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


backups.pgbackrest.global

Settings, which are to be included in the global  section of the pgBackRest conRguration generated
by the Operator.

Value type Example

 subdoc

backups.pgbackrest.repoHost.sidecars.name

The name of a custom sidecar container for pgBackRest Pods.

Value type Example

 string testcontainer

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

repo1-retention-full: “14”
repo1-retention-full-type: time
repo1-path: /pgbackrest/postgres-operator/cluster1/repo1
repo1-cipher-type: aes-256-cbc
repo1-s3-uri-style: path
repo2-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo2
repo3-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo3
repo4-path: /pgbackrest/postgres-operator/cluster1-multi-repo/repo4



backups.pgbackrest.repoHost.sidecars.image

The image used to deploy a custom sidecar container for pgBackRest Pods.

Value type Example

 string busybox:latest

backups.pgbackrest.repoHost.sidecars.command

The command to use inside a custom sidecar container for pgBackRest Pods

Value type Example

 string ["sleep", "30d"]

backups.pgbackrest.repoHost.sidecars.securityContext

Security settings for the sifecar container. These settings control privileges, user/group IDs, and
other security-related options. For more details, see the Kubernetes documentation on
SecurityContext 

Value type Example

 string {}

backups.pgbackrest.repoHost.resources.requests.cpu

Kubernetes CPU requests  for a pgBackRest repo. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 150m

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


backups.pgbackrest.repoHost.resources.requests.memory

Kubernetes memory requests  for pgBackRest repo. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

backups.pgbackrest.repoHost.resources.limits.cpu

Kubernetes CPU limits  for a pgBackRest repo.

Value type Example

 int 200

backups.pgbackrest.repoHost.resources.limits.memory

The Kubernetes memory limits  for a pgBackRest repo.

Value type Example

 string 128Mi

backups.pgbackrest.repoHost.priorityClassName

The Kubernetes Pod priority class  for pgBackRest repo.

Value type Example

 string high-priority

backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass


The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread
Constraints .

Value type Example

 int 1

backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

The key of node labels for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string my-node-label

backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisf
iable

What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints .

Value type Example

 string ScheduleAnyway

backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelecto
r.matchLabels

The Label selector for the Kubernetes Pod Topology Spread Constraints .

Value type Example

 label postgres-operator.crunchydata.com/pgbackrest: ""

backups.pgbackrest.repoHost.affinity.podAntiAffinity

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/


Pod anti-aTnity, allows setting the standard Kubernetes aTnity constraints of any complexity.

Value type Example

 subdoc

backups.pgbackrest.repoHost.tolerations.effect

The Kubernetes Pod tolerations  effect for pgBackRest repo.

Value type Example

 string NoSchedule

backups.pgbackrest.repoHost.tolerations.key

The Kubernetes Pod tolerations  key for pgBackRest repo.

Value type Example

 string role

backups.pgbackrest.repoHost.tolerations.operator

The Kubernetes Pod tolerations  operator for pgBackRest repo.

Value type Example

 string Equal

backups.pgbackrest.repoHost.tolerations.value

The Kubernetes Pod tolerations  value for pgBackRest repo.

Value type Example

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


 string connection-poolers

‘backups.pgbackrest.repoHost.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

Value type Example

 subdoc

backups.pgbackrest.manual.repoName

Name of the pgBackRest repository for on-demand backups.

Value type Example

 string repo1

backups.pgbackrest.manual.options

The on-demand backup command-line options which will be passed to pgBackRest for on-demand
backups.

Value type Example

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


 string --type=full

backups.pgbackrest.manual.initialDelaySeconds

The time to delay a backup start after the backup Pod is scheduled. The backup process wait for the
deRned time before it connectsto the API server to start a backup.

Value type Example

 int 120

backups.pgbackrest.repos.name

Name of the pgBackRest repository for backups.

Value type Example

 string repo1

backups.pgbackrest.repos.schedules.full

Scheduled time to make a full backup speciRed in the crontab format .

Value type Example

 string 0 0 \* \* 6

backups.pgbackrest.repos.schedules.differential

Scheduled time to make a differential backup speciRed in the crontab format .

Value type Example

 string 0 0 \* \* 6

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron


backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

The Kubernetes PersistentVolumeClaim  access modes for the pgBackRest Storage.

Value type Example

 string ReadWriteOnce

backups.pgbackrest.repos.volume.volumeClaimSpec.storageClassName

Set the Kubernetes Storage Class  to use with the Percona Operator for PostgreSQL backups
stored on Persistent Volume.

Value type Example

 string standard

backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests
.storage

The Kubernetes storage requests  for the pgBackRest storage.

Value type Example

 string 1Gi

backups.pgbackrest.repos.s3.bucket

The Amazon S3 bucket  name used for backups

Value type Example

 string "my-bucket"

.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html


backups.pgbackrest.repos.s3.endpoint

The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original
Amazon S3 cloud).

Value type Example

 string "s3.ca-central-1.amazonaws.com"

backups.pgbackrest.repos.s3.region

The AWS region  to use for Amazon and all S3-compatible storages.

Value type Example

 string "ca-central-1"

backups.pgbackrest.repos.gcs.bucket

The Google Cloud Storage bucket  name used for backups.

Value type Example

 string "my-bucket"

backups.pgbackrest.repos.azure.container

Name of the Azure Blob Storage container  for backups.

Value type Example

 string my-container

backups.restore.tolerations.effect

The Kubernetes Pod tolerations  effect for the backup restore job.

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts


Value type Example

 string NoSchedule

backups.restore.tolerations.key

The Kubernetes Pod tolerations  key for the backup restore job.

Value type Example

 string role

backups.restore.tolerations.operator

The Kubernetes Pod tolerations  operator for the backup restore job.

Value type Example

 string Equal

backups.restore.tolerations.value

The Kubernetes Pod tolerations  value for the backup restore job.

Value type Example

 string connection-poolers

PMM section
The pmm  section in the deploy/cr.yaml  Rle contains conRguration options for Percona Monitoring
and Management.

pmm.enabled

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM .

Value type Example

 boolean false

pmm.image

Percona Monitoring and Management (PMM) Client  Docker image.

Value type Example

 string percona/pmm-client:3.4.1

pmm.imagePullPolicy

This option is used to set the policy  for updating PMM Client images.

Value type Example

 string IfNotPresent

pmm.secret

Name of the Kubernetes Secret object  for the PMM Server password.

Value type Example

 string cluster1-pmm-secret

pmm.serverHost

Address of the PMM Server to collect data from the cluster.

Value type Example

https://docs.percona.com/percona-monitoring-and-management/2/setting-up/client/postgresql.html
https://docs.percona.com/percona-monitoring-and-management/2/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


 string monitoring-service

pmm.customClusterName

A custom name to deRne for a cluster. PMM Server uses this name to properly parse the metrics and
display them on dashboards. Using a custom name is useful for clusters deployed in different data
centers - PMM Server connects them and monitors them as one deployment. Another use case is for
clusters deployed with the same name in different namespaces - PMM treats each cluster
separately.

Value type Example

 string postgresql-cluster

pmm.resources.requests.cpu

Kubernetes CPU requests  for a PMM Client container. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 150m

pmm.resources.requests.memory

Kubernetes memory requests  for PMM Client container. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


pmm.resources.limits.cpu

Kubernetes CPU limits  for a PMM Client container.

Value type Example

 int 200

pmm.resources.limits.memory

The Kubernetes memory limits  for a PMM Client container.

Value type Example

 string 128Mi

pmm.querySource

Query source to track PostgreSQL statistics. Either pg_stat_monitor ( pgstatmonitor , the default
value) or pg_stat_statements ( pgstatstatements ) can be used.

Value type Example

 string pgstatmonitor

pmm.postgresParams

Additional parameters which will be passed to the pmm-admin add postgresql  command for
PostgreSQL Pods.

Value type Example

 string

Proxy section

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


The proxy  section in the deploy/cr.yaml  Rle contains conRguration options for the pgBouncer 
connection pooler for PostgreSQL.

proxy.pgBouncer.metadata.labels

Set labels  for pgBouncer Pods.

Value type Example

 label pg-cluster-label: cluster1

proxy.pgBouncer.replicas

The number of the pgBouncer Pods to provide connection pooling.

Value type Example

 int 3

proxy.pgBouncer.image

Docker image for the pgBouncer  connection pooler.

Value type Example

 string docker.io/percona/percona-pgbouncer:1.24.1-1

proxy.pgBouncer.env.name

Name of an environment variable for pgBouncer Pods. Read more about deRning environment
variables in Kubernetes documentation .

Value type Example

 string MY_ENV

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
http://pgbouncer.github.io/
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


proxy.pgBouncer.env.value

The value for an environment variable.

Value type Example

 string 1000

proxy.pgBouncer.envFrom.secretRefName

Name of a Secret or a ConRgMap, key/values of which are used as environment variables for
pgBouncer Pods.

Value type Example

 string pgbouncer-env-secret

proxy.pgBouncer.exposeSuperusers

Enables or disables exposing superuser user through pgBouncer.

Value type Example

 boolean false

proxy.pgBouncer.resources.requests.cpu

Kubernetes CPU requests  for a pgBouncer container. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 150m

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


proxy.pgBouncer.resources.requests.memory

Kubernetes memory requests  for a pgBouncer container. It must not exceed the limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

proxy.pgBouncer.resources.limits.cpu

Kubernetes CPU limits  for a pgBouncer container.

Value type Example

 string 200m

proxy.pgBouncer.resources.limits.memory

The Kubernetes memory limits  for a pgBouncer container.

Value type Example

 string 128Mi

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.cpu

Kubernetes CPU limits  for pgbouncer-config  sidecar container.

Value type Example

 string 1.0

proxy.pgBouncer.containers.pgbouncerConfig.resources.limits.memory

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container


The Kubernetes memory limits  for pgbouncer-config  sidecar container.

Value type Example

 string 1Gi

proxy.pgBouncer.containers.pgbouncerConfig.resources.requests.cpu

Kubernetes CPU requests  for a pgbouncer-config  sidecar container. It must not exceed the
limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 150m

proxy.pgBouncer.containers.pgbouncerConfig.resources.requests.memo
ry

Kubernetes memory requests  for a pgbouncer-config  sidecar container. It must not exceed the
limit.

If you specify a limit and don’t specify a request, Kubernetes uses the speciRed limit as the
requested value for a resource.

Value type Example

 string 120Mi

proxy.pgBouncer.expose.type

SpeciRes the type of Kubernetes Service  for pgBouncer.

Value type Example

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types


 string ClusterIP

proxy.pgBouncer.expose.annotations

The Kubernetes annotations  metadata for pgBouncer.

Value type Example

 label my-annotation: value1

proxy.pgBouncer.expose.labels

Set labels  for the pgBouncer Service.

Value type Example

 label pg-cluster-label: cluster1

proxy.pgBouncer.expose.loadBalancerClass

DeRne the implementation of the load balancer you want to use. This setting enables you to select a
custom or speciRc load balancer class instead of the default one provided by the cloud provider.

Value type Example

 string eks.amazonaws.com/nlb

proxy.pgBouncer.expose.loadBalancerSourceRanges

The range of client IP addresses from which the load balancer should be reachable (if not set, there
is no limitations).

Value type Example

 string "10.0.0.0/8"

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


proxy.pgBouncer.affinity.podAntiAffinity

Pod anti-aTnity, allows setting the standard Kubernetes aTnity constraints of any complexity.

Value type Example

 subdoc

‘proxy.pgBouncer.securityContext’

A custom Kubernetes Security Context for a Pod  to be used instead of the default one.

Value type Example

 subdoc

proxy.pgBouncer.config

Custom conRguration options for pgBouncer. Please note that conRguration changes are
automatically applied to the running instances without validation, so having an invalid conRg can
make the cluster unavailable.

Value type Example

 subdoc

fsGroup: 1001
runAsUser: 1001
runAsNonRoot: true
fsGroupChangePolicy: “OnRootMismatch”
runAsGroup: 1001
seLinuxOptions:
  type: spc_t
  level: s0:c123,c456
seccompProfile:
  type: Localhost
  localhostProfile: localhost/profile.json
supplementalGroups:
- 1001
sysctls:
- name: net.ipv4.tcp_keepalive_time
  value: “600”
- name: net.ipv4.tcp_keepalive_intvl
  value: “60”

global:
pool_mode: transaction

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/


proxy.pgBouncer.sidecars subsection
The proxy.pgBouncer.sidecars  subsection in the deploy/cr.yaml  Rle contains conRguration
options for custom sidecar containers which can be added to pgBouncer Pods.

proxy.pgBouncer.sidecars.image

Image for the custom sidecar container for pgBouncer Pods.

Value type Example

 string mycontainer1:latest

proxy.pgBouncer.sidecars.name

Name of the custom sidecar container for pgBouncer Pods.

Value type Example

 string testcontainer

proxy.pgBouncer.sidecars.imagePullPolicy

This option is used to set the policy  for the pgBouncer Pod sidecar container.

Value type Example

 string Always

proxy.pgBouncer.sidecars.env

The environment variables set as key-value pairs  for the custom sidecar container for pgBouncer
Pods.

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/


Value type Example

 subdoc

proxy.pgBouncer.sidecars.envFrom

The environment variables set as key-value pairs in ConRgMaps  for the custom sidecar container
for pgBouncer Pods.

Value type Example

 subdoc

proxy.pgBouncer.sidecars.command

Command for the custom sidecar container for pgBouncer Pods.

Value type Example

 array ["/bin/sh"]

proxy.pgBouncer.sidecars.args

Command arguments for the custom sidecar container for pgBouncer Pods.

Value type Example

 array ["-c", "while true; do trap 'exit 0' SIGINT SIGTERM SIGQUIT SIGKILL; done;"]

Patroni Section
The patroni  section in the deploy/cr.yaml  Rle contains conRguration options to customize the
PostgreSQL high-availability implementation based on Patroni .

Value type Example

https://kubernetes.io/docs/tasks/inject-data-application/define-environment-variable-container/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://patroni.readthedocs.io/


 int 3

patroni.syncPeriodSeconds

How often to perform liveness/readiness probes  for the patroni container (in seconds).

Value type Example

 int 3

patroni.leaderLeaseDurationSeconds

Initial delay for liveness/readiness probes  for the patroni container (in seconds).

patroni.dynamicConfiguration

Custom PostgreSQL conRguration options. Please note that conRguration changes are automatically
applied to the running instances without validation, so having an invalid conRg can make the cluster
unavailable.

Value type Example

 subdoc

patroni.switchover.enabled

Enables or disables manual change of the cluster primary instance.

Value type Example

 string

postgresql:
  parameters:
    max_parallel_workers: 2
    max_worker_processes: 2
    shared_buffers: 1GB
    work_mem: 2MB

true

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#configure-probes


patroni.switchover.targetInstance

The name of the Pod that should be set as the new primary. When not speciRed, the new primary will
be selected randomly.

Value type Example

 string

patroni.createReplicaMethods

DeRnes available replica creation methods and the order of executing them during a cluster start or
reinitialisation. Patroni will stop on the Rrst one that returns 0.

By default, pg_basebackup  is used to create replicas during a new cluster deployment. After the
Operator makes an initial backup, it updates the Patroni ConRgMap assign the pgBackRest  as the
Rrst item in the list. This conRguration is not propagated to Patroni itself until you restart the
database instance Pods or manually reload Patroni conRguration.

In the same way, after you deRne the replica set methods and apply the conRguration, the Operator
updates the Patroni ConRgMap. You must manually reload Patroni conRguration of every database
instance to make Patroni aware of the changes. Read more about setting replica methods in the
ConRgure create_replica_methods section.

Value type Example

 string - pgbackrest
- basebackup

Custom extensions Section
The extensions  section in the deploy/cr.yaml  Rle contains conRguration options to manage
PostgreSQL extensions.

extensions.image

Image for the custom PostgreSQL extension loader sidecar container.

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml


Value type Example

 string docker.io/percona/percona-postgresql-operator:2.8.0

extensions.imagePullPolicy

Policy  for the custom extension sidecar container.

Value type Example

 string Always

extensions.storage.type

The cloud storage type used for backups. Only s3  type is currently supported.

Value type Example

 string s3

extensions.storage.bucket

The Amazon S3 bucket  name for prepackaged PostgreSQL custom extensions.

Value type Example

 string pg-extensions

extensions.storage.region

The AWS region  to use.

Value type Example

 string eu-central-1

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


extensions.storage.endpoint

The S3 endpoint  to use.

Value type Example

 string s3.eu-central-1.amazonaws.com

extensions.storage.forcePathStyle

When set to true , enforces path-style access method of constructing S3 URLs, where the bucket
name appears in the path portion of the URL. Default false  value means the Operator uses the
virtual-hosted-style for accessing S3 storage, where the bucket name is part of the domain name.

Value type Example

 boolean false

extensions.storage.disableSSL

When set to true , instructs the Operator to skip TLS veriRcation when accessing the storage. Can
be used if your storage endpoint uses self-signed certiRcates or doesn’t support TLS to allow
successful downloads.

Value type Example

 boolean false

extensions.storage.secret.name

The Kubernetes secret  for the custom extensions storage. It should contain AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY  keys.

Value type Example

 string cluster1-extensions-secret

https://docs.aws.amazon.com/general/latest/gr/s3.html
https://kubernetes.io/docs/concepts/configuration/secret/


extensions.builtin.pg_stat_monitor

Enable or disable pg_stat_monitor  PostgreSQL extension.

Value type Example

 boolean true

extensions.builtin.pg_stat_statements

Enable or disable pg_stat_statements  PostgreSQL extension.

Value type Example

 boolean false

extensions.builtin.pg_audit

Enable or disable PGAudit  PostgreSQL extension.

Value type Example

 boolean true

extensions.builtin.pgvector

Enable or disable pgvector  PostgreSQL extension. This extension is not compatible with
PostgreSQL 12!

Value type Example

 boolean false

extensions.builtin.pg_repack

Enable or disable pg_repack  PostgreSQL extension.

https://docs.percona.com/pg-stat-monitor/index.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.pgaudit.org/
https://github.com/pgvector/pgvector
https://github.com/reorg/pg_repack


Value type Example

 boolean false

extensions.custom.name

Name of the PostgreSQL custom extension.

Value type Example

 string pg_cron

extensions.custom.version

Version of the PostgreSQL custom extension.

Value type Example

 string 1.6.1



Backup Resource Options
A Backup resource is a Kubernetes object that tells the Operator how to create and manage your
database backups. The deploy/backup.yaml  Rle is a template for creating backup resources when
you make an on-demand backup. It deRnes the PerconaPGBackup  resource.

This document describes all available options that you can use to customize your backups.

apiVersion

SpeciRes the API version of the Custom Resource. pgv2.percona.com  indicates the group, and v2
is the version of the API.

kind

DeRnes the type of resource being created: PerconaPGBackup .

metadata

The metadata part of the deploy/backup.yaml  contains metadata about the resource, such as its
name and other attributes. It includes the following keys:

name  - The name of the backup resource used to identify it in your deployment. You also use the
backup name for the restore operation.

spec

This subsection includes the conRguration of a backup resource.

pgCluster

SpeciRes the name of the PostgreSQL cluster to back up.

Value type Example

 string cluster1



repoName

SpeciRes the name of the pgBackRest  repository where to save a backup. It must match the name
you speciRed in the spec.backups.pgBackRest.repos  subsection of the deploy/cr.yaml  Rle.

Value type Example

 string repo1

options

You can customize the backup by specifying different command line options supported by
pgBackRest :octicons-external-link-16:.

Value type Example

 string --type=full

https://pgbackrest.org/configuration.html


Restore Resource Options
A Restore resource is a Kubernetes object that tells the Operator how to restore your database from
a speciRc backup. The deploy/restore.yaml  Rle is a template for creating restore resources. It
deRnes the PerconaPGRestore  resource.

This document describes all available options that you can use to customize a restore.

apiVersion

SpeciRes the API version of the Custom Resource. pgv2.percona.com  indicates the group, and v2
is the version of the API.

kind

DeRnes the type of resource being created: PerconaPGRestore .

metadata

The metadata part of the deploy/restore.yaml  contains metadata about the resource, such as its
name and other attributes. It includes the following keys:

name  - The name of the restore resource used to identify it in your deployment. You use this name
to track the restore operation status and view information about it.

spec

This subsection includes the conRguration of a restore resource.

pgCluster

SpeciRes the name of the PostgreSQL cluster to restore.

Value type Example

 string restore1



repoName

SpeciRes the name of one of the 4 pgBackRest repositories, already conRgured in the
backups.pgbackrest.repos  subsection of the deploy/cr.yaml  Rle.

Value type Example

 string repo1

options

Specify the command line options supported by pgBackRest :octicons-external-link-16:. For example,
to make a point-in-time restore.

Value type Example

 string --type=time

--target=YYYY-MM-DD HH:MM:DD +00

https://pgbackrest.org/configuration.html


Secrets Resource options
A Kubernetes Secret is an object used to store sensitive data, such as passwords, tokens, or keys in
a secure and manageable way. Unlike ConRgMaps, Secrets are speciRcally designed to hold
conRdential information and can be mounted as volumes or injected into environment variables
within Pods.

apiVersion

SpeciRes the API version of the Custom Resource.

kind

DeRnes the type of resource being created: Secret .

metadata.name

Contains the metadata about the resource, such as its name.

type

DeRnes the type of data stored within the Secret resource. Opaque  type signals to Kubernetes and to
the Operator that the content of the secret is custom and unstructured.

stringData

The data that you pass to the Operator within the Secret.

Value type Example

 string PMM_SERVER_TOKEN



Percona certified images
This page lists Percona’s certiRed Docker images that you can use with Percona Operator for
PostgreSQL 2.8.0.

To Rnd images for a speciRc Operator version, see Retrieve Percona certiRed images

Images released with the Operator version 2.8.0:

Image Digest

percona/percona-
postgresql-operator:2.8.0
(x86_64)

e34a185e1b295ff627facd3cfbdfc31f32bab714eac550de5e6da00abd9053e2

percona/percona-
postgresql-operator:2.8.0
(ARM64)

18445bd761ac3f77901f0e9eddd79b295d28b779779a29bb2d69eb51c32e3815

percona/percona-
distribution-
postgresql:17.6-1

ce91a339a511d91d9f1946708d7ca326572796b642d2a022a1d52a2adff8a08b

percona/percona-
distribution-
postgresql:16.10-1

ba1aede456a938f85c9614bb70c50ce264ec68b659917a3a0847112e42bc9259

percona/percona-
distribution-
postgresql:15.14-1

8280ba2410235e8266761004a2f180fe3999203e69772eb822959cf1849bd967

percona/percona-
distribution-
postgresql:14.19-1

052e7fd765b790ad2321675e8f2b273fe705512afda5004c4d2a4da78489bfb0

percona/percona-
distribution-
postgresql:13.22-1

2989dcc4919c8381dc970b2286dadec45c8a53067b48f2bcfff7c7c042b3a654

percona/percona-
postgresql-operator:2.8.0-
ppg17.6-postgres-

3322136e6e54214255601586be8f610677fe51a494d3a002cabfacd233258fab



gis3.3.8

percona/percona-
postgresql-operator:2.8.0-
ppg16.10-postgres-
gis3.3.8

2d5f9ac5a84129e81b9ab8df25abce712223c358847afed3637fb7063a3e4a8f

percona/percona-
postgresql-operator:2.8.0-
ppg15.14-postgres-
gis3.3.8

e7f5fda3cf7d2fab028b3fb70636c9b3b11fe6b89a9f31970d2792bd8f48d8ca

percona/percona-
postgresql-operator:2.8.0-
ppg14.19-postgres-
gis3.3.8

3f69534a0df0b608d68808df04618222e4a20c1d1567462e4482f07b86349806

percona/percona-
postgresql-operator:2.8.0-
ppg13.22-postgres-
gis3.3.8

cd5a2a1057708fac5dda28d0ce47006cdbf865e6ffef1ac2df74065b95258fd3

percona/percona-
pgbouncer:1.24.1-1
(x86_64)

39bd093ec83ca4eaeb93b43b286d39daae4cc4b3b32956d627d242d30a5ad6f5

percona/percona-
pgbouncer:1.24.1-1
(ARM64)

84d34843180d852182790ce6175f1407a0438b3a415a21741212701706808ac0

percona/percona-
pgbackrest:2.56.0-1
(x86_64)

387469090be8e009e17cc07903aa28aa1c748ce1cc385bd69e88de3762657877

percona/percona-
pgbackrest:2.56.0-1
(ARM64)

29290808bdeb17a49c90f2ce3ccc75f3bfab43e96e160320baf16cb557d165ee

percona/pmm-
client:2.44.1-1

52a8fb5e8f912eef1ff8a117ea323c401e278908ce29928dafc23fac1db4f1e3

percona/pmm-client:3.4.1
(x86_64)

1c59d7188f8404e0294f4bfb3d2c3600107f808a023668a170a6b8036c56619b



percona/pmm-client:3.4.1
(ARM64)

2d23ba3e6f0ae88201be15272c5038d7c38f382ad8222cd93f094b5a20b854a5

For older versions, please refer to the old releases documentation archive ).

https://docs.percona.com/legacy-documentation/


Versions compatibility
Versions of the cluster components and platforms tested with different Operator releases are shown
below. Other version combinations may also work but have not been tested.

Cluster components:

Operator PostgreSQL pgBackRest pgBouncer 

2.8.0 13 - 17 2.56.0 1.24.1

2.7.0 13 - 17 2.55.0 1.24.1

2.6.0 13 - 17 2.54.2 for PostgreSQL 13-16 and
17.4,
2.54.0 for PostgreSQL 17.2

1.24.0 for PostgreSQL 13-16 and
17.2,
1.23.1 for PostgreSQL 17

2.5.1 12 - 16 2.54.2 1.24.0

2.5.0 12 - 16 2.53-1 1.23.1

2.4.1 12 - 16 2.51 1.22.1

2.4.0 12 - 16 2.51 1.22.1

2.3.1 12 - 16 2.48 1.18.0

2.3.0 12 - 16 2.48 1.18.0

2.2.0 12 - 15 2.43 1.18.0

2.1.0 12 - 15 2.43 1.18.0

2.0.0 12 - 14 2.41 1.17.0

1.6.0 12 - 14 2.50 1.22.0

1.5.1 12 - 14 2.47 1.20.0

1.5.0 12 - 14 2.47 1.20.0

https://www.postgresql.org/
https://pgbackrest.org/
http://pgbouncer.github.io/
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html


1.4.0 12 - 14 2.43 1.18.0

1.3.0 12 - 14 2.38 1.17.0

1.2.0 12 - 14 2.37 1.16.1

1.1.0 12 - 14 2.34 1.16.0 for PostgreSQL 12,
1.16.1 for other versions

1.0.0 12 - 13 2.33 1.13.0

Platforms:

Operator GKE EKS Openshift Azure Kubernetes
Service (AKS) 

Minikube

2.8.0 1.31 - 1.33 1.31 - 1.34 4.16 - 4.20 1.32 - 1.34 1.37.0

2.7.0 1.30 - 1.32 1.30 - 1.33 4.15 - 4.19 1.30 - 1.33 1.36.0

2.6.0 1.29 - 1.31 1.29 - 1.32 4.14 - 4.18 1.29 - 1.31 1.35.0

2.5.1 1.28 - 1.30 1.28 - 1.30 4.13.46 -
4.16.7

1.28 - 1.30 1.33.1

2.5.0 1.28 - 1.30 1.28 - 1.30 4.13.46 -
4.16.7

1.28 - 1.30 1.33.1

2.4.1 1.27 - 1.29 1.27 - 1.30 4.12.59 -
4.15.18

- 1.33.1

2.4.0 1.27 - 1.29 1.27 - 1.30 4.12.59 -
4.15.18

- 1.33.1

2.3.1 1.24 - 1.28 1.24 - 1.28 4.11.55 -
4.14.6

- 1.32

2.3.0 1.24 - 1.28 1.24 - 1.28 4.11.55 -
4.14.6

- 1.32

https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube


2.2.0 1.23 - 1.26 1.23 - 1.27 - - 1.30.1

2.1.0 1.23 - 1.25 1.23 - 1.25 - - -

2.0.0 1.22 - 1.25 - - - -

1.6.0 1.26 - 1.29 1.26 - 1.29 4.12.57 -
4.15.13

- 1.33

1.5.1 1.24 - 1.28 1.24 - 1.28 4.11 - 4.14 - 1.32

1.5.0 1.24 - 1.28 1.24 - 1.28 4.11 - 4.14 - 1.32

1.4.0 1.22 - 1.25 1.22 - 1.25 4.10 - 4.12 - 1.28

1.3.0 1.21 - 1.24 1.20 - 1.22 4.7 - 4.10 - -

1.2.0 1.19 - 1.22 1.19 - 1.21 4.7 - 4.10 - -

1.1.0 1.19 - 1.22 1.18 - 1.21 4.7 - 4.9 - -

1.0.0 1.17 - 1.21 1.21 4.6 - 4.8 - -

https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.6.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.1.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.5.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.4.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.3.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.2.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.1.0.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/ReleaseNotes/Kubernetes-Operator-for-PostgreSQL-RN1.0.0.html


Copyright and licensing information

Documentation licensing
Percona Operator for PostgreSQL documentation is (C)2009-2023 Percona LLC and/or its aTliates
and is distributed under the Creative Commons Attribution 4.0 International License .

https://creativecommons.org/licenses/by/4.0/


Trademark policy
This Trademark Policy  is to ensure that users of Percona-branded products or services know that
what they receive has really been developed, approved, tested and maintained by Percona.
Trademarks help to prevent confusion in the marketplace, by distinguishing one company’s or
person’s products and services from another’s.

Percona owns a number of marks, including but not limited to Percona, XtraDB, Percona XtraDB,
XtraBackup, Percona XtraBackup, Percona Server, and Percona Live, plus the distinctive visual icons
and logos associated with these marks. Both the unregistered and registered marks of Percona are
protected.

Use of any Percona trademark in the name, URL, or other identifying characteristic of any product,
service, website, or other use is not permitted without Percona’s written permission with the
following three limited exceptions.

First, you may use the appropriate Percona mark when making a nominative fair use reference to a
bona Rde Percona product.

Second, when Percona has released a product under a version of the GNU General Public License
(“GPL”), you may use the appropriate Percona mark when distributing a verbatim copy of that
product in accordance with the terms and conditions of the GPL.

Third, you may use the appropriate Percona mark to refer to a distribution of GPL-released Percona
software that has been modiRed with minor changes for the sole purpose of allowing the software to
operate on an operating system or hardware platform for which Percona has not yet released the
software, provided that those third party changes do not affect the behavior, functionality, features,
design or performance of the software. Users who acquire this Percona-branded software receive
substantially exact implementations of the Percona software.

Percona reserves the right to revoke this authorization at any time in its sole discretion. For example,
if Percona believes that your modiRcation is beyond the scope of the limited license granted in this
Policy or that your use of the Percona mark is detrimental to Percona, Percona will revoke this
authorization. Upon revocation, you must immediately cease using the applicable Percona mark. If
you do not immediately cease using the Percona mark upon revocation, Percona may take action to
protect its rights and interests in the Percona mark. Percona does not grant any license to use any
Percona mark for any other modiRed versions of Percona software; such use will require our prior
written permission.

https://www.percona.com/trademark-policy


Neither trademark law nor any of the exceptions set forth in this Trademark Policy permit you to
truncate, modify or otherwise use any Percona mark as part of your own brand. For example, if XYZ
creates a modiRed version of the Percona Server, XYZ may not brand that modiRcation as “XYZ
Percona Server” or “Percona XYZ Server”, even if that modiRcation otherwise complies with the third
exception noted above.

In all cases, you must comply with applicable law, the underlying license, and this Trademark Policy,
as amended from time to time. For instance, any mention of Percona trademarks should include the
full trademarked name, with proper spelling and capitalization, along with attribution of ownership to
Percona Inc. For example, the full proper name for XtraBackup is Percona XtraBackup. However, it is
acceptable to omit the word “Percona” for brevity on the second and subsequent uses, where such
omission does not cause confusion.

In the event of doubt as to any of the conditions or exceptions outlined in this Trademark Policy,
please contact trademarks@percona.com for assistance and we will do our very best to be helpful.

mailto:trademarks@percona.com


Release Notes



Percona Operator for PostgreSQL Release
Notes

Percona Operator for PostgreSQL 2.8.0 (2025-11-13)

Percona Operator for PostgreSQL 2.7.0 (2025-07-18)

Percona Operator for PostgreSQL 2.6.0 (2025-03-17)

Percona Operator for PostgreSQL 2.5.1 (2024-03-03)

Percona Operator for PostgreSQL 2.5.0 (2024-10-08)

Percona Operator for PostgreSQL 2.4.1 (2024-08-06)

Percona Operator for PostgreSQL 2.4.0 (2024-06-24)

Percona Operator for PostgreSQL 2.3.1 (2024-01-23)

Percona Operator for PostgreSQL 2.3.0 (2023-12-21)

Percona Operator for PostgreSQL 2.2.0 (2023-06-30)

Percona Operator for PostgreSQL 2.1.0 Tech preview (2023-05-04)

Percona Operator for PostgreSQL 2.0.0 Tech preview (2022-12-30)



Percona Operator for PostgreSQL 2.8.0
(2025-11-13)

Get started with the Operator 

Release Highlights
This release provides the following features and improvements:

Custom PostgreSQL user credentials are now fully respected by the
Operator

You no longer have to deRne full login and connection information within a Secret to have the
Operator use it. Now you can set only the password. The Operator generates the missing details that
it needs automatically using the values from the Custom Resource. Also, if you name your Secret in
the format that the Operator expects such as <clusterName>-pguser-<userName>  — the Operator
will automatically detect and use it without needing an explicit reference in the Custom Resource.

However, if you choose a custom name for the Secret, you must still reference it explicitly in the
Custom Resource under the users[].secretName  Reld. This ensures the Operator can locate and
apply it correctly.

Read more about managing user passwords in the documentation.

This enhancement makes the management of user credentials more straightforward.

Ability to use huge pages

PostgreSQL can now use huge pages if they are enabled for your Kubernetes cluster. Instruct the
Operator to use huge pages when deploying a PostgreSQL cluster with this conRguration:

spec:
  instances:
    - name: instance1
      resources:
        limits:
          hugepages-2Mi: 16Mi
          memory: 4Gi



This improvement leads to a more eTcient memory utilization and improved performance. Learn
more about huge pages and their use in the Huge pages chapter.

Expanded S3 compatibility for custom extensions

Some S3-compatible services (like MinIO or Ceph) require path-style access instead of virtual-hosted
style. Or they may use self-signed certiRcates or not support TLS.

To address these issues, you can now Rne-tune the Operator with these new options:

forcePathStyle  enforces path-style access instead of virtual-hosted style

disableSSL  disables SSL veriRcation to allow successful downloads.

This improvement enables you to use a wider range of S3-compatible storage services with the
Operator for storing custom extensions.

Changed Patroni version management

The Operator no longer runs a temporary Pod cluster_name-patroni-version-check  to identify
the Patroni version during cluster initialization.

Instead, it uses the patronictl  CLI tool to connect to a database Pod and detect the Patroni
version. The detected version is recorded in the pgv2.percona.com/patroni-version  annotation
on the cluster resource and is added to the resource status.

The Operator standardizes on Patroni 4 as the only supported version and no longer honors Patroni
version overrides via the pgv2.percona.com/custom-patroni-version  annotation.

However, if your Custom Resource is still at version 2.7.0, the Operator 2.8.0 will continue to run a
temporary Pod to check Patroni version and use Patroni 3 if speciRed via the annotation for
backward compatibility. But after you upgrade the Custom Resource to version 2.8.0, the
pgv2.percona.com/custom-patroni-version annotation is ignored, and Patroni 4 is always used.

extensions:
    image: docker.io/perconalab/percona-postgresql-operator:main
    storage:
      .....
      forcePathStyle: false
      disableSSL: false



This change eliminates ambiguity and ensures your cluster is deployed with a modern high-
availability implementation.

Official Docker image for PostgreSQL images

The Operator now uses the oTcial Percona Docker images for Percona Distribution for PostgreSQL,
with the image path percona/percona-distribution-postgresql:<postgresql-version> .

Because of this transition, the Operator is compatible with and supports only the following speciRc
PostgreSQL versions:

Percona Distribution for PostgreSQL 17.5.2, 17.6.2

Percona Distribution for PostgreSQL 16.10

Percona Distribution for PostgreSQL 15.14

Percona Distribution for PostgreSQL 14.19

Percona Distribution for PostgreSQL 13.22

Attempting to use the Operator with other PostgreSQL versions or custom images is not supported.

Changelog

New features

K8SPG-730 - Added the status.observedGeneration  Reld to the Custom Resource DeRnition to
improve observability and ensure the controller successfully reconciled the latest changes to the
cluster.

K8SPG-752 - Allowed setting loadBalancerClass service type and use a custom implementation of
a load balancer rather than the cloud provider default one.

K8SPG-768 Introduced a mechanism to prevent excessive logging caused by continuous pod
annotation updates for suggested volume sizing. The Operator now skips updating the Pod
annotation with the suggested volume size unless the auto-growable disk feature is explicitly
conRgured. This signiRcantly reduces redundant logs and unnecessary load on both the
Kubernetes API and the logging pipeline.

K8SPG-832 - Users can now specify custom sidecar containers for the repo-host  Pod, enabling
seamless integration with external tools, storage systems, or observability agents. This enhances
mexibility in backup workmows without modifying the Operator’s core logic.

https://perconadev.atlassian.net/browse/K8SPG-730
https://perconadev.atlassian.net/browse/K8SPG-752
https://perconadev.atlassian.net/browse/K8SPG-768
https://perconadev.atlassian.net/browse/K8SPG-832


K8SPG-833 - Added the ability to deRne custom environment variables across all components.
This enables tighter integration with external systems, secrets, or runtime conRgurations.

Improvements

K8SPG-460 - The Operator now correctly enables and used Huge pages functionality if they are
enabled on the OS level.

K8SPG-570 - The Operator now correctly respects custom user passwords deRned in secrets
when creating new users, and automatically adds any missing credentials.

K8SPG-611 - The operator now uses oTcial Percona PostgreSQL docker images, which are
compatible only with speciRc latest PostgreSQL versions.

K8SPG-624, K8SPG-728 - Added the ability to conRgure the Operator to use path-style access to
S3 storage or skip TLS veriRcation to ensure broader compatibility with S3 storage services.

K8SPG-718 - Improved Patroni observability by sending Patroni metrics to PMM.

K8SPG-748 - The PerconaPGCluster status now provides more comprehensive details, including
persistent volume resizing and pgBackRest backup conditions.

K8SPG-757: The Percona PostgreSQL Operator now successfully deploys in environments where
readOnlyRootFilesystem  is enforced.

K8SPG-874- Improved logging to no longer contain backup-related information when backups are
disabled.

K8SPG-882 - The operator no longer deploys a temporary Patroni version check pod, as it now
detects the version directly from running database instances.

Fixed bugs

K8SPG-724 - Fixed the issue with upgrading custom extension versions. The Operator now
correctly uninstalls old versions and installs new ones automatically.

K8SPG-777 - Custom Resource crVersion  is now automatically assigned if not explicitly deRned.

K8SPG-778 - Backup restores no longer fail due to empty repository name errors during the
Rnalization process.

K8SPG-781- Error messages for primary pod issues now reveal the speciRc underlying problem
instead of a generic message.

K8SPG-803 - Outdated backups are now correctly cleaned up, even when pgBackRest debug
logging is enabled.

https://perconadev.atlassian.net/browse/K8SPG-833
https://perconadev.atlassian.net/browse/K8SPG-460
https://perconadev.atlassian.net/browse/K8SPG-570
https://perconadev.atlassian.net/browse/K8SPG-611
https://perconadev.atlassian.net/browse/K8SPG-624
https://perconadev.atlassian.net/browse/K8SPG-728
https://perconadev.atlassian.net/browse/K8SPG-718
https://perconadev.atlassian.net/browse/K8SPG-748
https://perconadev.atlassian.net/browse/K8SPG-757
https://perconadev.atlassian.net/browse/K8SPG-874
https://perconadev.atlassian.net/browse/K8SPG-882
https://perconadev.atlassian.net/browse/K8SPG-724
https://perconadev.atlassian.net/browse/K8SPG-777
https://perconadev.atlassian.net/browse/K8SPG-778
https://perconadev.atlassian.net/browse/K8SPG-781
https://perconadev.atlassian.net/browse/K8SPG-803


K8SPG-826 - Fixed the issue with cluster monitoring on OpenShift by using the correct folder for
PMM3 .

K8SPG-835 - Improved aTnity behavior for patroni-version-check  pod

K8SPG-844 - Fixed the issue with the Operator overriding user conRguration with archive
commands when the latest restorable time tracking disabled by fully respecting user
conRguration.

K8SPG-869 - A backup repository is no longer required when conRguring a cluster with disabled
backups.

K8SPG-872 - Updated DNS records used in certiRcates to no longer include a trailing period to
comply with updated validation standards.

K8SPG-876: Fixed an issue where PostgreSQL clusters remained in an “Initialized” state after
restoring a backup from S3 storage.

K8SPG-879 - Clusters can now be created successfully on Kubernetes version 1.34.

K8SPG-883: Patroni version information is now displayed in the status.patroni.version  Reld
instead of status.patroniVersion .

K8SPG-884 - Clusters deployed with PostgreSQL 13 now correctly support the
pg_stat_statements  extension.

Documentation improvements

ReRned the Upgrade guide structure, moving instructions for updating built-in extensions under
the Database upgrade section for better clarity.

Improved documentation for generating custom TLS certiRcates used by your cluster and added
steps how to safely renew or replace your certiRcate authorities and secrets.

Enhanced the Adding custom extensions documentation by including a sample conRguration for a
custom extension, illustrating the overall workmow as a practical reference.

Improved the Upgrade document with the steps to change collation version is there is a collation
mismatch.

PostGIS image documentation now accurately remects the available versions.

Deprecation, Change, Rename and Removal
New repository for postgresql  image.

https://perconadev.atlassian.net/browse/K8SPG-826
https://perconadev.atlassian.net/browse/K8SPG-835
https://perconadev.atlassian.net/browse/K8SPG-844
https://perconadev.atlassian.net/browse/K8SPG-869
https://perconadev.atlassian.net/browse/K8SPG-872
https://perconadev.atlassian.net/browse/K8SPG-876
https://perconadev.atlassian.net/browse/K8SPG-879
https://perconadev.atlassian.net/browse/K8SPG-883
https://perconadev.atlassian.net/browse/K8SPG-884


Now the Operator uses the oTcial Percona Docker images for PosgreSQL. Pay attention to the new
image path when you upgrade the Operator and the database. Check the Percona certiRed images
for exact image names.

The patroni.patroniVersion  Reld in Custom Resource DeRnition is deprecated and will be
removed in future releases. Starting with version 2.8.0, the Operator uses the patroni.version
Reld in Custom Resource DeRnition to populate Patroni version.

Adjust your applications or scripts accordingly to this change if they rely on Patroni version
information.

New Relds in the Custom Resource DeRnition:

status.observedGeneration  to track whether the controller has successfully applied the latest
changes to the custom resource

patroni  subsection contains these Relds for Patroni state:

patroni.version

patroni.systemIdentifier

patroni.switchover

patroni.switchoverTimeline

pgBackRest  subsection contains these Relds to track the status of backup repository and
backup jobs:

pgBackRest.manualBackup

pgBackRest.repoHost

pgBackRest.repos

Supported software
The Operator 2.8.0 is developed, tested and based on:

PostgreSQL 13.22-1, 14.19-1, 15.14-1, 16.10-1,17.6-1 as the database. Other versions may also
work but have not been tested.

patroni:
  status:
    systemIdentifier: "7569216022115639385"
  version: 4.0.6



pgBouncer 1.24.1-1 for connection pooling

Patroni version 4.6.0 for high-availability

PostGIS version 3.3.8

Supported platforms
Percona Operators are designed for compatibility with all CNCF-certiRed  Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and
OpenShift, as detailed below for Operator version 2.8.0:

Google Kubernetes Engine (GKE)  1.31 - 1.33

Amazon Elastic Container Service for Kubernetes (EKS)  1.31 - 1.34

OpenShift  4.16 - 4.20

Azure Kubernetes Service (AKS)  1.32 - 1.34

Minikube  1.37.0 with Kubernetes v1.34.0

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

Percona certified images
Find Percona’s certiRed Docker images that you can use with the Percona Operator for PostgreSQL
in the following table.

Image Digest

percona/percona-
postgresql-operator:2.8.0
(x86_64)

e34a185e1b295ff627facd3cfbdfc31f32bab714eac550de5e6da00abd9053e2

percona/percona-
postgresql-operator:2.8.0
(ARM64)

18445bd761ac3f77901f0e9eddd79b295d28b779779a29bb2d69eb51c32e3815

percona/percona-
distribution-

ce91a339a511d91d9f1946708d7ca326572796b642d2a022a1d52a2adff8a08b

https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube


postgresql:17.6-1

percona/percona-
distribution-
postgresql:16.10-1

ba1aede456a938f85c9614bb70c50ce264ec68b659917a3a0847112e42bc9259

percona/percona-
distribution-
postgresql:15.14-1

8280ba2410235e8266761004a2f180fe3999203e69772eb822959cf1849bd967

percona/percona-
distribution-
postgresql:14.19-1

052e7fd765b790ad2321675e8f2b273fe705512afda5004c4d2a4da78489bfb0

percona/percona-
distribution-
postgresql:13.22-1

2989dcc4919c8381dc970b2286dadec45c8a53067b48f2bcfff7c7c042b3a654

percona/percona-
postgresql-operator:2.8.0-
ppg17.6-postgres-
gis3.3.8

3322136e6e54214255601586be8f610677fe51a494d3a002cabfacd233258fab

percona/percona-
postgresql-operator:2.8.0-
ppg16.10-postgres-
gis3.3.8

2d5f9ac5a84129e81b9ab8df25abce712223c358847afed3637fb7063a3e4a8f

percona/percona-
postgresql-operator:2.8.0-
ppg15.14-postgres-
gis3.3.8

e7f5fda3cf7d2fab028b3fb70636c9b3b11fe6b89a9f31970d2792bd8f48d8ca

percona/percona-
postgresql-operator:2.8.0-
ppg14.19-postgres-
gis3.3.8

3f69534a0df0b608d68808df04618222e4a20c1d1567462e4482f07b86349806

percona/percona-
postgresql-operator:2.8.0-
ppg13.22-postgres-
gis3.3.8

cd5a2a1057708fac5dda28d0ce47006cdbf865e6ffef1ac2df74065b95258fd3

percona/percona- 39bd093ec83ca4eaeb93b43b286d39daae4cc4b3b32956d627d242d30a5ad6f5



pgbouncer:1.24.1-1
(x86_64)

percona/percona-
pgbouncer:1.24.1-1
(ARM64)

84d34843180d852182790ce6175f1407a0438b3a415a21741212701706808ac0

percona/percona-
pgbackrest:2.56.0-1
(x86_64)

387469090be8e009e17cc07903aa28aa1c748ce1cc385bd69e88de3762657877

percona/percona-
pgbackrest:2.56.0-1
(ARM64)

29290808bdeb17a49c90f2ce3ccc75f3bfab43e96e160320baf16cb557d165ee

percona/pmm-
client:2.44.1-1

52a8fb5e8f912eef1ff8a117ea323c401e278908ce29928dafc23fac1db4f1e3

percona/pmm-client:3.4.1
(x86_64)

1c59d7188f8404e0294f4bfb3d2c3600107f808a023668a170a6b8036c56619b

percona/pmm-client:3.4.1
(ARM64)

2d23ba3e6f0ae88201be15272c5038d7c38f382ad8222cd93f094b5a20b854a5



Percona Operator for PostgreSQL 2.7.0
(2025-07-18)

Get started with the Operator 

Release Highlights
This release provides the following features and improvements:

PMM3 support

The Operator is natively integrated with PMM 3, enabling you to monitor the health and performance
of your Percona Distribution for PostgreSQL deployment and at the same time enjoy enhanced
performance, new features, and improved security that PMM 3 provides.

Note that the Operator supports both PMM2 and PMM3. The decision on what PMM version is used
depends on the authentication method you provide in the Operator conRguration: PMM2 uses API
keys while PMM3 uses service account token. If the Operator conRguration contains both
authentication methods with non-empty values, PMM3 takes the priority.

To use PMM, ensure that the PMM client image is compatible with the PMM Server version. Check
Percona certiRed images for the correct client image.

For how to conRgure monitoring with PMM see the documentation.

Improved monitoring for clusters in multi-region or multi-namespace
deployments in PMM

Now you can deRne a custom name for your clusters deployed in different data centers. This name
helps Percona Management and Monitoring (PMM) Server to correctly recognize clusters as
connected and monitor them as one deployment. Similarly, PMM Server identiRes clusters deployed
with the same names in different namespaces as separate ones and correctly displays performance
metrics for you on dashboards.

To assign a custom name, deRne this conRguration in the Custom Resource manifest for your
cluster:



Added labels to identify the version of the Operator

Custom Resource DeRnition (CRD) is compatible with the last three Operator versions. To know
which Operator version is attached to it, we’ve added labels to all Custom Resource DeRnitions. The
labels help you identify the current Operator version and decide if you need to update the CRD. To
view the labels, run: kubectl get crd perconapgclusters.pgv2.percona.com  --show-
labels .

Grant users access to a public schema

Starting with PostgreSQL 15, a non-database owner cannot access the default public  schema and
cannot create tables in it. We have improved this behavior so that the Operator creates a user and a
schema with the name matching the username for all databases listed for this user. This custom
schema is set by default enabling you to work in the database right away.

You can explicitly grant access to a public  schema for a non-superuser setting the
grantPublicSchemaAccess  option to true . This grants the user permission to create tables and
update in the public  schema of every database they own. If multiple users are granted access to
the public  schema in the same database, each user can only access the tables they have created
themselves. If you want one user to access tables created by another user in the public  schema,
the owner of those tables must connect to PostgreSQL and explicitly grant the necessary privileges
to the other user.

Superusers have access to the public  schema for their databases by default.

Improved troubleshooting with the ability to override
Patroni configuration
You can now override Patroni conRguration for the whole cluster as well as for an individual Pod.
This gives you more control over the database and simpliRes troubleshooting.

Also, you can redeRne what method the Operator will use when it creates replica instances in your
PostgreSQL cluster. For example, to force the Operator to use pgbasebackup , edit the
deploy/cr.yaml  manifest:

spec:
  pmm:
    customClusterName: postgresql-cluster



Note that after you apply this conRguration, the Operator updates the Patroni ConRgMap, but it
doesn’t apply this conRguration to Patroni. You must manually reload the Patroni conRguration of
every database instance for it to come into force.

Read more about these troubleshooting methods in the documentation.

Changelog

New features

K8SPG-615 - Introduced a custom delay on the entrypoint of the backup pod. The backup process
waits the deRned time before connecting to the API server

K8SPG-708, K8SPG-663 - Added the sleep-forever feature to keep a database container running.

K8SPG-712 - Added the ability to control every parameter supported by Patroni conRguration.

K8SPG-725 - Added the ability to conRgure resources for the repo-host container

K8SPG-719 - Added support for PMM v3

Improvements

K8SPG-571 - Added the ability to access to a public schema for a non-superuser custom user for
every database listed for them.

K8SPG-612 - Updated the pgBouncer  image to use the oTcial percona-pgbouncer  Docker
image

K8SPG-613 - Updated the pgBackRest  image to use the oTcial percona-pgbackrest  Docker
image

K8SPG-654 - Added the ability to add custom parameters in the Custom Resource and pass them
to PMM.

K8SPG-675 - Added the ability to deRne resource requests for CPU and memory

K8SPG-704 - Added the ability to conRgure create_replica_methods  for Patroni

K8SPG-710 - Added the ability to disable backups

patroni:
  createReplicaMethods:
    - basebackup
    - pgbackrest

https://perconadev.atlassian.net/browse/K8SPG-615
https://perconadev.atlassian.net/browse/K8SPG-708
https://perconadev.atlassian.net/browse/K8SPG-663
https://perconadev.atlassian.net/browse/K8SPG-712
https://perconadev.atlassian.net/browse/K8SPG-725
https://perconadev.atlassian.net/browse/K8SPG-719
https://perconadev.atlassian.net/browse/K8SPG-571
https://perconadev.atlassian.net/browse/K8SPG-612
https://perconadev.atlassian.net/browse/K8SPG-613
https://perconadev.atlassian.net/browse/K8SPG-654
https://perconadev.atlassian.net/browse/K8SPG-675
https://perconadev.atlassian.net/browse/K8SPG-704
https://perconadev.atlassian.net/browse/K8SPG-710


K8SPG-715 - Improved custom-extensions e2e test by adding pgvector

K8SPG-726 - Added ability to deRne security context for all sidecar containers

K8SPG-729 - Added Labels for Custom Resource DeRnitions (CRD) to identify the Operator version
attached to them

K8SPG-732 - Enhanced readability of pgbackrest debug logs  by printing log messages on
separate lines

K8SPG-738 - Added startup log to the Operator Pod to print commit hash, branch and build time

K8SPG-743 - Disabled client-side rate limiting in the Kubernetes Go client to avoid throttling errors
when managing multiple clusters with a single operator. This change leverages Kubernetes’
server-side Priority and Fairness mechanisms introduced in v1.20 and later. (Thank you Joshua
Sierles for contributing to this issue)

K8SPG-744 - Improved Contributing guide with the steps how to build the Operator for
development purposes

K8SPG-717, K8SPG-750 - Added the ability to deRne a custom cluster name for PMM for Rltering

K8SPG-753 - Added the ability to enable pg_stat_statements  instead of pg_stat_monitor

K8SPG-761 - Added the ability to add concurrent reconciliation workers

K8SPG-828 - Added registry name to images due to Openshift 4.19 changes

Bugs Fixed

K8SPG-532 - Improved log visibility to include logs about missing data source to INFO logs

K8SPG-574 - Added pg_repack  to the list of built-in extensions in the Custom Resource

K8SPG-661 - Added documentation about replica reinitialization in the Operator

K8SPG-677 - Made the imagePullPolicy  in pg-db  Helm chart conRgurable

K8SPG-680 - Prevent scheduled backups to start until the volume expansion is completed with
success.

K8SPG-698 - Fixed the issue with pgbackrest  service account not being created and
reconciliation failing by creating the StatefulSet for this service account Rrst

K8SPG-703 - Fixed the issue with the backup Pod being stuck in a running state due to running
jobs being deleted because of the TTL expiration by adding an internal Rnalizer to keep the job
running until it Rnishes

K8SPG-722 - Documented the replica reinitialization behavior.

https://perconadev.atlassian.net/browse/K8SPG-715
https://perconadev.atlassian.net/browse/K8SPG-726
https://perconadev.atlassian.net/browse/K8SPG-729
https://perconadev.atlassian.net/browse/K8SPG-732
https://perconadev.atlassian.net/browse/K8SPG-738
https://perconadev.atlassian.net/browse/K8SPG-743
https://perconadev.atlassian.net/browse/K8SPG-744
https://perconadev.atlassian.net/browse/K8SPG-717
https://perconadev.atlassian.net/browse/K8SPG-750
https://perconadev.atlassian.net/browse/K8SPG-753
https://perconadev.atlassian.net/browse/K8SPG-761
https://perconadev.atlassian.net/browse/K8SPG-828
https://perconadev.atlassian.net/browse/K8SPG-532
https://perconadev.atlassian.net/browse/K8SPG-574
https://perconadev.atlassian.net/browse/K8SPG-661
https://perconadev.atlassian.net/browse/K8SPG-677
https://perconadev.atlassian.net/browse/K8SPG-680
https://perconadev.atlassian.net/browse/K8SPG-698
https://perconadev.atlassian.net/browse/K8SPG-703
https://perconadev.atlassian.net/browse/K8SPG-722


K8SPG-772 - Fixed the issue with WAL watcher panicking if some backups have no CompletedAt
status Reld by using CreationTimestamp  as fallback.

K8SPG-782 - Fixed the issue with crashing WALWatcher by assigning Patroni version to status
when Patroni label is conRgured through the Custom resource option

K8SPG-785 - Fixed PMM template in Helm chart (Thank you user Nik for reporting this issue)

K8SPG-792 - Add the ability to conRgure and use images deRned in environment variables when
starting a cluster (Thank you Jakub Jaruszewski for reporting this issue)

K8SPG-799 - Fixed the issue with the cluster being blocked due to inability to pull the image fot
the Patroni Version Detector Pod if imagePullSecrets in conRgured. The issue is Rxed by
respecting the conRguration for the patroni version check pod. (Thank you Baptiste Balmon for
reporting this issue)

K8SPG-804 - Fixed an issue where outdated cluster state could cause a duplicate backup job to
be created, blocking new backups. The issue was Rxed by ensuring reconcileManualBackup
fetches the latest postgrescluster state.

K8SPG-812 - Fixed image in PerconaPGUpgrade example

Deprecation, Change, Rename and Removal

New repositories for pgBouncer  and pgBackRest

Now the Operator uses the oTcial Percona Docker images for pgBouncer  and pgBackRest
components. Pay attention to the new image repositories when you upgrade the Operator and the
database. Check the Percona certiRed images for exact image names.

Changes in image pulling on OpenShift

Starting with OpenShift version 4.19, the way Operator images are pulled has changed. Now the
registry name must be speciRed for image paths to ensure the images are pulled successfully
from DockerHub.

All Custom Resource manifests now include the registry name in image paths. This enables you
to successfully install the Operator using the default manifests from Git repositories. If you
upgrade the Operator and the database cluster via the command line interface, add the
docker.io  registry name to image paths for all components in the format:

Follow our upgrade documentation for update guidelines.

"docker.io/percona/percona-postgresql-operator:2.8.0-ppg17.6-1-postgres"

https://perconadev.atlassian.net/browse/K8SPG-772
https://perconadev.atlassian.net/browse/K8SPG-782
https://perconadev.atlassian.net/browse/K8SPG-785
https://perconadev.atlassian.net/browse/K8SPG-792
https://perconadev.atlassian.net/browse/K8SPG-799
https://perconadev.atlassian.net/browse/K8SPG-804
https://perconadev.atlassian.net/browse/K8SPG-812


Supported software
The Operator 2.8.0 is developed, tested and based on:

PostgreSQL 13.21, 14.18, 15.13, 16.9, 17.5.2 as the database. Other versions may also work but
have not been tested.

pgBouncer 1.24.1 for connection pooling

Patroni version 4.0.5 for high-availability

PostGIS version 3.3.8

Supported platforms
Percona Operators are designed for compatibility with all CNCF-certiRed  Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and
OpenShift, as detailed below for Operator version 2.8.0:

Google Kubernetes Engine (GKE)  1.30 - 1.32

Amazon Elastic Container Service for Kubernetes (EKS)  1.30 - 1.33

OpenShift  4.15 - 4.19

Azure Kubernetes Service (AKS)  1.30 - 1.33

Minikube  1.36.0 with Kubernetes v1.33.1

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

Percona certified images
Find Percona’s certiRed Docker images that you can use with the Percona Operator for PostgreSQL
in the following table.

Image Digest

percona/percona-
postgresql-operator:2.7.0
(x86_64)

96e4e3d7e4bcbd4880adebc5ccb958c0f4385298f0becdef2eb14b81fab407e5

https://www.cncf.io/training/certification/software-conformance/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube


percona/percona-
postgresql-operator:2.7.0
(ARM64)

055da3233a7765f22b318c97223909c20ecbbc9f34c6a8f7845d04ade51364ca

percona/percona-
postgresql-operator:2.7.0-
ppg17.5.2-postgres

cfb99ebeec00ab6efb4fca4a8da2b8c3b489dd792bd2f907848197ba09bc9553

percona/percona-
postgresql-operator:2.7.0-
ppg16.9-postgres

0787088575b4e4fec368acbcf4dd7aea49620ec4524451e3b44ed424fb0eeebb

percona/percona-
postgresql-operator:2.7.0-
ppg15.13-postgres

c93f52ea1d6ec955a368c4539b843a9c57ee4a5acc907f0dfb59ae3018560d1b

percona/percona-
postgresql-operator:2.7.0-
ppg14.18-postgres

a24059edd9864f7dc9607c3e2964844f417718a5b9f471ceb98c0a0d774a4bca

percona/percona-
postgresql-operator:2.7.0-
ppg13.21-postgres

2c9a05399b34cfe79698bdaab66db8fdaece0db7b1fa34441124cccdbe375255

percona/percona-
postgresql-operator:2.7.0-
ppg17.5.2-postgres-
gis3.3.8

860ccc180c1ac6be3c34c354d6ba9148b00330e183ba5913954e34d49c95d22f

percona/percona-
postgresql-operator:2.7.0-
ppg16.9-postgres-gis3.3.8

ca50f560bc7b3e18ec3360dc1a6b8c860e0346472af051cb0d2aec2a7a45d8b3

percona/percona-
postgresql-operator:2.7.0-
ppg15.13-postgres-
gis3.3.8

bb6707fd12ea430708e2eb22f6c7dadf3ab4258fcfd31e86f1f78c66ba211742

percona/percona-
postgresql-operator:2.7.0-
ppg14.18-postgres-
gis3.3.8

c3b55d1394d8f0a476cea29340442313c9c08dcd8c83f31ccfc66afdbde42488



percona/percona-
postgresql-operator:2.7.0-
ppg13.21-postgres-
gis3.3.8

3df44c1089563b42198ef929e27b9797ef2b04d92736293952163fa7541c0068

percona/percona-
pgbouncer:1.24.1

451431afa3cd288ecda92b6446bec8833fbf376fbd1b7c7e314fc42f3355255f

percona/percona-
pgbouncer:1.24.1
(ARM64)

479aa893e55c5afe8b97852c90d7551dc55d3fc526773a5a7d992876bbf54cb0

percona/percona-
pgbackrest:2.55.0

b0d2defbc7a07cf395b1fa6c6e13d9d3267c3a2d3c52362ac440db26ea4a4bad

percona/percona-
pgbackrest:2.55.0
(ARM64)

bc15d058e7820499bf67ccec2fe51c583fe67a6e3ed55ec28adf3e252828924a

percona/pmm-
client:2.44.1

8b2eaddffd626f02a2d5318ffebc0c277fe8457da6083b8cfcada9b6e6168616

percona/pmm-
client:2.44.1 (ARM64)

337fecd4afdb3f6daf2caa2b341b9fe41d0418a0e4ec76980c7f29be9d08b5ea

percona/pmm-client:3.3.0 0f4ef6a814946f83ef1ed26cf3526ff606fc7815007f84995492d3e4eaa15a0e

percona/pmm-client:3.3.0
(ARM64)

c03aa678d26faf783c3598b3a139a8f3154e5bf1bc9f5a3c9abf0533922f79d6



Percona Operator for PostgreSQL 2.6.0
(2025-03-17)

Installation

Release Highlights
This release provides the following features and improvements:

Backup improvements

This release implemented several improvements to the backup/restore process:

A new delete-backups Rnalizer was implemented to automatically remove all backups when
deleting the cluster. This Rnalizer is off by default. It’s experimental and, therefore, is not
recommended for production environments.

Backup logic was improved and now allows retrying a failed backup in the same backup Pod for a
speciRed number of times before deleting this Pod and creating a new one. This should be
beneRcial in case of short connectivity issues or timeouts. This behavior is controlled by the new
backups.pgbackrest.jobs.backoffLimit and backups.pgbackrest.jobs.restartPolicy Custom
Resource options.

You can now overwrite the default restore command for pgBackRest  via the
patroni.dynamicConRguration Custom Resource option. Particularly, this allows to control and
Rlter Rles restored to pg_wal  directory without editing these Rles in the backup repository
storage.

PostgreSQL 17 support

PostgreSQL 17 is now supported by the Operator in addition to versions 13 - 16. The appropriate
images are now included in the list of Percona-certiRed images. See these blogposts for details
about the latest PostgreSQL 17 features with the added security and functionality improvements:

Encrypt PostgreSQL Data at Rest on Kubernetes  by Ege Gunes

The Powerful Features Released in PostgreSQL 17 Beta 2  by Shivam Dhapatkar

PostgreSQL 17: Two Small Improvements That Will Have a Major Impact  by David Stokes.

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#operator-finalizers-delete-backups
https://www.percona.com/blog/encrypt-postgresql-data-at-rest-on-kubernetes/
https://www.percona.com/blog/the-powerful-features-released-in-postgresql-17-beta-2/
https://www.percona.com/blog/postgresql-17-two-small-improvements-that-will-have-a-major-impact/


PostgreSQL 17 is currently not recommended for production environments due to the known
limitation.

Update from April 1, 2025: We have added PostgreSQL 17.4 image and database cluster components
based on this image. It is now production ready and we recommend updating the database cluster
from PostgreSQL 17.2 to 17.4. Check the upgrade instructions for steps

pgvector  is added to the PostgreSQL image

To support you with your AI journey, we’ve added the pgvector  extension to the PostgreSQL images
shipped with our Operator. Now, you can easily use Percona Distribution for PostgreSQL as a vector
database by simply enabling it in your Custom Resource options. No more custom extension
installations  needed.

New features
K8SPG-628: The custom restore_command  can be now passed to pgBackRest via the
patroni.dynamicConRguration Custom Resource option

K8SPG-619: New backups.pgbackrest.jobs.backoffLimit  and
backups.pgbackrest.jobs.restartPolicy  Custom Resource options allow to retry backup in
the backup Pod for a speciRed number of times before abandoning the Pod and creating the new
one

K8SPG-648: PostgreSQL 17 is now supported by the Operator

Improvements
K8SPG-487: New spec.metadata.labels  and spec.metadata.annotations  Custom Resource
options allow setting labels and annotation globally for all Kubernetes objects created by the
Operator

K8SPG-554: New tlsOnly  Custom Resource option allows the user to enforce TLS connections
for the database cluster

K8SPG-586: The new experimental finalizers.delete-backups  Rnalizer (off by default)
removes all backups of the cluster at cluster deletion event

K8SPG-634: The new autoCreateUserSchema  Custom Resource option enhances the declarative
user management by automatically creating per-user schemas

K8SPG-652: Improve security and meet compliance requirements by using PostgreSQL images

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-minor-version-upgrade
https://www.percona.com/blog/create-an-ai-expert-with-open-source-tools-and-pgvector/
https://jira.percona.com/browse/K8SPG-628
https://jira.percona.com/browse/K8SPG-619
https://jira.percona.com/browse/K8SPG-648
https://jira.percona.com/browse/K8SPG-487
https://jira.percona.com/browse/K8SPG-554
https://jira.percona.com/browse/K8SPG-586
https://jira.percona.com/browse/K8SPG-634
https://jira.percona.com/browse/K8SPG-652


built based on Red Hat Universal Base Image (UBI) 9 instead of UBI 8

K8SPG-692: Patroni versions 4.x are now supported by the Operator in addition to versions 3.x

K8SPG-699: The pgvector  extension is now included within the PostgreSQL image used by the
Operator

K8SPG-701: The extensions.image  Custom Resource option is now optional, and can be
omitted for builtin PostgreSQL extensions

K8SPG-702: A retry logic was implemented to Rx intermittent Pod exec failures caused by
timeouts (Thanks to dcaputo-harmoni for contribution)

K8SPG-711: The new README.md  explains how to build your own images for the PostgreSQL
cluster components used by the Operator

Bugs Fixed
K8SPG-594: Fix a bug where extension was still appearing in pg_extension table after being
removed from Custom Resource and physically deleted by the Operator

K8SPG-637: Fix a bug where restore was failing with “waiting for another restore to Rnish” if the
pg-restore object of a previous unRnished restore was manually deleted

K8SPG-638: Fix a bug that caused mooding the logs with no completed backups found error at
cluster initialization.

K8SPG-645: Fix a bug where creating sidecar containers for pgBouncer did not work

K8SPG-681: Fixed a bug where the “Last Recoverable Time” information Reld was missing from
the output of the kubectl get pg-backup  command due to misdetection cases

K8SPG-713: Fix a bug where The cluster not found errors were appearing in the Operator logs on
cluster deletion

Deprecation, Change, Rename and Removal

The new versions of Percona distribution for PostgreSQL used by the Operator come with Patroni
4.x, which introduces breaking changes compared to previously used 3.x versions.

To maintain backward compatibility, the Operator detects the Patroni version used in the image. It
is also possible to disable this auto-detection feature by manually setting the Patroni version via
the [following annotation set in the metadata part](../annotations.md#customizing-patroni-
version-for-the-operator-version-260—270 of the Custom Resource:

https://jira.percona.com/browse/K8SPG-692
https://jira.percona.com/browse/K8SPG-699
https://jira.percona.com/browse/K8SPG-701
https://jira.percona.com/browse/K8SPG-702
https://jira.percona.com/browse/K8SPG-711
https://github.com/percona/percona-docker/blob/main/postgresql-containers/README.md
https://jira.percona.com/browse/K8SPG-594
https://jira.percona.com/browse/K8SPG-637
https://jira.percona.com/browse/K8SPG-638
https://jira.percona.com/browse/K8SPG-645
https://jira.percona.com/browse/K8SPG-681
https://jira.percona.com/browse/K8SPG-713


PostgreSQL 12 is no longer supported by the Operator 2.6.0 and newer versions.

Known limitations

PostgreSQL 17.2 image and images for other database cluster components based on PostgreSQL
17 contain the known CVE-2025-1094  - a vulnerability in the libpq PostgreSQL client library,
which makes images used by the Operator vulnerable to SQL injection within the PostgreSQL
interactive terminal due to the lack of neutralizing quoting. Images for PostgreSQL 17 will be
available soon, while images for other PosgreSQL versions have already been Rxed.

PostgreSQL 17.4 image includes the Rx for CVE-2025-1094 , which closed a vulnerability in the
libpq  PostgreSQL client library but introduced a regression related to string handling for non-null
terminated strings. The error would be visible based on how a PostgreSQL client implemented
this behavior.

Supported platforms
The Operator 2.8.0 is developed, tested and based on:

PostgreSQL 13.20, 14.17, 15.12, 16.8, 17.2 and 17.4 as the database. Other versions may also
work but have not been tested.

pgBouncer for connection pooling:

version 1.23.1 - for PostgreSQL 17.2

version 1.24.0 - for PostgreSQL 13.20, 14.17, 15.12, 16.8, 17.4

Patroni for high-availability:

version 4.0.5 - for PostgreSQL 17.4

version 4.0.3 - for PostgreSQL 17.2

version 4.0.4 - for PostgreSQL 13.20, 14.17, 15.12, 16.8

Percona Operators are designed for compatibility with all CNCF-certiRed  Kubernetes distributions.

Our release process includes targeted testing and validation on major cloud provider platforms and
OpenShift, as detailed below for Operator version 2.8.0:

pgv2.percona.com/custom-patroni-version: "4"

https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.postgresql.org/support/security/CVE-2025-1094/
https://www.cncf.io/training/certification/software-conformance/


Google Kubernetes Engine (GKE)  1.29 - 1.31

Amazon Elastic Container Service for Kubernetes (EKS)  1.29 - 1.32

OpenShift  4.14 - 4.18

Azure Kubernetes Service (AKS)  1.29 - 1.31

Minikube  1.35.0 with Kubernetes 1.32.0

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube


Percona Operator for PostgreSQL 2.5.1

Date

March 03, 2025

Installation

Installing Percona Operator for PostgreSQL

Release highlights
This release Rxes the CVE-2025-1094 , vulnerability in the libpq PostgreSQL client library, which
made images used by the Operator vulnerable to SQL injection within the PostgreSQL interactive
terminal due to the lack of neutralizing quoting. For now, the Rx includes the image of PostgreSQL
16.8 and other database cluster images based on PostgreSQL 16.8. Fixed images for other
PostgreSQL versions are to follow in the upcoming days.

Update from March 04, 2025: images of PostgreSQL 15.12 and other database cluster components
based on PostgreSQL 15.12 were added.

Update from March 06, 2025: images of PostgreSQL 14.17 and other database cluster components
based on PostgreSQL 14.17 were added.

Update from March 07, 2025: images of PostgreSQL 13.20 and other database cluster components
based on PostgreSQL 13.20 were added.

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.20, 13.20, 14.17, 15.12, and
16.8. Other options may also work but have not been tested. The Operator 2.5.1 provides connection
pooling based on pgBouncer 1.24.0 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are oTcially supported by the Operator 2.5.1:

Google Kubernetes Engine (GKE)  1.28 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS)  1.28 - 1.30

OpenShift  4.13.46 - 4.16.7

Azure Kubernetes Service (AKS)  1.28 - 1.30

https://www.postgresql.org/support/security/CVE-2025-1094/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/


Minikube  1.34.0 with Kubernetes 1.31.0

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://github.com/kubernetes/minikube


Percona Operator for PostgreSQL 2.5.0

Date

October 08, 2024

Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Automated storage scaling

Starting from this release, the Operator is able to detect if the storage usage on the PVC reaches a
certain threshold, and trigger the PVC resize. Such autoscaling needs the upstream auto-growable
disk  feature turned on when deploying the Operator. This is done via the PGO_FEATURE_GATES
environment variable set in the deploy/operator.yaml  manifest (or in the appropriate part of
deploy/bundle.yaml ):

When the support for auto-growable disks is turned on, the
spec.instances[].dataVolumeClaimSpec.resources.limits.storage  Custom Resource
option sets the maximum value available for the Operator to scale up.

See oTcial documentation for more details and limitations of the feature.

Major versions upgrade improvements

Major version upgrade, introduced in the Operator version 2.4.0 as a tech preview, had undergone
some improvements. Now it is possible to upgrade from one PostgreSQL major version to another
with custom images for the database cluster components (PostgreSQL, pgBouncer, and
pgBackRest). The upgrade is still triggered by applying the YAML manifest with the information
about the existing and desired major versions, which now includes image names. The resulting
manifest may look as follows:

- name: PGO_FEATURE_GATES
  value: "AutoGrowVolumes=true"

https://access.crunchydata.com/documentation/postgres-operator/latest/guides/autogrowable-disk


Azure Kubernetes Service and Azure Blob Storage support

Azure Kubernetes Service (AKS) is now oTcially supported platform, so developers and vendors of
the solutions based on the Azure platform can take advantage of the oTcial support from Percona
or just use oTcially certiRed Percona Operator for PostgreSQL images; also, Azure Blob Storage can
now be used for backups.

New features
K8SPG-227 and K8SPG-157: Add support for the Azure Kubernetes Service (AKS) platform and
allow using Azure Blob Storage for backups

K8SPG-244: Automated storage scaling is now supported

Improvements
K8SPG-630: A new backups.trackLatestRestorableTime  Custom Resource option allows to
disable latest restorable time tracking for users who need reducing S3 API calls usage

K8SPG-605 and K8SPG-593: Documentation now includes information about upgrading the
Operator via Helm and using databaseInitSQL commands

K8SPG-598: Database major version upgrade now supports custom images

K8SPG-560: A pg-restore  Custom Resource is now automatically created at bootstrapping a
new cluster from an existing backup

K8SPG-555: The Operator now creates separate Secret with CA certiRcate for each cluster

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
  name: cluster1-15-to-16
spec:
  postgresClusterName: cluster1
  image: percona/percona-postgresql-operator:2.4.1-upgrade
  fromPostgresVersion: 15
  toPostgresVersion: 16
  toPostgresImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-postgres
  toPgBouncerImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-
pgbouncer1.23.1
  toPgBackRestImage: percona/percona-postgresql-operator:2.5.0-ppg16.4-
pgbackrest2.53-1

https://jira.percona.com/browse/K8SPG-227
https://jira.percona.com/browse/K8SPG-157
https://jira.percona.com/browse/K8SPG-244
https://jira.percona.com/browse/K8SPG-630
https://jira.percona.com/browse/K8SPG-605
https://jira.percona.com/browse/K8SPG-593
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-upgrade-via-helm
https://jira.percona.com/browse/K8SPG-598
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-major-version-upgrade
https://jira.percona.com/browse/K8SPG-560
https://jira.percona.com/browse/K8SPG-555


K8SPG-553: Users can provide the Operator with their own root CA certiRcate

K8SPG-454: Cluster status obtained with kubectl get pg  command is now “ready” not only
when all Pods are ready, but also takes into account if all StatefulSets are up to date

K8SPG-577: A new pmm.querySource  Custom Resource option allows to set PMM query source

Bugs Fixed
K8SPG-629: Fix a bug where the Operator was not deleting backup Pods when cleaning outdated
backups according to the retention policy

K8SPG-499: Fix a bug where cluster was getting stuck in the init state if pgBackRest secret didn’t
exist

K8SPG-588: Fix a bug where the Operator didn’t stop WAL watcher if the namespace and/or
cluster were deleted

K8SPG-644: Fix a bug in the pg-db  Helm chart which prevented from setting more than one
Toleration

Deprecation, Change, Rename and Removal
With the Operator versions prior to 2.5.0, autogenerated TLS certiRcates for all database clusters
were based on the same generated root CA. Starting from 2.5.0, the Operator creates root CA on a
per-cluster basis.

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.20, 13.16, 14.13, 15.8, and
16.4. Other options may also work but have not been tested. The Operator 2.5.0 provides connection
pooling based on pgBouncer 1.23.1 and high-availability implementation based on Patroni 3.3.2.

The following platforms were tested and are oTcially supported by the Operator 2.5.0:

Google Kubernetes Engine (GKE)  1.28 - 1.30

Amazon Elastic Container Service for Kubernetes (EKS)  1.28 - 1.30

OpenShift  4.13.46 - 4.16.7

Azure Kubernetes Service (AKS)  1.28 - 1.30

Minikube  1.34.0 with Kubernetes 1.31.0

https://jira.percona.com/browse/K8SPG-553
https://jira.percona.com/browse/K8SPG-454
https://jira.percona.com/browse/K8SPG-577
https://jira.percona.com/browse/K8SPG-629
https://jira.percona.com/browse/K8SPG-499
https://jira.percona.com/browse/K8SPG-588
https://jira.percona.com/browse/K8SPG-644
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://github.com/kubernetes/minikube


This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.



Percona Operator for PostgreSQL 2.4.1

Date

August 6, 2024

Installation

Installing Percona Operator for PostgreSQL

Bugs Fixed
K8SPG-616: Fix a bug where it was not possible to create a new cluster after deleting the previous
one with the kubectl delete pg  command

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.19, 13.15, 14.12, 15.7, and
16.3. Other options may also work but have not been tested. The Operator 2.4.1 provides connection
pooling based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are oTcially supported by the Operator 2.4.1:

Google Kubernetes Engine (GKE)  1.27 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.27 - 1.30

OpenShift  4.12.59 - 4.15.18

Minikube  1.33.1

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPG-616
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube


Percona Operator for PostgreSQL 2.4.0

Date

June 26, 2024

Installation

Installing Percona Operator for PostgreSQL

Release Highlights

Major versions upgrade (tech preview)
Starting from this release Operator users can automatically upgrade from one PostgreSQL major
version to another. Upgrade is triggered by applying the yaml Rle with the information about the
existing and desired major versions, with an example present in deploy/upgrade.yaml :

After applying it as usual, by running kubectl apply -f deploy/upgrade.yaml  command, the
actual upgrade takes place as follows:

1. The cluster is paused for a while,

2. The cluster is specially annotated with pgv2.percona.com/allow-upgrade :
<PerconaPGUpgrade.Name>  annotation,

3. Jobs are created to migrate the data,

4. The cluster starts up after the upgrade Rnishes.

Check oTcial documentation for more details, including ones about tracking the upgrade process
and side effects for users with custom extensions.

apiVersion: pgv2.percona.com/v2
kind: PerconaPGUpgrade
metadata:
  name: cluster1-15-to-16
spec:
  postgresClusterName: cluster1
  image: perconalab/percona-postgresql-operator:main-upgrade
  fromPostgresVersion: 15
  toPostgresVersion: 16

http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-major-version-upgrade


Supporting PostgreSQL tablespaces
Tablespaces allow DBAs to store a database on multiple Rle systems within the same server and to
control where (on which Rle systems) speciRc parts of the database are stored. You can think about
it as if you were giving names to your disk mounts and then using those names as additional
parameters when creating database objects.

PostgreSQL supports this feature, allowing you to store data outside of the primary data directory.
Tablespaces support was present in Percona Operator for PostgreSQL 1.x, and starting from this
version, Percona Operator for PostgreSQL 2.x can also bring this feature to your Kubernetes
environment, when needed.

Using cloud roles to authenticate on the object storage
for backups
Percona Operator for PostgreSQL has introduced a new feature that allows users to authenticate to
AWS S3 buckets via IAM roles . Now Operator This enhancement signiRcantly improves security
by eliminating the need to manage S3 access keys directly, while also streamlining the conRguration
process for easier backup and restore operations.

To use this feature, add annotation to the spec  part of the Custom Resource and also add
pgBackRest custom conRguration option to the backups  subsection:

New features
K8SPG-138: Users are now able to use AWS IAM role  to provide access to the S3 bucket used

spec:
  crVersion: 2.4.0
  metadata:
    annotations:
      eks.amazonaws.com/role-arn: arn:aws:iam::1191:role/role-pgbackrest-
access-s3-bucket
  ...
  backups:
    pgbackrest:
      image: percona/percona-postgresql-operator:2.4.0-ppg16-pgbackrest
      global:
        repo1-s3-key-type: web-id
        ...

https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html
https://jira.percona.com/browse/K8SPG-138
https://kubernetes-on-aws.readthedocs.io/en/latest/user-guide/iam-roles.html


for backups

K8SPG-254: Now the Operator automates upgrading PostgreSQL major versions

K8SPG-459: PostgreSQL tablespaces are now supported by the Operator

K8SPG-479 and K8SPG-492: It is now possible to specify tolerations for the backup restore jobs
as well as for the data move jobs created when the Operator 1.x is upgraded to 2.x; this is useful
in environments with dedicated Kubernetes worker nodes protected by taints

K8SPG-503 and K8SPG-513: It is now possible to specify resources for the sidecar containers of
database instance Pods

Improvements
K8SPG-259: Users can now change the default level for log messages for pgBackRest to simplify
Rxing backup and restore issues

K8SPG-542: Documentation now includes HowTo on creating a disaster recovery cluster using
streaming replication

K8SPG-506: The pg-backup  objects now have a new backupName  status Reld, which allows
users to obtain the backup name for restore simpler

K8SPG-514: The new securityContext  Custom Resource subsections allow to conRgure
securityContext for PostgreSQL instances, pgBouncer, and pgBackRest Pods

K8SPG-518: The kubectl get pg-backup  command now shows the latest restorable time to
make it easier to pick a point-in-time recovery target

K8SPG-519: The new extensions.storage.endpoint  Custom Resource option allows
specifying a custom S3 object storage endpoint for installing custom extensions

K8SPG-549: It is now possible to expose replica nodes through a separate Service, useful if you
want to balance the load and separate reads and writes traTc

K8SPG-550: The default size for /tmp  mount point in PMM container was increased from 1.5G to
2G

K8SPG-585: The namespace Reld was added to the Operator and database Helm chart templates

Bugs Fixed
K8SPG-462: Fixed a bug where backups could not start if a previous backup had the same name

K8SPG-470: Liveness and Readiness probes timeouts are now conRgurable through Custom

https://jira.percona.com/browse/K8SPG-254
http://127.0.0.1:8001/percona-operator-for-postgresql/print_page.html#update-major-version-upgrade
https://jira.percona.com/browse/K8SPG-459
https://jira.percona.com/browse/K8SPG-479
https://jira.percona.com/browse/K8SPG-492
https://jira.percona.com/browse/K8SPG-503
https://jira.percona.com/browse/K8SPG-513
https://jira.percona.com/browse/K8SPG-259
https://jira.percona.com/browse/K8SPG-542
https://jira.percona.com/browse/K8SPG-506
https://jira.percona.com/browse/K8SPG-514
https://jira.percona.com/browse/K8SPG-518
https://jira.percona.com/browse/K8SPG-519
https://jira.percona.com/browse/K8SPG-549
https://jira.percona.com/browse/K8SPG-550
https://jira.percona.com/browse/K8SPG-585
https://jira.percona.com/browse/K8SPG-462
https://jira.percona.com/browse/K8SPG-470


Resource

K8SPG-559: Fix a bug where the Rrst full backup was incorrectly marked as incremental in the
status Reld

K8SPG-490: Fixed broken replication that occurred after the network loss of the primary Pod with
PostgreSQL 14 and older versions

K8SPG-502: Fix a bug where backup jobs were not cleaned up after completion

K8SPG-510: Fix a bug where pausing the cluster immediately set its state to “paused” instead of
“stopping” while Pods were still running

K8SPG-531: Fix a bug where scheduled backups did not work for a second database with the
same name in cluster-wide mode

K8SPG-535: Fix a bug where the Operator crashed when attempting to run a backup with a non-
existent repository

K8SPG-540: Fix a bug in the pg-db Helm chart readme where the key to set the backup secret was
incorrectly speciRed (Thanks to Abhay Tiwari for contribution)

K8SPG-543: Fix a bug where applying a cr.yaml Rle with an empty spec.proxy  Reld caused the
Operator to crash

K8SPG-547: Fix dependency issue that made pgbackrest-repo container incompatible with
pgBackRest 2.50, resulting in the older 2.48 version being used instead

Deprecation and removal
The plpythonu  extension was removed from the list of built-in PostgreSQL extensions; users
who still need it can enable it for their databases via custom extensions functionality

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.19, 13.15, 14.12, 15.7, and
16.3. Other options may also work but have not been tested. The Operator 2.4.0 provides connection
pooling based on pgBouncer 1.22.1 and high-availability implementation based on Patroni 3.3.0.

The following platforms were tested and are oTcially supported by the Operator 2.4.0:

Google Kubernetes Engine (GKE)  1.27 - 1.29

Amazon Elastic Container Service for Kubernetes (EKS)  1.27 - 1.30

OpenShift  4.12.59 - 4.15.18

https://jira.percona.com/browse/K8SPG-559
https://jira.percona.com/browse/K8SPG-490
https://jira.percona.com/browse/K8SPG-502
https://jira.percona.com/browse/K8SPG-510
https://jira.percona.com/browse/K8SPG-531
https://jira.percona.com/browse/K8SPG-535
https://jira.percona.com/browse/K8SPG-540
https://jira.percona.com/browse/K8SPG-543
https://jira.percona.com/browse/K8SPG-547
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift


Minikube  1.33.1

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://github.com/kubernetes/minikube


Percona Operator for PostgreSQL 2.3.1

Date

January 23, 2024

Installation

Installing Percona Operator for PostgreSQL

Release Highlights
This release provides a number of bug Rxes, including Rxes for the following vulnerabilities in
PostgreSQL, pgBackRest, and pgBouncer images used by the Operator:

OpenSSH could cause remote code execution by ssh-agent if a user establishes an SSH
connection to a compromised or malicious SSH server and has agent forwarding enabled (CVE-
2023-38408 ). This vulnerability affects pgBackRest and PostgreSQL images.

The c-ares library could cause a Denial of Service with 0-byte UDP payload (CVE-2023-32067 ).
This vulnerability affects pgBouncer image.

Both Operator 1.x (including version 1.5.0) and Operator 2.x (including version 2.3.0) are affected.
The 2.x versions upgrade to 2.3.1 is recommended to resolve these issues.

Bugs Fixed
K8SPG-493: Fix a regression due to which the Operator could run scheduled backup only one time

K8SPG-494: Fix vulnerabilities in PostgreSQL, pgBackRest, and pgBouncer images

K8SPG-496: Fix the bug where setting the pause  Custom Resource option to true  for the cluster
with a backup running would not take effect even after the backup completed

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.17, 13.13, 14.10, 15.5, and
16.1. Other options may also work but have not been tested. The Operator 2.3.1 provides connection
pooling based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are oTcially supported by the Operator 2.3.1:

https://nvd.nist.gov/vuln/detail/CVE-2023-38408
https://nvd.nist.gov/vuln/detail/CVE-2023-32067
https://jira.percona.com/browse/K8SPG-493
https://jira.percona.com/browse/K8SPG-494
https://jira.percona.com/browse/K8SPG-496


Google Kubernetes Engine (GKE)  1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS)  1.24 - 1.28

OpenShift  4.11.55 - 4.14.6

Minikube  1.32

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube


Percona Operator for PostgreSQL 2.3.0

Date

December 21, 2023

Installation

Installing Percona Operator for PostgreSQL

Release Highlights

PostGIS support

Modern businesses heavily rely on location-based data to gain valuable insights and make data-
driven decisions. However, integrating geospatial functionality into the existing database systems
has often posed a challenge for enterprises. PostGIS, an open-source software extension for
PostgreSQL, addresses this diTculty by equipping users with extensive geospatial operations for
handling geographic data eTciently. Percona Operator now supports PostGIS, available through a
separate container image. You can read more about PostGIS and how to use it with the Operator in
our documentation.

OpenShift and PostgreSQL 16 support
The Operator is now compatible with the OpenShift platform empowering enterprise customers with
seamless on-premise or cloud deployments on the platform of their choice. Also, PostgreSQL 16
was added to the range of supported database versions and is used by default starting with this
release.

Experimental support for custom PostgreSQL extensions

One of great features of PostgreSQL is support for Extensions , which allow adding new
functionality to the database on a plugin basis. Starting from this release, users can add custom
PostgreSQL extensions dynamically, without the need to rebuild the container image (see this HowTo
on how to create and connect yours).

New features

https://www.postgresql.org/download/products/6-postgresql-extensions/


K8SPG-311 and K8SPG-389: A new loadBalancerSourceRanges  Custom Resource option
allows to customize the range of IP addresses from which the load balancer should be reachable

K8SPG-375: Experimental support for custom PostgreSQL extensions was added to the Operator

K8SPG-391: The Operator is now compatible with the OpenShift platform

K8SPG-434: The Operator now supports Percona Distribution for PostgreSQL version 16 and uses
it as default database version

Improvements
K8SPG-413: The Operator documentation now includes a comptibility matrix for each Operator
version, specifying exact versions of all core components as well as supported versions of the
database and platforms

K8SPG-332: Creating backups and pausing the cluster do not interfere with each other: the
Operator either postpones the pausing until the active backup ends, or postpones the scheduled
backup on the paused cluster

K8SPG-370: Logging management is now aligned with other Percona Operators, allowing to use
structured logging and to control log level

K8SPG-372: The multi-namespace (cluster-wide) mode of the Operator was improved, making it
possible to customize the list of Kubernetes namespaces under the Operator’s control

K8SPG-400: The documentation now explains how to allow application users to connect to a
database cluster without TLS (for example, for testing or demonstration purposes)

K8SPG-410: Scheduled backups now create pg-backup  object to simplify backup management
and tracking

K8SPG-416: PostgreSQL custom conRguration is now supported in the Helm chart

K8SPG-422 and K8SPG-447: The user can now see backup type and status in the output of
kubectl get pg-backup  and kubectl get pg-restore  commands

K8SPG-458: ATnity conRguration examples were added to the default/cr.yaml  conRguration
Rle

Bugs Fixed
K8SPG-435: Fix a bug with insuTcient size of /tmp Rlesystem which caused PostgreSQL Pods to
be recreated every few days due to running out of free space on it

K8SPG-453: Bug in pg_stat_monitor  PostgreSQL extensions could hang PostgreSQL

https://jira.percona.com/browse/K8SPG-311
https://jira.percona.com/browse/K8SPG-389
https://jira.percona.com/browse/K8SPG-375
https://jira.percona.com/browse/K8SPG-391
https://jira.percona.com/browse/K8SPG-434
https://jira.percona.com/browse/K8SPG-413
https://jira.percona.com/browse/K8SPG-332
https://jira.percona.com/browse/K8SPG-370
https://jira.percona.com/browse/K8SPG-372
https://jira.percona.com/browse/K8SPG-400
https://jira.percona.com/browse/K8SPG-410
https://jira.percona.com/browse/K8SPG-416
https://jira.percona.com/browse/K8SPG-422
https://jira.percona.com/browse/K8SPG-447
https://jira.percona.com/browse/K8SPG-458
https://jira.percona.com/browse/K8SPG-435
https://jira.percona.com/browse/K8SPG-453


K8SPG-279: Fix regression which made the Operator to crash after creating a backup if there was
no backups.pgbackrest.manual section in the Custom Resource

K8SPG-310: Documentation didn’t explain how to apply pgBackRest verifyTLS  option which can
be used to explicitly enable or disable TLS veriRcation for it

K8SPG-432: Fix a bug due to which backup jobs and Pods were not deleted on deleting the
backup object

K8SPG-442: The Operator didn’t allow to append custom items to the PostgreSQL
shared_preload_libraries  option

K8SPG-443: Fix a bug due to which only English locale was installed in the PostgreSQL image,
missing other languages support

K8SPG-450: Fix a bug which prevented PostgreSQL to initialize the database on Kubernetes
working nodes with enabled huge memory pages if Pod resource limits didn’t allow using them

K8SPG-401: Fix a bug which caused Operator crash if deployed with no pmm  section in the
deploy/cr.yaml  conRguration Rle

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.17, 13.13, 14.10, 15.5, and
16.1. Other options may also work but have not been tested. The Operator 2.3.0 provides connection
pooling based on pgBouncer 1.21.0 and high-availability implementation based on Patroni 3.1.0.

The following platforms were tested and are oTcially supported by the Operator 2.3.0:

Google Kubernetes Engine (GKE)  1.24 - 1.28

Amazon Elastic Container Service for Kubernetes (EKS)  1.24 - 1.28

OpenShift  4.11.55 - 4.14.6

Minikube  1.32

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-310
https://jira.percona.com/browse/K8SPG-432
https://jira.percona.com/browse/K8SPG-442
https://jira.percona.com/browse/K8SPG-443
https://jira.percona.com/browse/K8SPG-450
https://jira.percona.com/browse/K8SPG-401
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/kubernetes/minikube


Percona Operator for PostgreSQL 2.2.0

Date

June 30, 2023

Installation

Installing Percona Operator for PostgreSQL

Percona announces the general availability of Percona Operator for PostgreSQL 2.2.0.

Starting with this release, Percona Operator for PostgreSQL version 2 is out of technical preview and
can be used in production with all the improvements it brings over the version 1 in terms of
architecture, backup and recovery features, and overall mexibility.

We prepared a detailed migration guide which allows existing Operator 1.x users to move their
PostgreSQL clusters to the Operator 2.x. Also, see this blog post  to Rnd out more about the
Operator 2.x features and beneRts.

Improvements

K8SPG-378: A new crVersion  Custom Resource option was added to indicate the API version
this Custom Resource corresponds to

K8SPG-359: The new users.secretName  option allows to deRne a custom Secret name for the
users deRned in the Custom Resource (thanks to Vishal Anarase for contributing)

K8SPG-301: Amazon Elastic Container Service for Kubernetes (EKS)  was added to the list of
oTcially supported platforms

K8SPG-302: Minikube  is now oTcially supported by the Operator to enable ease of testing and
developing

K8SPG-326: Both the Operator and database can be now installed with the Helm package
manager

K8SPG-342: There is now no need in manual restart of PostgreSQL Pods after the monitor user
password changed in Secrets

K8SPG-345: The new proxy.pgBouncer.exposeSuperusers  Custom Resource option makes it
possible for administrative users to connect to PostgreSQL through PgBouncer

https://www.percona.com/blog/announcing-the-general-availability-of-percona-operator-for-postgresql-version-2/
https://jira.percona.com/browse/K8SPG-378
https://jira.percona.com/browse/K8SPG-359
https://jira.percona.com/browse/K8SPG-301
https://aws.amazon.com/
https://jira.percona.com/browse/K8SPG-302
https://github.com/kubernetes/minikube
https://jira.percona.com/browse/K8SPG-326
https://jira.percona.com/browse/K8SPG-342
https://jira.percona.com/browse/K8SPG-345


K8SPG-355: The Operator can now be deployed in multi-namespace (“cluster-wide”) mode to track
Custom Resources and manage database clusters in several namespaces

Bugs Fixed

K8SPG-373: Fix the bug due to which the Operator did not not create Secrets for the pguser  user
if PMM was enabled in the Custom Resource

K8SPG-362: It was impossible to install Custom Resource DeRnitions for both 1.x and 2.x
Operators in one environment, preventing the migration of a cluster to the newer Operator version

K8SPG-360: Fix a bug due to which manual password changing or resetting via Secret didn’t work

Known limitations

Query analytics (QAN) will not be available in Percona Monitoring and Management (PMM) due to
bugs PMM-12024  and PMM-11938 . The Rxes are included in the upcoming PMM 2.38, so
QAN can be used as soon as it is released and both PMM Client and PMM Server are upgraded.

Supported platforms
The Operator was developed and tested with PostgreSQL versions 12.14, 13.10, 14.7, and 15.2. Other
options may also work but have not been tested. The Operator 2.2.0 provides connection pooling
based on pgBouncer 1.18.0 and high-availability implementation based on Patroni 3.0.1.

The following platforms were tested and are oTcially supported by the Operator 2.2.0:

Google Kubernetes Engine (GKE)  1.23 - 1.26

Amazon Elastic Container Service for Kubernetes (EKS)  1.23 - 1.27

Minikube  1.30.1 (based on Kubernetes 1.27)

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://jira.percona.com/browse/K8SPG-355
https://jira.percona.com/browse/K8SPG-373
https://jira.percona.com/browse/K8SPG-362
https://jira.percona.com/browse/K8SPG-360
https://jira.percona.com/browse/PMM-12024
https://jira.percona.com/browse/PMM-11938
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/
https://github.com/kubernetes/minikube


Percona Operator for PostgreSQL 2.1.0 (Tech
preview)

Date

May 4, 2023

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator built with best practices of conRguration and setup of Percona Distribution for
PostgreSQL on Kubernetes .

Percona Operator for PostgreSQL helps create and manage highly available, enterprise-ready
PostgreSQL clusters on Kubernetes. It is 100% open source, free from vendor lock-in, usage
restrictions and expensive contracts, and includes enterprise-ready features: backup/restore, high
availability, replication, logging, and more.

The beneRts of using Percona Operator for PostgreSQL include saving time on database operations
via automation of Day-1 and Day-2 operations and deployment of consistent and vetted environment
on Kubernetes.

Version 2.1.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is
production-ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL
clusters in a Kubernetes-based environment, on-premises or in the cloud.

Release Highlights

PostgreSQL 15 is now oTcially supported by the Operator with the new exciting features  it
brings to developers

UX improvements related to Custom Resource have been added in this release, including the
handy pg , pg-backup , and pg-restore  short names useful to quickly query the cluster state
with the kubectl get  command and additional information in the status Relds, which now show
name , endpoint , status , and age

Note

https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://www.percona.com/blog/postgresql-15-new-features-to-be-excited-about/


New Features

K8SPG-328: The new delete-pvc  Rnalizer allows to either delete or preserve Persistent Volumes
at Custom Resource deletion

K8SPG-330: The new delete-ssl  Rnalizer can now be used to automatically delete objects
created for SSL (Secret, certiRcate, and issuer) in case of cluster deletion

K8SPG-331: Starting from now, the Operator adds short names to its Custom Resources: pg , pg-
backup , and pg-restore

K8SPG-282: PostgreSQL 15 is now oTcially supported by the Operator

Improvements

K8SPG-262: The Operator now does not attempt to start Percona Monitoring and Management
(PMM) client if the corresponding secret does not contain the pmmserver  or pmmserverkey  key

K8SPG-285: To improve the Operator we capture anonymous telemetry and usage data. In this
release we add more data points to it

K8SPG-295: Additional information was added to the status of the Operator Custom Resource,
which now shows name , endpoint , status , and age  Relds

K8SPG-304: The Operator stops using trust authentication method in pg_hba.conf  for better
security

K8SPG-325: Custom Resource options previously named paused  and shutdown  were renamed
to unmanaged  and pause  for better alignment with other Percona Operators

Bugs Fixed

K8SPG-272: Fix a bug due to which PMM agent related to the Pod wasn’t deleted from the PMM
Server inventory on Pod termination

K8SPG-279: Fix a bug which made the Operator to crash after creating a backup if there was no
backups.pgbackrest.manual  section in the Custom Resource

K8SPG-298: Fix a bug due to which the shutdown  Custom Resource option didn’t work making it
impossible to pause the cluster

K8SPG-334: Fix a bug which made it possible for the monitoring user to have special characters in
the autogenerated password, making it incompatible with the PMM Client

https://jira.percona.com/browse/K8SPG-328
https://jira.percona.com/browse/K8SPG-330
https://jira.percona.com/browse/K8SPG-331
https://jira.percona.com/browse/K8SPG-282
https://jira.percona.com/browse/K8SPG-262
https://jira.percona.com/browse/K8SPG-285
https://jira.percona.com/browse/K8SPG-295
https://jira.percona.com/browse/K8SPG-304
https://jira.percona.com/browse/K8SPG-325
https://jira.percona.com/browse/K8SPG-272
https://jira.percona.com/browse/K8SPG-279
https://jira.percona.com/browse/K8SPG-298
https://jira.percona.com/browse/K8SPG-334


Supported platforms
The following platforms were tested and are oTcially supported by the Operator 2.1.0:

Google Kubernetes Engine (GKE)  1.23 - 1.25

Amazon Elastic Container Service for Kubernetes (EKS)  1.23 - 1.25

This list only includes the platforms that the Percona Operators are speciRcally tested on as part of
the release process. Other Kubernetes mavors and versions depend on the backward compatibility
offered by Kubernetes itself.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/


Percona Operator for PostgreSQL 2.0.0 (Tech
preview)

Date

December 30, 2022

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator is based on best practices for conRguration and setup of a Percona
Distribution for PostgreSQL on Kubernetes . The beneRts of the Operator are many, but saving
time and delivering a consistent and vetted environment is key.

Version 2.0.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for
production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is
production-ready and contains everything you need to quickly and consistently deploy and scale PostgreSQL
clusters in a Kubernetes-based environment, on-premises or in the cloud.

The Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the Postgres Operator
developed by Crunchy Data . Please see the main changes in this version below.

Architecture
Operator SDK  is now used to build and package the Operator. It simpliRes the development and
brings more contribution friendliness to the code, resulting in better potential for growing the
community. Users now have full control over Custom Resource DeRnitions that Operator relies on,
which simpliRes the deployment and management of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0
Statefulsets are used, which are the de-facto standard for running stateful workloads in Kubernetes.
This change improves stability of the clusters and removes a lot of complexity from the Operator.

Backups

Note

https://www.percona.com/doc/postgresql/LATEST/index.html
https://docs.percona.com/percona-operator-for-postgresql/1.0/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/


One of the biggest challenges in version 1.x is backups and restores. There are two main problems
that our user faced:

Not possible to change backup conRguration for the existing cluster

Restoration from backup to the newly deployed cluster required workarounds

In this version both these issues are Rxed. In addition to that:

Run up to 4 pgBackrest repositories

Bootstrap the cluster from the existing backup through Custom Resource

Azure Blob Storage support

Operations
Deploying complex topologies in Kubernetes is not possible without aTnity and anti-aTnity rules. In
version 1.x there were various limitations and issues, whereas this version comes with substantial
improvements that enables users to craft the topology of their choice.

Within the same cluster users can deploy multiple instances. These instances are going to have the
same data, but can have different conRguration and resources. This can be useful if you plan to
migrate to new hardware or need to test the new topology.

Each postgreSQL node can have sidecar containers now to provide integration with your existing
tools or expand the capabilities of the cluster.

Try it out now
Excited with what you read above?

We encourage you to install the Operator following our documentation.

Feel free to share feedback with us on the forum  or raise a bug or feature request in JIRA .

See the source code in our Github repository .

https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator

